
DESIGN AND IMPLEMENTATION OF PRBS 

GENERATOR USING VHDL 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

 

Bachelor of Technology 

In 

Electronics & Instrumentation Engineering 

 

By 

SANDEEP MUKHERJEE 
ROLL NO -10307017 

& 
RUCHIR PANDEY 

ROLL NO -10307019 
 

 

 

 

Department of Electronics & Communication Engineering 

National Institute of Technology 

Rourkela 

2007 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53186864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DESIGN AND IMPLEMENTATION OF PRBS 

GENERATOR USING VHDL 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT                            
OF THE REQUIREMENTS FOR THE DEGREE OF 
 

Bachelor of Technology 

In 

Electronics & Instrumentation Engineering 

 

By 

SANDEEP MUKHERJEE 
ROLL NO -10307017 

& 
RUCHIR PANDEY 

ROLL NO -10307019 

 

Under the Guidance of 
Prof. K.K. MAHAPATRA 

 

 

 

Department of Electronics & Communication Engineering 

National Institute of Technology 

Rourkela 

2007 



 

 

 

National Institute of Technology 

Rourkela 

 

CERTIFICATE 

 

This is to certify that the thesis entitled “Design and Implementation of PRBS 

Generator using VHDL’’  Submitted by Sandeep Mukherjee, Roll No:10307017, and 

Ruchir Pandey, Roll No. 10307019, in the partial fulfillment of the requirement for the 

degree of Bachelor of Technology in Electronics & Instrumentation Engineering, 

National Institute of Technology, Rourkela , is being carried out under my supervision. 

 

To the best of my knowledge the matter embodied in the thesis has not been submitted to 

any other university/institute for the award of any degree or diploma.  

 

 

Date:                                                                                         
                                                                                                 Prof. K.K. Mahapatra 

   Dept. of ECE (E&IE) 
National Institute of Technology  

        Rourkela - 769008 
 

 

 



 

 

Acknowledgment 
 

We avail this opportunity to extend our hearty indebtedness to our guide Prof. 

K.K. Mahapatra , Electronics & Communication Engineering Department, for his 

valuable guidance, constant encouragement and kind help at different stages for the 

execution of this dissertation work. 

 

             We also express our sincere gratitude to Prof G. Panda, Head of the 

Department, Electronics & Communication Engineering Department, for providing 

valuable departmental facilities.                     

                  

                                                 

                                             

                                                                    

 

 

 

 

 

 

 

 

 
 

Sandeep Mukherjee 
Roll No: 10307017 

Electronics & Communication 
Engineering 

National Institute of Technology 
Rourkela 

Submitted by: 

Ruchir Pandey 
Roll No: 10307019 

Electronics & Communication 
Engineering 

National Institute of Technology 
Rourkela 



CONTENTS 
                         Page No 

Abstract                    i 
List of Figures                                       ii 
List of Tables                               ii 
                

Chapter 1   INTRODUCTION 1 

 1.1 Resilience 2 

 1.2 Need for Resilient Network 2 

 1.3 Types of Failure 3 

Chapter 2  VHDL-The Language of Hardware 4 

 2.1 Introduction 5 

 2.2 Design Entities and Configuration 5 

 2.3 Entity Declaration 6 

 2.4  Entity Header 7 

 2.5 Generics 8 

 2.6 Ports 9 

 2.7 Entity Declarative Part 10 

 2.8 Entity Statement Part 12 

 2.9  Architecture Bodies  13 

 2.9.1 Architecture declarative part     14 

 2.9.2 Architecture statement part  15 

Chapter 3  PRBS-Basic Implementation Techniques 17 

 3.1 Introduction 18 

 3.2 Implementation 19 

 3.2.1 Feedback action 21 

 3.2.2 Tapping action 22 

Chapter 4  Testbench Implementation 26 

 4.1 Introduction 27 

 4.2 Features 27 

 4.3  VHDL Code for D-flip flop 28 

 4.4  VHDL Code for PRBS 29 

 4.5  Simulation Results 31 



Chapter 5  Applications 33 

 5.1 Introduction to Applications 34 

 5.2 Use as Built in Self Tester(BIST) 35 

 5.3 Use in Wireless Communication 35 

  Conclusion 37 

  References 38 

 
 

 



 i 

ABSTRACT 
 

 

Pseudo random binary sequence is essentially a random sequence of binary numbers. So 

PRBS generator is nothing but random binary number generator. It is ‘random’ in a 

sense that the value of an element of the sequence is independent of the values of any of 

the other elements. It is 'pseudo' because it is deterministic and after N elements it starts 

to repeat itself, unlike real random sequences. 

 

The implementation of PRBS generator is based on the linear feedback shift register 

(LFSR). The PRBS generator produces a predefined sequence of 1's and 0's, with 1 and 0 

occurring with the same probability. A sequence of consecutive n*(2^n -1) bits comprise 

one data pattern, and this pattern will repeat itself over time. 

 

In this project, the entire design of the PRBS generator was implemented using VHDL 

programming language and the simulation were done and tested on the XILINX ISE 9.1i 

simulator. A separate program module for D-Flip-Flop was written and this module was 

called 16 times in the main program to get the 16-bit shift register. Now the taps 1, 2, 4 

and 15 were taken out and XORed together and then was fed back to the first bit as an 

input to the shift register. The output to the PRBS generator was taken from all the 16-

bits of the shift register. Thus the output of the PRBS generator cycles between 0 to 

65535. 

 

 

 

 
 
 
 
 
 
 
 



 ii  

 
 

LIST OF FIGURES 
 
 
 

 HEADING PAGE NUMBER 
Figure .1. Shift Register 20 
Figure.2. 4-bit PRBS realization with 

Tapings 

30 

Figure.3. Schematic diagram of the 

implemented circuit 

31 

Figure.4. Simulation result for 

realized PRBS 

32 

 
 
 
 
 
 

LIST OF TABLES 
 
 

 HEADING PAGE NUMBER 
Table.1. Xor Truth Table 22 
Table.2. 4-Bit LFSR [4, 1] States 

and Output 
23 

 
 
 
 
 



 1 

 

 

CHAPTER   1 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

                                            INTRODUCTION 
 

 

 

 

 

  



 2 

1. INTRODUCTION  

 

1.1 Resilience :  

The word “resilience” means the ability to adapt well to stress. It means that, overall you 

remain stable and maintain healthy levels of physical functioning in the face of disruption 

or chaos. 

 

A resilient network is a network, which does not fail under any circumstances. Failure 

refers to a situation where the observed behaviour of a system differs from its specified 

behaviour. A failure occurs due to an error, caused by a fault. Faults can be hard or soft. 

For example a cable break is a hard failure whereas an intermittent noise in the network is 

a soft failure. 

 

Resilience in the context of resilient network is the ability of the network,a device on the 

network, or a path on the network to respond to failure, resist failure, handle flux in 

demand and easily shift and configure – with little or no impact on service delivery. A 

resilient network is the agent that can help to diminish the loss of employee productivity 

in the event of a major disaster. 

 

 

1.2 Need for Resilient Network: 

Businesses in all the industries are becoming dependent on Information Technology (IT) 

and the intra- and inter- organizational online communication and collaboration it 

enables. Digitization and workforce mobilization, automation and embedded computing 

have changed the way enterprises do business and interact with their customers, 

employees and business partners. The requirements for business infrastructure have also 

changed. Business infrastructure must provide a stable IT foundation for the internal 

organization as well as allow integration with a virtual value chain of suppliers and 

customers. To effectively support the needs of today’s businesses, business infrastructure 

must, in effect, be RESILIENT. Resilient implies flexible and adaptive yet at the same 



 3 

time fortified against all types of threats. Resilient network design is the key component 

of Resilience. 

 

Resilient networks incorporate many of the elements of a highly available network. The 

resilient network architecture should include redundant (multiple) components that can 

take over the function of one another if one should fail. How the network, device or path 

reacts to failure should be determined before hand so that predictable network, device or 

path are present after response to failure. 

 

 

1.3 Types of Failures: 

Single point failure:  It indicates that a system or a network can be rendered inoperable, 
or significantly impaired in operation, by the failure of one single component. For 
example, a single hard disk failure could bring down a server; a single router failure 
could break all connectivity for a network.  
  
 
Multiple points of failure : It indicates that a system or a network can be rendered 

inoperable through a chain or combination of failures. For example, failure of a single 

router plus failure of a backup modem link cou 

ld mean that all the connectivity is lost for a network. In general it is much more 

expensive to cope with multiple points of failure and often financially impractical. 

 

Disaster recovery is the process of identifying all potential failures, their impact on the 

network as a whole, and planning the means to recover from such failures.  

 

In our project we have implemented two types of failures: 

• Link failure: In case of link failure if one link between two nodes fails then only 

that link gets failed. It won’t affect any other nodes in the network. 

• Node failure : In case of node failure if any node fails, then all the links 

connected to it also fail 

 



 4 

CHAPTER   2 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

VHDL – THE LANGUAGE OF 
HARDWARE 

 

 

 

 

 

 

 



 5 

 

 

2.1 Introduction  

 

The VHSIC Hardware Description Language (VHDL) is a formal notation intended 

for use in all phases of the creation of electronic systems. Because it is both machine 

readable and human readable, it supports the development, verification, synthesis, and 

testing of hardware designs; the communication of hardware design data; and the 

maintenance, modification, and procurement of hardware. 

 

 

 

 

 

2.2 Design Entities and Configurations 

 

The design entity is the primary hardware abstraction in VHDL. It represents a portion of 

a hardware design that has well defined inputs and outputs and performs a well defined 

function. A design entity may represent an entire system, a subsystem, a board, a chip, a 

macro-cell, a logic gate, or any level of abstraction in between. A configuration can be 

used to describe how design entities are put together to form a complete design. 

 

A design entity may be described in terms of a hierarchy of blocks, each of which 

represents a portion of the whole design. The top level block on such a hierarchy is the 

design entity itself; such a block is an external block that resides in a library and may be 

used as a component of other designs. Nested blocks in hierarchy are internal blocks, 

defined by block statements. 

 

A design entity may also be described in terms of interconnected components. Each 

component of a design entity may be bound to a lower-level design entity in order to 



 6 

define the structure or behavior of that component. Successive decomposition of a design 

entity into components, and binding those components to other design entities that may 

be decomposed in like manner, result in a hierarchy of design entities representing 

complete design. 

 
 

 

2. 3 Entity Declaration  

 

An entity declaration defines the interface between a given design entity and the 

environment in which it is used.  It  may  also  specify  declarations  and  statements  that  

are  part  of  the  design  entity.  A  given  entity declaration  may  be  shared by  many  

design  entities,  each of which  has  a  different  architecture. Thus, an entity declaration 

can potentially represent a class of design entities, each with the same interface. 

 

entity_declaration::= 

 entity identifier is 

  entity_header 

  entity_declarative_part 

      [    begin 

    entity_statement_part ] 

  end [entity][entity_simple_name]; 

 

The entity header and entity declarative part consist of declarative items that pertain to 

each design entity whose interface is defined by the entity declaration.  The entity 

statement part, if present, consists of concurrent statements that are present in each such 

design entity. 

If a  simple  name  appears  at  the  end  of  an  entity  declaration,  it  must  repeat  the  

identifier  of  the  entity declaration.     

 

 



 7 

 

2.4 Entity Header 

 

The entity header declares objects used for communication between a design entity and 

its environment. 

 entity_header::= 

  [formal_generic_clause] 

  [formal_port_clause] 

 generic_clause::= 

  generic (generic_list); 

 

 port_clause::= 

  port  (port_list); 

 

The generic list in the formal generic clause defines generic constants whose values may 

be determined by the environment. The port list in the formal port clause defines the 

input and output ports of the design entity. 

In certain circumstances, the names of generic constants and ports declared in the entity 

header become visible outside of the design entity. 

 

Examples: 

— An entity declaration with port declarations only: 

 entity Full_Adder is 

  Port (X, Y, Cin: in Bit; 

  Cout, Sum: out Bit); 

 end Full_Adder; 

 

— An entity declaration with generic declarations also: 

 entity AndGate is 

  Generic 

        (N: Natural: = 2); 



 8 

  Port  

        (Inputs: in Bit_Vector (1 to N) ; 

               Result: out Bit); 

 end entity AndGate; 

 

— An entity declaration with neither: 

 entity TestBench is 

 end TestBench; 

 

 

 

2.5 Generics 

 

Generics provide a channel for static information to be communicated to a block from its 

environment. The following applies to both external blocks defined by design entities and 

to internal blocks defined by block statements. 

 

 generic_list::= generic_interface_list 

 

The value of a generic constant may be specified by the corresponding actual in a generic 

association list. If no such actual is specified for a given formal generic (either because 

the formal generic is unassociated or because the actual is open), and if a default 

expression is specified for that generic, the value of this expression is the value of the 

generic. It is an error if no actual is specified for a given formal generic and no default 

expression is present in the corresponding interface element. It is an error if some of the 

sub elements of a composite formal generic are connected and others are either 

unconnected or unassociated. 

 

 

 



 9 

2.6 Ports 

 

Ports provide channels for dynamic communication between a block and its environment. 

The following applies to both external blocks defined by design entities and to internal 

blocks defined by block statements, including those equivalents to component 

instantiation statements and generate statements. 

 

 port_list::= port_interface_list 

 

To communicate with other blocks, the ports of a block can be associated with signals in 

the environment in which the block is used. Moreover, the ports of a block may be 

associated with an expression in order to provide these ports with constant driving values; 

such ports must be of mode in. A port is itself a signal thus, a formal port of a block may 

be associated as an actual with a formal port of an inner block. The port, signal, or 

expression associated with a given formal port is called the actual corresponding to the 

formal port. The actual, if a port or signal, must be denoted by a static name. The actual, 

if an expression, must be a globally static expression. 

After  a  given  description  is completely elaborated, if  a  formal  port  is  associated 

with  an actual that is itself a port, then the following restrictions apply depending upon 

the mode of the formal port: 

 

a) For a formal port of mode in, the associated actual may only be a port of mode in, 

inout, or buffer . 

b) For a formal port of mode out, the associated actual may only be a port of mode out or 

inout. 

c) For a formal port of mode inout, the associated actual may only be a port of mode 

inout. 

d) For a formal port of mode buffer, the associated actual may only be a port of mode 

buffer. 

e) For a formal port of mode linkage, the associated actual may be a port of any mode. 

 



 10 

A buffer port may have at most one source. Furthermore, after a description is completely 

elaborated, any actual associated with a formal buffer port may have at most one source. 

If a formal port  is  associated with an actual  port,  signal,  or expression,  then  the 

formal port  is said  to  be connected. If a formal port is instead associated with the 

reserved word open then the formal is said to be unconnected. A port of mode in may be 

unconnected or unassociated only if its declaration includes a default expression.  A port 

of any mode other than in may be unconnected or unassociated as long as its type is not 

an unconstrained array type. It is an error if some of the sub elements of a composite 

formal port are connected and others are either unconnected or unassociated. 

 

 

 

 

 

2.7 Entity Declarative Part 

 

The entity declarative part of a given entity declaration declares items that are common to 

all design entities whose interfaces are defined by the given entity declaration. 

 

entity_declarative_part::= 

 {entity_declarative_item}  

 

entity_declarative_item ::= 

 subprogram_declaration  

       |subprogram_body 

       |type_declaration 

       |subtype_declaration 

       |constant_declaration 

       |signal_declaration 

       |shared_variable_declaration 

       |file_declaration 



 11 

       |alias_declaration 

       |attribute_declaration 

       |attribute_specification 

       |disconnection_specification 

       |use_clause 

       |group_template_declaration 

       |group_declaration 

 

Names declared by declarative items in the entity declarative part  of a given entity 

declaration are  visible within the bodies  of  corresponding  design  entities,  as  well  as  

within certain portions  of  a  corresponding configuration declaration. 

 

Example: 

 — An entity declaration with entity declarative items: 

  entity ROM is 

   Port (Addr: in Word; 

             Data: out Word; 

               Sel: in Bit); 

   type Instruction is array (1 to 5) of Natural; 

   type Program is array (Natural range <>) of Instruction; 

   use Work.OpCodes.all, Work.RegisterNames.all;  

   constant ROM_Code: Program: = 

         ( 

       (STM, R14, R12, 12, R13), 

       (LD, R7, 32, 0, R1), 

       (BAL, R14, 0, 0, R7), 

      • 

      •   -- etc. 

      • 

           ) ; 

  end ROM; 



 12 

2.8 Entity Statement Part 

 

The entity statement part contains concurrent statements that are common to each design 

entity with this interface. 

entity_statement_part ::= 

 {entity_statement}  

entity_statement ::= 

 concurrent_assertion_statement 

       |passive_concurrent_procedure_call 

       |passive_process_statement 

 

Only  concurrent  assertion  statements,  concurrent  procedure  call  statements,  or  

process  statements  may appear in the entity statement part. All such statements must be 

passive. Such statements may be used to monitor the operating conditions or 

characteristics of a design entity. 

Example: 

— An entity declaration with statements: 

 entity Latch is 

  Port (Din: in Word; 

        Dout: out Word; 

        Load: in Bit; 

        Clk: in Bit); 

  constant Setup: Time := 12 ns; 

  constant PulseWidth: Time := 50 ns; 

  use Work.TimingMonitors.all;  

 begin 

  assert Clk='1' or Clk'Delayed'Stable (PulseWidth); 

  CheckTiming (Setup, Din, Load, Clk); 

 end; 

 

 



 13 

 

 

2.9 Architecture Bodies 

An architecture body defines the body of a design entity. It specifies the relationships 
 
 between the inputs and outputs of a design entity and may be expressed in terms of  
 
structure, data ow, or behavior. Such specifications may be partial or complete. 
           

        

architecture_body::= 

                     architecture identifier of entity_name is 

                               architecture_declarative_part 

                     begin 

                               architecture_statement _part 

                     end [architecture] [architecture_simple_name];    

 

The identifier defines the simple name of the architecture body , this  simple name 

distinguishes the architecture bodies with the same entity declaration. 

The entity name identifies the name of the entity declaration that defines the interface of 

this design entity. For a given design entity , both the entity declaration and the 

associated architecture body must reside in the same library. 

 

If a architecture name appears at the end of the architecture name body , it must repeat 

the identifier of the architecture body. 

 

More than one architecture body may exist corresponding to a given entity declaration. 

Each declares a different body with the same identifier; thus, each together with the 

entity declaration represents a different design entity with the same interface. 

design entity with the same interface.            

 

 



 14 

 

 

 

2.9.1 Architecture declarative part     

 The architecture declarative part contains declarations of items that are available for use  
 
within the block defined by the design entity. 
 

             architecture _declrative _part::= 

                               {block _declarative_item} 

 

             block_declarative_item::= 

                              subprogram_declartation 

  subprogram_body 
| type_declaration 
| subtype_declaration 
| constant_declaration 
| signal_declaration 
| shared_variable_declaration 
| file_declaration 
| alias_declaration 
| component_declaration 
| attribute_declaration 
| attribute_specification 
| configuration_specification 
| disconnection_specification 
| use_clause 
| group_template_declaration 
| group_declaration 
 
 

 
 
 
 
 
 
 
 
 
 



 15 

2.9.2 Architecture statement part  
 
The architecture statement part contains the statements that contain the internal 
organization and/or operation of the block defined by the design entity. 
 
                          architecture_statement _part::; 
                                    {cocurrent_part} 
 
All of the statements in the architecture statement part are concurrent statements which 
execute asynchronously with respect to one another. 
 
 
 
 
 
Example :: 
 
             ----A body of entity Full adder  : 
 
                                    architecture data flow of  entity Full Adder is   
                                              signal A,B:Bit; 
                                    begin 
                                             A <= X xor Y; 
                                            B <= A and Cin; 
                                            Sum <= A xor Cin; 
                                            Cout <= B or ( X and Y ); 
                                    end architecture Data flow; 
 
 
             ----A body of entity Testbench :: 
 
                                    library test; 
                                    use test.components.all; 
                                    architecture Structure of testbench is 
                                                component Full Adder 
                                                                port(X, Y, Cin: Cout,  Sum: out Bit); 
                                                end component; 
                                    signal  A,B,C,D,E,F,G: Bit; 
                                    signal  OK: Boolean: 
                                    begin 
                                                 UUT: Full_Adder port map (A,B,C,D,E); 
                                                 Generator: AdderTest port map (A,B,C,F,G);  
                                                 Comparator: AdderCheck port map (D,E,F,G,OK); 
                                    End Structure; 
 
         



 16 

   -----A body of entity AndGate:: 
                         
                                    architecture Behavior of AndGate is 
                                    begin 
                                                  process (Inputs) 
                                                         variables  Temp: Bit; 
                                                          begin 
                                                                   Temp = ‘1’; 
                                                                   for i in  inputs’Range loop 
                                                                              if input(i) = ‘0’ then 
                                                                                     Temp = ‘0’; 
                                                                                      exit; 
                                                                              end if; 
                                                                   end loop; 
                                                                   Result <= after 10 ns; 
                                                     end process; 
                                         end Behaviour; 
 
                                     
 
 
 
                                                                           
 
 

 
 
 
 
 
 
 
 
 



 17 

 

CHAPTER  3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            PRBS-BASIC 
                     IMPLEMENTATION                                                         
                          TECHNIQUES 
 
 
 
 
 



 18 

 
 
3.1 Introduction 
 
PRBS  or Pseudo Random Binary Sequence is essentially a random sequence of binary 

numbers. It is random in a sense that the value of an element of the sequence is 

independent of the values of any of the other elements. It is 'pseudo' because it is 

deterministic and after N elements it starts to repeat itself, unlike real random sequences.. 

 

Examples of random  sequences are radioactive decay and white noise. 

 

A binary sequence (BS) is a sequence of N bits, aj for j = 0, 1, ..., N − 1, i.e. m ones and N 

m zeros. A binary sequence is pseudo-random (PRBS) if its autocorrelation function, 

 

C (v) = ∑j=0
N-1 (aj aj+v)  

 

has only two values:  

C (v) = m if v = 0 (mod N)  

C (v) = mc    if v ≠ 0 (mod N)  

where 

 

c = (m − 1)/(N − 1)  

 

is called the duty cycle of the PRBS. 

 

The implementation of PRBS generator is based on the linear feedback shift register, 

which consists of ‘n’ master slave flip-flops. The PRBS generator produces a predefined 

sequence of 1's and 0's, with 1 and 0 occurring with the same probability 

 

 

 



 19 

 
 
3.2 Implementation 
 
PRBS is implemented using LFSR or Linear Feedback Shift Register.  
 
LFSR is an n-bit shift register which pseudo-randomly scrolls between 2n-1 values, but 

does it very quickly because there is minimal combinational logic involved.  Once it 

reaches its final state, it will traverse the sequence exactly as before.  

 
SHIFT REGISTERS: 
 

One of the two main parts of an LFSR is the shift register (the other being the feedback 

function). A shift register is a device whose identifying function is to shift its contents 

into adjacent positions within the register or, in the case of the position on the end, out of 

the register. The position on the other end is left empty unless some new content is 

shifted into the register. 

The contents of a shift register are usually thought of as being binary, that is, ones and 

zeroes. If a shift register contains the bit pattern 1101, a shift (to the right in this case) 

would result in the contents being 0110; another shift yields 0011. After two more shifts, 

things tend to get boring since the shift register will never contain anything other than 

zeroes. 

Two uses for a shift register are: 

 1) convert between parallel and serial data  

 2) delay a serial bit stream.  

The conversion function can go either way -- fill the shift register positions all at once 

(parallel) and then shift them out (serial) or shift the contents into the register bit by bit 

(serial) and then read the contents after the register is full (parallel). The delay function 

simply shifts the bits from one end of the shift register to the other, providing a delay 

equal to the length of the shift register. 



 20 

 

 
Figure.1 
 

 

                                                         SHIFT REGISTER        
 
 
 
 
 
SOME NOMENCLATURE: 

 

CLOCKING: One of the inputs to a shift register is the clock; a shift occurs in the 

register when this clock input changes state from one to zero (or from zero to one, 

depending on the implementation). From this, the term "clocking" has arisen to mean 

activating a shift of the register. Sometimes the register is said to be "strobed" to cause 

the shift. 

SHIFT DIRECTION: A shift register can shift its contents in either direction depending 

on how the device is designed. (Some registers have extra inputs that dictate the direction 

of the shift.) For the purposes of this discussion, the shift direction will always be from 

left to right. 

OUTPUT: During a shift, the bit on the far right end of the shift register is moved out of 

the register. This end bit position is often referred to as the output bit. To confuse matters 

a bit, the bits that are shifted out of the register are also often referred to as output bits. To 

really muddy the waters, every bit in the shift register is considered to be output during a 

serial to parallel conversion. Happily, the context in which the term "output" is used 

generally clears things up. 



 21 

INPUT:  After a shift, the bit on the left end of the shift register is left empty unless a 

new bit (one not contained in the original contents) is put into it. This bit is sometimes 

referred to as the input bit. As with the output bit, there are several different references to 

input that are clarified by context. 

 

 
 
 3.2.1 FEEDBACK  ACTION:  
 
 
In an LFSR, the bits contained in selected positions in the shift register are combined in 

some sort of function and the result is fed back into the register's input bit. By definition, 

the selected bit values are collected before the register is clocked and the result of the 

feedback function is inserted into the shift register during the shift, filling the position 

that is emptied as a result of the shift. 

                 

Feedback around an LFSR's shift register comes from a selection of points (taps) in the 

register chain and constitutes XORing these taps to provide tap(s) back into the register. 

Register bits that do not need an input tap, operate as a standard shift register. It is this 

feedback that causes the register to loop through repetitive sequences of pseudo-random 

value. The choice of taps determines how many values there are in a given sequence 

before the sequence repeats. The implemented LFSR uses a one-to-many structure, rather 

than a many-to-one structure, since this structure always has the shortest clock-to-clock 

delay path. 

 The feedback is done so as to make the system more stable and free from errors. Specific 

taps are taken from the tapping points and then by using the XOR operation on them they 

are feedback into the registers. 

 

 



 22 

The table for Xor is given below for various inputs: 

 Input A Input B Input C XOR Output 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

         Table.1                                   XOR TRUTH TABLE 

The bit positions selected for use in the feedback function are called "taps". The list of the 

taps is known as the "tap sequence". By convention, the output bit of an LFSR that is n 

bits long is the nth bit; the input bit of an LFSR is bit 1 

 

3.2.2TAPPING ACTION: 

An LFSR is one of a class of devices known as state machines. The contents of the 

register, the bits tapped for the feedback function, and the output of the feedback function 

together describe the state of the LFSR. With each shift, the LFSR moves to a new state. 

(There is one exception to this -- when the contents of the register are all zeroes, the 

LFSR will never change state.) For any given state, there can be only one succeeding 

state. The reverse is also true: any given state can have only one preceding state. For the 

rest of this discussion, only the contents of the register will be used to describe the state 

of the LFSR. 

A state space of an LFSR is the list of all the states the LFSR can be in for a particular tap 

sequence and a particular starting value. Any tap sequence will yield at least two state 

spaces for an LFSR. (One of these spaces will be the one that contains only one state -- 

the all zero one.) Tap sequences that yield only two state spaces are referred to as 

maximal length tap sequences. 



 23 

The state of an LFSR that is n bits long can be any one of 2^n different values. The 

largest state space possible for such an LFSR will be 2^n - 1 (all possible values minus 

the zero state). Because each state can have only once succeeding state, an LFSR with a 

maximal length tap sequence will pass through every non-zero state once and only once 

before repeating a state. 

One corollary to this behavior is the output bit stream. The period of an LFSR is defined 

as the length of the stream before it repeats. The period, like the state space, is tied to the 

tap sequence and the starting value. As a matter of fact, the period is equal to the size of 

the state space. The longest period possible corresponds to the largest possible state 

space, which is produced by a maximal length tap sequence. (Hence "maximal length") 

 

  Table.2                                          4-Bit LFSR [4, 1] States and Output  

Register States   

Bit 1 (Tap) Bit 2 Bit 3 Bit 4 (Tap) Output 
Stream 

1 1 0 1   

0 1 1 0 1 

0 0 1 1 0 

1 0 0 1 1 

0 1 0 0 1 

0 0 1 0 0 

0 0 0 1 0 

1 0 0 0 1 

1 1 0 0 0 

1 1 1 0 0 

1 1 1 1 0 

0 1 1 1 1 

1 0 1 1 1 

0 1 0 1 1 

1 0 1 0 1 

1 1 0 1 0 

 



 24 

 

 

MAXIMAL LENGTH TAP SEQUENCES:  

LFSR's can have multiple maximal length tap sequences. A maximal length tap sequence 

also describes the exponents in what is known as a primitive polynomial mod 2.  

Example,  

                     a tap sequence of 4, 1 describes the primitive polynomial  

                                                      x^4 + x^1 + 1.  

Finding a primitive polynomial mod 2 of degree n (the largest exponent in the 

polynomial) will yield a maximal length tap sequence for an LFSR that is n bits long. 

There is no quick way to determine if a tap sequence is maximal length. However, there 

are some ways to tell if one is not maximal length: 

1) Maximal length tap sequences always have an even number of taps. 

2) The tap values in a maximal length tap sequence are all relatively prime.  

A tap sequence like 12, 9, 6, 3 will not be maximal length because the tap values are all 

divisible by 3. 

Discovering one maximal length tap sequence leads automatically to another. If a 

maximal length tap sequence is described by [n, A, B, C], another maximal length tap 

sequence will be described by [n, n-C, n-B, n-A]. Thus, if [32, 3, 2, 1] is a maximal 

length tap sequence, [32, 31, 30, 29] will also be a maximal length tap sequence. An 

interesting behavior of two such tap sequences is that the output bit streams are mirror 

images in time. 

 

 



 25 

CHARACTERISTICS OF OUTPUT STREAM: 

By definition, the period of an LFSR is the length of the output stream before it repeats. 

Besides being non-repetitive, a period of a maximal length stream has other features that 

are characteristic of random streams. 

1) Sums of ones and zeroes.  

In one period of a maximal length stream, the sum of all ones will be one greater than the 

sum of all zeroes. In a random stream, the difference between the two sums will tend to 

grow progressively smaller in proportion to the length of the stream as the stream gets 

longer. In an infinite random stream, the sums will be equal. 

2) Runs of ones and zeroes. 

 A run is a pattern of equal values in the bit stream. A bit stream like 10110100 has six 

runs of the following lengths in order: 1, 1, 2, 1, 1, 2. One period of an n-bit LFSR with a 

maximal length tap sequence will have 2^(n-1) runs (e.g., a 5 bit device yields 16 runs in 

one period). 1/2 the runs will be one bit long, 1/4 the runs will be 2 bits long, 1/8 the runs 

will be 3 bits long, etc., up to a single run of zeroes that is n-1 bits long and a single run 

of ones that is n bits long. A random stream of sufficient length shows similar behavior 

statistically. 

3) Shifted stream.  

Take the stream of bits in one period of an LFSR with a maximal length tap sequence and 

circularly shift it any number of bits less than the total length. Do a bitwise XOR with the 

original stream. A random stream also shows this behavior. 

One characteristic of the LFSR output not shared with a random stream is that the LFSR 

stream is deterministic. Given knowledge of the present state of the LFSR, the next state 

can always be predicted. 



 26 

 

                                CHAPTER 4 
 
 

 

 

 

 

 

 

 

 

                                                               

 

 

                                                                   TESTBENCH      

                      IMPLEMENTATION     

                            SIMULATION 

 
 

 



 27 

 

4.1 INTRODUCTION 

The code for implementing the required PRBS is realized by writing VHDL program. 

In the program the logic implemented is very simple. 

A 16-bit PRBS is realized by shifting the input through the D-flip flops and feed backing 

the outputs of some registers known as taps again into the first register after passing them 

through a XOR gate. 

 

 

 

 

4.2 FEATURES  

The process of realizing LFSR is carried out by first developing the VHDL code for a  

D-flip flop. The same D- flip flop code is then called 16 times in the main program code 

to realize the required LFSR. 

In the code for the PRBS tapings are taken so as to get the maximum range of the binary 

numbers generated. 

In the developed code tapings are taken from 1st ,2nd ,4th and 15th   taps so as to obtain the 

maximum length of binary digits produced. 

Initially when the reset is kept at zero the outputs of each of the registers is uninitialized 

and hence the output is uninitialized as well. 

However as soon as the reset is made high the output of all the registers start coming out. 

 

A dead lock condition arises in the case when the initial input into the first register as 

output of the XOR gate are all 0’s.Under this condition the output of all the register of the 

PRBS Generator remains as 0 at all instants of time. 

Therefore it is necessary that the initial input to the PRBS Generator be equal to 1, the 

output of the XOR gate. 

 

 

 



 28 

4.3 VHDL CODE FOR D-FLIP FLOP 

 

library  IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity dff is 

    Port ( CLK : in std_logic; 

           RSTn : in std_logic; 

           D : in std_logic; 

           Q : out std_logic); 

end dff; 

 

architecture Behavioral of dff is 

begin 

 process(CLK) 

 begin 

  if CLK'event and CLK='1' then 

   if RSTn='1' then 

    Q <= '1'; 

   else 

    Q <= D; 

   end if; 

  end if; 

 end process; 

end Behavioral; 



 29 

4.4VHDL CODE FOR PRBS 

 

 

library  IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity lfsr is 

    Port ( CLK : in std_logic; 

           RSTn : in std_logic; 

           data_out : out std_logic_vector(15 downto 0)); 

end lfsr; 

 

architecture Behavioral of lfsr is 

 

component dff 

Port ( CLK : in std_logic; 

           RSTn : in std_logic; 

           D : in std_logic; 

           Q : out std_logic); 

end component; 

signal data_reg : std_logic_vector(15 downto 0); 

signal tap_data : std_logic; 

 

begin 

 process(CLK) 



 30 

 begin 

  tap_data <= (data_reg(1) xor data_reg(2)) xor (data_reg(4) xor 

data_reg(15)); 

 end process; 

 stage0: dff 

  port  map(CLK, RSTn, tap_data, data_reg(0)); 

g0:for i in 0 to 14 generate 

  stageN: dff 

   port  map(CLK, RSTn, data_reg(i), data_reg(i+1)); 

 end generate; 

 data_out <= data_reg after 3 ns; 

end Behavioral; 

 

 

 

 

 

 

 
 

 

Figure.2                                4-bit PRBS realization with tapings 

 

 

 

 



 31 

4.5 SIMULATION RESULTS 

 

                              

Figure.3                             Schematic diagram of the implemented circuit 

 

 

 

 

 

 



 32 

 

   Figure.4                              Simulation result for realized PRBS 

 

 

 

 



 33 

 

 

                                 CHAPTER 5 
 
 
 
 
        APPLICATIONS 
 
 
 
 



 34 

 
5.1 APPLICATIONS 
 

A Pseudo Random Binary Sequence Generator  actually consists of a Linear Feedback 

Shift Register which is a sequential shift register with combinational logic that causes it 

to pseudo-randomly cycle through a sequence of binary values. Linear feedback shift 

registers have multiple uses in digital systems design. 

 

Applications Include: 

• Data Encryption/Decryption  

• Digital Signal Processing  

• Wireless Communications  

• Built-in Self Test (BIST)  

• Data Integrity Checksums  

• Data Compression  

• Pseudo-random Number Generation (PN)  

• Direct Sequence Spread Spectrum  

• Scrambler/Descrambler  

• Optimized Counters 

  

A design modeled after LFSRs often has both speed and area advantages over a 

functionally equivialent design that does not use LFSRs. 

 

 

 



 35 

 

5.2 Use as Built in self tester (BIST) 

At the heart of this BIST approach, lie a pseudo-random binary sequence (PRBS) 

generator and a signature register. The PRBS generator is most easily implemented using 

a linear feedback shift register (LFSR). A PRBS generator allows us to generate all (well, 

almost all) of the required binary patterns for the circuit under test. The LFSR can be 

used to both generate the test sequence for the design that is to incorporate BIST and with 

slight modification can be used to capture the response of the design and generate a 

signature (the bit pattern held in the signature register). 

The signature in the signature register can be compared to a known good signature. 

Within certain realms of mathematical probablity, if the signature for the circuit being 

tested is the same as the known good signature, then the tested circuit is deemed as being 

functionally correct. There is a little maths involved in discovering the known good value 

for the signature of the circuit being tested but more on that in Part Two. This month we 

are going to concentrate on the design of an LFSR and one kind of signature register. 

The maximal length LFSR generates data that is almost random (hence the term ‘pseudo-

random'). The output of the LFSR can be taken in parallel-out form or as a serial bit 

stream. The serial bit stream is usually taken from the MSB of the LFSR. Given taps 6 

and 9, it turns out that the only pattern not generated is all zeroes. It is a fairly simple task 

to add a little extra circuitry to generate this pattern, but we won't tackle this just yet. 

Naturally this would give us a RBS generator, not a pseudo to be seen! 

 

5.3 Use in Wireless Communication 

One of the most important uses of PRBS comes in wireless communication using CDMA 

technology. 



 36 

Here the input signal at the transmitter end is multiplied with a pseudo random binary 

number generated by PRBS to generate a unique code which identifies itself with that 

particular user. At the receiver end again the same process of multiplying the input signal 

with the pseudo random binary number takes place. 

The user is identified by the fact that the correlation between the numbers generated for 

the same user is very high while in the case of other users the generated numbers are 

orthogonal to each other. 

 

 

 

PRBS’s application in generating a spread spectrum is also some what similar, where the 

obtained spectrum is multiplied with the generated pseudo random number. 

 

In all other applications the PRBS generates binary numbers and provides all possible 

numbers within the given range and hence help in testing for all possibilities.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 37 

 
CONCLUSION 

 
 

The code for implementing the required PRBS is realized by writing VHDL program. 

In the program the logic implemented is very simple. 

A 16-bit PRBS is realized by shifting the input through the D-flip flops and feed backing 

the outputs of some registers known as taps again into the first register after passing them 

through a XOR gate. 

 

The process of realizing LFSR is carried out by first developing the VHDL code for a  

D-flip flop. The same D- flip flop code is then called 16 times in the main program code 

to realize the required LFSR. 

In the code for the PRBS tapings are taken so as to get the maximum range of the binary 

numbers generated. 

In the developed code tapings are taken from 1st ,2nd ,4th and 15th   taps so as to obtain the 

maximum length of binary digits produced. 

Initially when the reset is kept at zero the outputs of each of the registers is uninitialized 

and hence the output is uninitialized as well. 

However as soon as the reset is made high the output of all the registers start coming out. 

 

A dead lock condition arises in the case when the initial input into the first register as 

output of the XOR gate are all 0’s.Under this condition the output of all the register of the 

PRBS Generator remains as 0 at all instants of time. 

Therefore it is necessary that the initial input to the PRBS Generator be equal to 1, the 

output of the XOR gate. 

 
The code for implementing the above circuit was written and hence the simulation results 
were generated and tested. 
 
 



 38 

REFERENCES 
 

 
1) The Art of Electronics, 2nd Edition , Horowitz and Hill, 1989, pp 665-667 

 
2) P.Alfke, “Efficient Shift Registers, LFSR , Counters and Long Pseudo-Random 

Sequence Generators,” XAPP 052, July 7, 1996(Version 1.1) 
 

3) HDL Chip Design, Douglas J. Smith, Doone Publications, 1996 
 

4) Woody Johnson, Freecore, Linear Feedback Registers, 1997 
 

5) www.Wikipedia.com 
 

 

 

 

 

 

 
 
 
 
 
 
 

 
 


