View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ethesis@nitr

DESIGN AND IMPLEMENTATION OF PRBS
GENERATOR USING VHDL

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
In

Electronics & Instrumentation Engineering

By

SANDEEP MUKHERJEE
ROLL NO -10307017
&

RUCHIR PANDEY
ROLL NO -10307019

O

ROURKELA

Department of Electronics & Communication Engineering
National Institute of Technology
Rourkela
2007

https://core.ac.uk/display/53186864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN AND IMPLEMENTATION OF PRBS
GENERATOR USING VHDL

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
In

Electronics & Instrumentation Engineering

By

SANDEEP MUKHERJEE
ROLL NO -10307017
&

RUCHIR PANDEY
ROLL NO -10307019

Under the Guidance of
Prof. K.K. MAHAPATRA

A

ROURKELA

Department of Electronics & Communication Engineering
National Institute of Technology
Rourkela
2007

ROURKELA

National Institute of Technology
Rourkela

CERTIFICATE

This is to certify that the thesis entitlted “Design and Implementation of PRBS
Generator using VHDL” Submitted by Sandeep Mukherjee, Roll No:10307017and
Ruchir Pandey, Roll No. 10307019 the partia fulfillment of the requirement for the
degree of Bachelor of Technologyin Electronics & Instrumentation Engineering,

National Institute of Technology, Rourkela, is being carried out under my supervision.

To the best of my knowledge the matter embodied in the thesis has not been submitted to

any other university/institute for the award of any degree or diploma.

Date:
Prof. K.K. Mahapatra
Dept. of ECE (E&IE)
National Institute of Technology
Rourkela - 769008

Acknowledgment

We avail this opportunity to extend our hearty indebtedness to our guide Prof.

K.K. Mahapatra, Electronics & Communication Engineering Department, for his

valuable guidance, constant encouragement and kind help at different stages for the

execution of this dissertation work.

We also express our sincere gratitude to Prof G. Panda Head of the

Department, Electronics & Communication Engineering Department, for providing

valuable departmental facilities.

Submitted by:

Sandeep Mukherjee
Roll No: 10307017
Electronics & Communication
Engineering
National Institute of Technology
Rourkela

Ruchir Pandey
Roll No: 10307019
Electronics & Communication
Engineering
National Institute of Technology
Rourkela

CONTENTS

Page No
Abstract [
List of Figures i
List of Tables i
Chapter 1 INTRODUCTION 1
11 | Resilience 2
1.2 | Need for Resilient Network 2
1.3 | Typesof Failure 3
Chapter 2 VHDL-The Language of Hardware 4
2.1 | Introduction 5
2.2 | Design Entities and Configuration 5
2.3 | Entity Declaration 6
2.4 | Entity Header 7
25 | Generics 8
2.6 | Ports 9
2.7 | Entity Declarative Part 10
2.8 | Entity Statement Part 12
2.9 | Architecture Bodies 13
2.9.1 | Architecture declarative part 14
2.9.2 | Architecture statement part 15
Chapter 3 PRBS-Basic Implementation Techniques 17
3.1 | Introduction 18
3.2 | Implementation 19
3.2.1 | Feedback action 21
3.2.2 | Tapping action 22
Chapter 4 Testbench Implementation 26
4.1 | Introduction 27
4.2 | Features 27
4.3 | VHDL Codefor D-flip flop 28
4.4 | VHDL Codefor PRBS 29
4.5 | Simulation Results 31

Chapter 5 Applications 33
51 | Introduction to Applications 34

52 | UseasBuiltin Self Tester(BIST) 35

5.3 | Usein Wireless Communication 35

Conclusion 37

References 38

ABSTRACT

Pseudo random binary sequence is essentially amasdquence of binary numbers. So
PRBS generator is nothing but random binary nungsgrerator. It israndom’ in a
sense that the value of an element of the sequsncdependent of the values of any of
the other elements. It ipseudo’ because it is deterministic and after N elemérggarts

to repeat itself, unlike real random sequences.

The implementation of PRBS generator is based enlittear feedback shift register
(LFSR). The PRBS generator produces a predefingagesee of 1's and 0's, with 1 and O
occurring with the same probability. A sequenceaisecutiven* (2*n -1) bits comprise

one data pattern, and this pattern will repealfitsesr time.

In this project, the entire design of the PRBS gatoe was implemented using VHDL
programming language and the simulation were doddgested on th&ILINX | SE 9.1i
simulator. A separate program module for D-Flipg-leas written and this module was
called 16 times in the main program to get the it &Huft register. Now the taps 1, 2, 4
and 15 were taken out and XORed together and tlenfed back to the first bit as an
input to the shift register. The output to the PRiESBerator was taken from all the 16-
bits of the shift register. Thus the output of ARBS generator cycles between 0 to
65535.

LIST OF FIGURES

HEADING PAGE NUMBER
Figure.l. Shift Register 20
Figure.2. 4-bit PRBS realization with 30
Tapings
Figure.3. Schematic diagram of the 31

implemented circuit

Figure.4. Simulation result for 32
realized PRBS

LIST OF TABLES

HEADING PAGE NUMBER
Table.l. Xor Truth Table 22
Table.2. 4-Bit LFSR [4, 1] States 23
and Output

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

1.1Resilience :

The word “resilience” means the ability to adaptiwe stress. It means that, overall you
remain stable and maintain healthy levels of ptajdienctioning in the face of disruption
or chaos.

A resilient network is a network, which does nat tander any circumstances. Failure
refers to a situation where the observed behawbar system differs from its specified
behaviour. A failure occurs due to an error, caused fault. Faults can be hard or soft.
For example a cable break is a hard failure wheseastermittent noise in the network is

a soft failure.

Resilience in the context of resilient networkhs &bility of the network,a device on the
network, or a path on the network to respond ttuf@j resist failure, handle flux in

demand and easily shift and configure — with littlkeno impact on service delivery. A
resilient network is the agent that can help toidish the loss of employee productivity

in the event of a major disaster.

1.2 Need for Resilient Network:

Businesses in all the industries are becoming digp@ron Information Technology (IT)
and the intra- and inter- organizational online ommication and collaboration it
enables. Digitization and workforce mobilizatiomt@nation and embedded computing
have changed the way enterprises do business dmthanh with their customers,
employees and business partners. The requiremankai$iness infrastructure have also
changed. Business infrastructure must provide blestd foundation for the internal
organization as well as allow integration with atwal value chain of suppliers and
customers. To effectively support the needs ofyedausinesses, business infrastructure
must, in effect, be RESILIENT. Resilient impliegXlible and adaptive yet at the same

time fortified against all types of threats. Resili network design is the key component

of Resilience.

Resilient networks incorporate many of the elemeits highly available network. The
resilient network architecture should include redlamt (multiple) components that can
take over the function of one another if one shdaid How the network, device or path
reacts to failure should be determined before lsnthat predictable network, device or

path are present after response to failure.

1.3Types of Failures:

Single point failure: It indicates that a system or a network canemelered inoperable,
or significantly impaired in operation, by the ta# of one single component. For
example, a single hard disk failure could bring danserver; a single router failure
could break all connectivity for a network.

Multiple points of failure : It indicates that a system or a network can bees=d

inoperable through a chain or combination of fakirFor example, failure of a single
router plus failure of a backup modem link cou
Id mean that all the connectivity is lost for awetk. In general it is much more

expensive to cope with multiple points of failuredaoften financially impractical.

Disaster recovery is the process of identifyingpaltential failures, their impact on the

network as a whole, and planning the means to exdoom such failures.

In our project we have implemented two types diifas:
» Link failure: In case of link failure if one link between two mxdfails then only
that link gets failed. It won't affect any otherdes in the network.
* Node failure : In case of node failure if any node fails, theh the links

connected to it also fail

4

CHAPTER 2

VHDL — THE LANGUAGE OF
HARDWARE

2.1Introduction

The VHSIC Hardware Description Language (VHDL) is a formal notation intended

for use in all phases of the creation of electr@ystems. Because it is both machine
readable and human readable, it supports the dawelat, verification, synthesis, and
testing of hardware designs; the communication afdWware design data; and the

maintenance, modification, and procurement of hardw

2.2Design Entities and Configurations

Thedesign entity is the primary hardware abstraction in VHDL. Ipresents a portion of

a hardware design that has well defined inputsarnguts and performs a well defined
function. A design entity may represent an entygtesm, a subsystem, a board, a chip, a
macro-cell, a logic gate, or any level of abst@ttn between. Aconfiguration can be
used to describe how design entities are put tegéthform a complete design.

A design entity may be described in terms of adnary of blocks, each of which
represents a portion of the whole design. The ¢opllblock on such a hierarchy is the
design entity itself; such a block is an exterdaktk that resides in a library and may be
used as a component of other designs. Nested blockgrarchy are internal blocks,

defined by block statements.

A design entity may also be described in termsnbérconnected components. Each

component of a design entity may be bound to addexel design entity in order to

define the structure or behavior of that compon8ntcessive decomposition of a design
entity into components, and binding those companémither design entities that may
be decomposed in like manner, result in a hierarchylesign entities representing

complete design.

2. 3Entity Declaration

An entity declaration defines the interface betweergiven design entity and the
environment in which it is used. It may alsoedfy declarations and statements that
are part of the design entity. A given Bntleclaration may be shared by many
design entities, each of which has a differanthitecture. Thus, an entity declaration

can potentially represent a class of design estigach with the same interface.

entity _declaration::=
entity identifier is
entity _header
entity declarative_part
[begin
entity_statement_part |

end [entity][entity_simple_name];

The entity header and entity declarative part cinsli declarative items that pertain to
each design entity whose interface is defined l® ¢htity declaration. The entity
statement part, if present, consists of concursatements that are present in each such
design entity.

If a simple name appears at the end ofeatity declaration, it must repeat the
identifier of the entity declaration.

2.4Entity Header

The entity header declares objects used for contation between a design entity and
its environment.

entity _header::=
[formal _generic_clause]
[formal _port_clause]
generic_clause::=

generic(generic_list);

port_clause::=

port (port_list);

The generic list in the formal generic clause defigeneric constants whose values may
be determined by the environment. The port listhe formal port clause defines the
input and output ports of the design entity.

In certain circumstances, the names of generictantssand ports declared in the entity
header become visible outside of the design entity.

Examples:
— An entity declaration with port declarations anly
entity Full_Adderis
Port (X, Y, Cin:in Bit;
Cout, Sumput Bit);
end Full_Adder;

— An entity declaration with generic declaratiotsoa
entity AndGateis
Generic
(N: Natural: = 2);

Port
(Inputsin Bit_Vector (1to N) ;
Resultout Bit);
end entity AndGate;

— An entity declaration with neither:
entity TestBenchs
end TestBench;

2.5Generics

Generics provide a channel for static informatioé communicated to a block from its
environment. The following applies to both exterbiaicks defined by design entities and

to internal blocks defined by block statements.

generic_list::= generic_interface_list

The value of a generic constant may be specifiethéyorresponding actual in a generic
association list. If no such actual is specified dogiven formal generic (either because
the formal generic is unassociated or because th#alais open), and if a default

expression is specified for that generic, the valti¢his expression is the value of the
generic. It is an error if no actual is specified & given formal generic and no default
expression is present in the corresponding interedement. It is an error if some of the
sub elements of a composite formal generic are exded and others are either

unconnected or unassociated.

2.6 Ports

Ports provide channels for dynamic communicatiomben a block and its environment.
The following applies to both external blocks definby design entities and to internal
blocks defined by block statements, including thosguivalents to component

instantiation statements and generate statements.

port_list::= port_interface_list

To communicate with other blocks, the ports of acklcan be associated with signals in
the environment in which the block is used. Morepvbe ports of a block may be
associated with an expression in order to provi@sé ports with constant driving values;
such ports must be of mode A port is itself a signal thus, a formal portaoblock may

be associated as an actual with a formal port ofnaer block. The port, signal, or
expression associated with a given formal portaited the actual corresponding to the
formal port. The actual, if a port or signal, mbstdenoted by a static name. The actual,
if an expression, must be a globally static expoess

After a given description is completely elaliedh if a formal port is associated
with an actual that is itself a port, then thddaing restrictions apply depending upon

the mode of the formal port:

a) For a formal port of mod, the associated actual may only be a port of mode
inout, orbuffer.

b) For a formal port of modeut, the associated actual may only be a port of noader
inout.

c) For a formal port of modmout, the associated actual may only be a port of mode
inout.

d) For a formal port of modeuffer, the associated actual may only be a port of mode
buffer.

e) For a formal port of modankage, the associated actual may be a port of any mode.

10

A buffer port may have at most one source. Furtloeemafter a description is completely
elaborated, any actual associated with a formdkebpbrt may have at most one source.
If a formal port is associated with an actualrtposignal, or expression, then the
formal port is said to beonnected. If a formal port is instead associated with the
reserved worapenthen the formal is said to be unconnected. A pbrhodein may be
unconnected or unassociated only if its declaraticludes a defaukxpression. A port
of any mode other thain may be unconnected or unassociated as long ggpéss not
an unconstrained array type. It is an error if sahéhe sub elements of a composite

formal port are connected and others are eithesnmected or unassociated.

2.7 Entity Declarative Part

The entity declarative part of a given entity deafisn declares items that are common to

all design entities whose interfaces are definethbygiven entity declaration.

entity declarative_part::=

{entity_declarative_item}

entity_declarative_item ::=
subprogram_declaration

|subprogram_body
[type_declaration
|subtype_declaration
|constant_declaration
|signal_declaration
|shared_variable_declaration
[file_declaration

11

|alias_declaration
|attribute_declaration
|attribute_specification
|disconnection_specification
|luse_clause
|group_template_declaration

|group_declaration

Names declared by declarative items in the entdgladative part of a given entity
declaration are visible within the bodies of regponding design entities, as well as

within certain portions of a corresponding cgafiation declaration.

Example:
— An entity declaration with entity declarativents:
entity ROMis
Port (Addr: in Word;
Dataout Word;
Selin Bit);
type Instructionis array (1to 5) of Natural;
type Programis array (Naturalrange <>) of Instruction;
useWork.OpCodesll, Work.RegisterNamessil;
constantROM_Code: Program: =
(
(STM, R14, R12, 12, R13),
(LD, R7, 32, 0, R1),
(BAL, R14, 0, 0, R7),

* --eftc.

)
end ROM;

12

2.8 Entity Statement Part

The entity statement part contains concurrent isiatés that are common to each design
entity with this interface.
entity_statement_part ::=
{entity_statement}
entity_statement ::=
concurrent_assertion_statement
|passive_concurrent_procedure_call

|passive_process_statement

Only concurrent assertion statements, concurnerocedure call statements, or
process statements may appear in the entitynseéatepart. All such statements must be
passive. Such statements may be used to monitor offexating conditions or
characteristics of a design entity.
Example:
— An entity declaration with statements:
entity Latchis
Port (Din: in Word;
Dout:out Word;
Loadin Bit;
Clk:in Bit);
constantSetup: Time := 12 ns;
constantPulseWidth: Time := 50 ns;
useWork.TimingMonitorsall;
begin
assertClk="1'or Clk'Delayed'Stable (PulseWidth);
CheckTiming (Setup, Din, Load, CIk);

end;

13

2.9 Architecture Bodies
An architecture body defines the body of a desigfitye It specifies the relationships

between the inputs and outputs of a design eatitymay be expressed in terms of

structure, data ow, or behavior. Such specificatimay be partial or complete.

architecture_body::=
architecture identifier of entity_name is
architecture_declarative_part
begin
architecture_statamepart

end [architecture] [architecture_simple_name];

The identifier defines the simple name of the aexhture body this simple name
distinguishes the architecture bodies with the santity declaration.

The entity name identifies the name of the entdgldration that defines the interface of
this design entity. For a given design entity hbibe entity declaration and the

associated architecture body must reside in the didonary.

If a architecture name appears at the end of @t@tacture name body , it must repeat

the identifier of the architecture body.

More than one architecture body may exist corredpanto a given entity declaration.
Each declares a different body with the same iflentthus, each together with the
entity declaration represents a different desigityewith the same interface.

design entity with the same interface.

14

2.9.1 Architecture declarative part
The architecture declarative part contains dectaratof items that are available for use

within the block defined by the design entity.

architecture _declrative _part::=
{block _declarativiem}

block_declarative_item::=
subprogram_ declaotati

subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| configuration_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

15

2.9.2 Architecture statement part

The architecture statement part contains the swtemthat contain the internal
organization and/or operation of the block defibgdhe design entity.

architecture_statemerart:p
{cocurrent_gart

All of the statements in the architecture statenpamt are concurrent statements which
execute asynchronously with respect to one another.

Example ::
----A body of entityfull adder :

architecture data flow of entity Full Adder is
signal A,B:Bit;
begin
A<= XXxorY,;
B <=ahd Cin;
Sum Axor Cin;
CoutB=or(XandY);
end architecture Data flow;

----A body of entity Testbench ::

library test;
use test.compais.all;
architecture i®cture of testbench is
component Full Adder
port(X, Y, Cin: Cout, Sum: out Bit);
eadmponent;
signal A,B,CBF,G: Bit;
signal OK: Blean:
begin
UUT: Full_Adder port map (A,B,C,D,E);
i@eator: AdderTest port map (A,B,C,F,G);
it@parator: AdderCheck port map (D,E,F,G,0K);
End Structure;

16

----- A body of entity AndGate::

architecture Behavior of AndGate is
begin
ropess (Inputs)
variables Temp: Bit;
begin
Temp ="‘1";
foriin inputs’Range loop
if input(i) = ‘0’ then
Temp =0
exit;
end if;
end loop;
Result <= after 10 ns;
end process;
end Behawr;

17

CHAPTER 3

PRBS-BASIC
IMPLEMENTATION
TECHNIQUES

18

3.1 Introduction

PRBS or Pseudo Random Binary Sequemcessentially a random sequence of binary
numbers. It israndom in a sense that the value of an element of theiesem is
independent of the values of any of the other efgmelt is pseudd because it is

deterministic and after N elements it starts teegptself, unlike real random sequences.

Examples of random sequencesraioactive decayandwhite noise.

A binary sequence (BS) is a sequenchl tiits, g forj=0, 1, ...N - 1, i.,e.mones andN

m zeros. A binary sequence is pseudo-random (PREBS)autocorrelation function,
— N-1
C (V) - ZjZO (5! +v)

has only two values:
C (v) = mif v=0 (modN)
C(v) =mc if v#0 (modN)

where
c=(M-1)/N-1)
is called theduty cycle of thePRBS

The implementation of PRBS generator is based enlitiear feedback shift register,
which consists of ‘n” master slave flip-flops. TRRBS generator produces a predefined
sequence of 1's and 0's, with 1 and O occurring thi same probability

19

3.2 Implementation

PRBS is implemented using-SR or Linear Feedback Shift Register.

LFSR is ann-bit shift register which pseudo-randomly scrolistieeen 2-1 values, but
does itvery quickly because there is minimal combinational logic iredl Once it

reaches its final state, it will traverse the sempgeexactly as before.

SHIFT REGISTERS:

One of the two main parts of an LFSR is the slafiister (the other being the feedback
function). A shift register is a device whose idiytg function is to shift its contents

into adjacent positions within the register orthe case of the position on the end, out of
the register. The position on the other end is éafipty unless some new content is

shifted into the register.

The contents of a shift register are usually thewghas being binary, that is, ones and
zeroes. If a shift register contains the bit patt#t01, a shift (to the right in this case)
would result in the contents being 0110; anothdt gields 0011. After two more shifts,

things tend to get boring since the shift registdl never contain anything other than

zeroes.
Two uses for a shift register are:
1) convert between parallel and serial data

2) delay a serial bit stream.

The conversion function can go either way -- tiletshift register positions all at once
(parallel) and then shift them out (serial) or shkiiie contents into the register bit by bit
(serial) and then read the contents after the texgis full (parallel). The delay function

simply shifts the bits from one end of the shifgjister to the other, providing a delay
equal to the length of the shift register.

20

Figure.1l
Parallel I/0O
—h. —h'
Input Output
Bit Bit

SHIFT REGISTER

SOME NOMENCLATURE:

CLOCKING: One of the inputs to a shift register is the kloa shift occurs in the
register when this clock input changes state fram t zero (or from zero to one,
depending on the implementation). From this, thentéclocking” has arisen to mean
activating a shift of the register. Sometimes thgister is said to be "strobed" to cause
the shift.

SHIFT DIRECTION: A shift register can shift its contents in eitli@rection depending

on how the device is designed. (Some registers @siva inputs that dictate the direction

of the shift.) For the purposes of this discussibe, shift direction will always be from
left to right.

OUTPUT: During a shift, the bit on the far right end oétshift register is moved out of
the register. This end bit position is often reddrto as the output bit. To confuse matters
a bit, the bits that are shifted out of the registe also often referred to as output bits. To
really muddy the waters, every bit in the shiftiségr is considered to be output during a
serial to parallel conversion. Happily, the contextwhich the term "output" is used

generally clears things up.

21

INPUT: After a shift, the bit on the left end of the fshiegister is left empty unless a
new bit (one not contained in the original contemsput into it. This bit is sometimes
referred to as the input bit. As with the outpuf there are several different references to

input that are clarified by context.

3.2.1 FEEDBACK ACTION:

In an LFSR, the bits contained in selected positionthe shift register are combined in
some sort of function and the result is fed bat& the register's input bit. By definition,
the selected bit values are collected before thyestex is clocked and the result of the
feedback function is inserted into the shift regisduring the shift, filling the position

that is emptied as a result of the shift.

Feedback around an LFSR's shift register comes &aalection of points (taps) in the

register chain and constitutes XORing these tagsduide tap(s) back into the register.

Register bits that do not need an input tap, opesata standard shift register. It is this
feedback that causes the register to loop throaghtitive sequences of pseudo-random
value. The choice of taps determines how many gathere are in a given sequence
before the sequence repeats. The implemented LE&&Raione-to-many structure, rather
than a many-to-one structure, since this structiinays has the shortest clock-to-clock

delay path.

The feedback is done so as to make the systemstaiske and free from errors. Specific
taps are taken from the tapping points and theasinyg the XOR operation on them they

are feedback into the registers.

22

The table for Xor is given below for various inputs

Input A Input B Input C XOR Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
Table.1 XOR TRUTH TABLE

The bit positions selected for use in the feedlfanktion are called "taps". The list of the
taps is known as the "tap sequence". By conventi@putput bit of an LFSR that is n
bits long is the nth bit; the input bit of an LF&Rit 1

3.2.2TAPPING ACTION:

An LFSR is one of a class of devices known as staehines. The contents of the
register, the bits tapped for the feedback fun¢tamd the output of the feedback function
together describe the state of the LFSR. With ehdfy, the LFSR moves to a new state.
(There is one exception to this -- when the costaitthe register are all zeroes, the
LFSR will never change state.) For any given stttete can be only one succeeding
state. The reverse is also true: any given statehase only one preceding state. For the
rest of this discussion, only the contents of #xgister will be used to describe the state
of the LFSR.

A state space of an LFSR is the list of all théestahe LFSR can be in for a particular tap
sequence and a particular starting value. Any &uence will yield at least two state

spaces for an LFSR. (One of these spaces will b@tie that contains only one state --
the all zero one.) Tap sequences that yield only state spaces are referred to as

maximal length tap sequences.

23

The state of an LFSR that is n bits long can be @my of 2”n different values. The

largest state space possible for such an LFSRbe&i2*n - 1 (all possible values minus
the zero state). Because each state can have necdysnoicceeding state, an LFSR with a
maximal length tap sequence will pass through eweryzero state once and only once

before repeating a state.

One corollary to this behavior is the output bieam. The period of an LFSR is defined
as the length of the stream before it repeats.peEn@d, like the state space, is tied to the
tap sequence and the starting value. As a matticgfthe period is equal to the size of
the state space. The longest period possible qumnes to the largest possible state
space, which is produced by a maximal length tgpesece. (Hence "maximal length")

Table.2 4-Bit LIR§4, 1] States and Output

Register States

. . . . Output
Bit 1 (Tap) Bit 2 Bit 3 Bit 4 (Tap) Stre‘;m
1 1 0 1
0 1 0 1
0 0 1 1 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0

24

MAXIMAL LENGTH TAP SEQUENCES

LFSR's can have multiple maximal length tap segeen& maximal length tap sequence
also describes the exponents in what is knownpasrative polynomial mod 2.

Example,

a tap sequence of 4, 1 dessrthe primitive polynomial

XM+ xM + 1.

Finding a primitive polynomial mod 2 of degree rmetlargest exponent in the

polynomial) will yield a maximal length tap sequerfor an LFSR that is n bits long.

There is no quick way to determine if a tap seqaaaanaximal length. However, there

are some ways to tell if one is not maximal length:

1) Maximal length tap sequences always have an evember of taps.

2) The tap values in a maximal length tap sequerealarelatively prime.

A tap sequence like 12, 9, 6, 3 will not be maximealgth because the tap values are all
divisible by 3.

Discovering one maximal length tap sequence leadsenatically to another. If a
maximal length tap sequence is described by [nBAC], another maximal length tap
sequence will be described by [n, n-C, n-B, n-Ahus, if [32, 3, 2, 1] is a maximal
length tap sequence, [32, 31, 30, 29] will alscabmaximal length tap sequence. An
interesting behavior of two such tap sequenceblasthe output bit streams are mirror

images in time.

25

CHARACTERISTICS OF OUTPUT STREAM:

By definition, the period of an LFSR is the lengththe output stream before it repeats.
Besides being non-repetitive, a period of a maxieagth stream has other features that

are characteristic of random streams.
1) Sums of ones and zeroes.

In one period of a maximal length stream, the sfiallanes will be one greater than the
sum of all zeroes. In a random stream, the diffezdretween the two sums will tend to
grow progressively smaller in proportion to thedgdnof the stream as the stream gets

longer. In an infinite random stream, the sums héllequal.
2) Runs of ones and zeroes.

A run is a pattern of equal values in the bitatne A bit stream like 10110100 has six
runs of the following lengths in order: 1, 1, 2,11 2. One period of an n-bit LFSR with a
maximal length tap sequence will have 27(n-1) r(eng., a 5 bit device yields 16 runs in
one period). 1/2 the runs will be one bit long, thid runs will be 2 bits long, 1/8 the runs
will be 3 bits long, etc., up to a single run of@es that is n-1 bits long and a single run
of ones that is n bits long. A random stream ofisieht length shows similar behavior

statistically.
3) Shifted stream.

Take the stream of bits in one period of an LFS&awimaximal length tap sequence and
circularly shift it any number of bits less tham tiotal length. Do a bitwise XOR with the

original stream. A random stream also shows thabier.

One characteristic of the LFSR output not sharegtt wirandom stream is that the LFSR
stream is deterministic. Given knowledge of thespre state of the LFSR, the next state

can always be predicted.

CHAPTEIA‘

TESTBENCH
IMPLEMENTATION
SIMULATION

26

27

4.1 INTRODUCTION

The code for implementing the required PRBS isizedlby writing VHDL program.

In the program the logic implemented is very simple

A 16-bit PRBS is realized by shifting the inputdbgh the D-flip flops and feed backing
the outputs of some registers known as taps agtorthe first register after passing them
through a XOR gate.

4.2 FEATURES

The process of realizing LFSR is carried out bstftteveloping the VHDL code for a
D-flip flop. The same D- flip flop code is then e 16 times in the main program code
to realize the required LFSR.

In the code for the PRBS tapings are taken so gettthe maximum range of the binary
numbers generated.

In the developed code tapings are taken frén2f ,4" and 18 taps so as to obtain the
maximum length of binary digits produced.

Initially when the reset is kept at zero the ouspolt each of the registers is uninitialized
and hence the output is uninitialized as well.

However as soon as the reset is made high the tooitjpil the registers start coming out.

A dead lock condition arises in the case when titgal input into the first register as
output of the XOR gate are all 0’s.Under this ctiodithe output of all the register of the
PRBS Generator remains as 0 at all instants of. time

Therefore it is necessary that the initial inputihie PRBS Generator be equal to 1, the
output of the XOR gate.

4.3 VHDL CODE FOR D-FLIP FLOP

library IEEE;
uselEEE.STD_LOGIC_1164.ALL,;
uselEEE.STD_LOGIC_ARITH.ALL;
uselEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declarationimstantiating
--library UNISIM,;
--useUNISIM.VComponents.all;

entity dff is
Port (CLK : in std_logic;
RSTn : in std_logic;
D :in std_logic;
Q : out std_logic);
end dff;

architecture Behavioral of dff is
begin
procesgCLK)
begin
if CLK'event and CLK="1" then
if RSTn="1" then
Q<=1,
else
Q<=D;
end if;
end if;
end process;

end Behavioral;

28

4.4VHDL CODE FOR PRBS

library IEEE;
uselEEE.STD_LOGIC_1164.ALL;
uselEEE.STD_LOGIC_ARITH.ALL;
uselEEE.STD_LOGIC_UNSIGNED.ALL,;

---- Uncomment the following library declarationimstantiating
--library UNISIM,;
--useUNISIM.VComponents.all;

entity Ifsr is
Port (CLK : in std_logic;
RSTn : in std_logic;
data_out : out std_logic_vector(15 dawdy);

end Ifsr;

architecture Behavioral of Ifsr is

componentdff
Port (CLK : in std_logic;
RSTn : in std_logic;
D :in std_logic;
Q : out std_logic);
end component;
signal data_reg : std_logic_vector(15 downto 0);

signaltap_data : std_logic;

begin
procesgCLK)

30

begin
tap_data <= (data_reg(1) xor data_reg(2)) xora(dag(4) xor
data_reg(15));
end process;
stageO: dff
port map(CLK, RSTn, tap_data, data_reg(0));
gO:foriin O to 14 generate
stageN: dff
port map(CLK, RSTn, data_reg(i), data_reg(i+1));
end generate;
data_out <= data_reg after 3 ns;
end Behavioral,

Output

Figure.2 4-bit PRBS realizat with tapings

31

4.5 SIMULATION RESULTS

Figure.3 Schematic diagram dfé implemented circuit

(2t g Aex|
File Edit View ‘Window

‘B LDRaaN APHKARN I Onn RER AAGHEED ARG T

De.sign Obijects of j Properties
& } Ifsr_dff i No object is selected
g Instances | Fins 1L Sianals || Name Vale
E FE View by Categary 5 Yiew by Name

[1316,-206]
(a8l saaam

iﬁzsiii 9 @ a "’_-Eixi\inx-ISE-c:mhnx...

Figure.4

L

L

s

bl L

0L

j

Simulation result faralized PRBS

F e — 1

32

CHAPTEI5

APPLICATIONS

33

34

5.1 APPLICATIONS

A Pseudo Random Binary Sequence Generator actcafigists of a Linear Feedback
Shift Register which is a sequential shift regist&th combinational logic that causes it
to pseudo-randomly cycle through a sequence ofrpimalues. Linear feedback shift

registers have multiple uses in digital systemsgtes

Applications Include:

- Data Encryption/Decryption

- Digital Signal Processing

« Wireless Communications

+ Built-in Self Test (BIST)

- Data Integrity Checksums

- Data Compression

« Pseudo-random Number Generation (PN)
» Direct Sequence Spread Spectrum

« Scrambler/Descrambler

« Optimized Counters

A design modeled after LFSRs often has both speet axea advantages over a

functionally equivialent design that does not us&Rs.

35

5.2 Use as Built in self tester (BIST)

At the heart of this BIST approach, lie a pseudwdan binary sequence (PRBS)
generator and a signature register. The PRBS genésanost easily implemented using
a linear feedback shift register (LFSR). A PRBSegator allows us to generate all (well,
almost all) of the required binary patterns for teuit under test. The LFSR can be
used to both generate the test sequence for tigndést is to incorporate BIST and with
slight modification can be used to capture the aasp of the design and generate a

signature (the bit pattern held in the signatugsster).

The signature in the signature register can be eoedpto a known good signature.
Within certain realms of mathematical probablitiytHe signature for the circuit being
tested is the same as the known good signatune thieetested circuit is deemed as being
functionally correct. There is a little maths invedl in discovering the known good value
for the signature of the circuit being tested butrenon that in Part Two. This month we

are going to concentrate on the design of an LE&Roae kind of signature register.

The maximal length LFSR generates data that is stinamdom (hence the term ‘pseudo-
random’). The output of the LFSR can be taken ialfg-out form or as a serial bit

stream. The serial bit stream is usually taken ftbenMSB of the LFSR. Given taps 6
and 9, it turns out that the only pattern not gatest is all zeroes. It is a fairly simple task
to add a little extra circuitry to generate thigtpan, but we won't tackle this just yet.
Naturally this would give us a RBS generator, npsaudo to be seen!

5.3 Use in Wireless Communication

One of the most important uses of PRBS comes iaelegs communication using CDMA

technology.

36

Here the input signal at the transmitter end istiplidd with a pseudo random binary
number generated by PRBS to generate a unique wbabf identifies itself with that
particular user. At the receiver end again the spraeess of multiplying the input signal

with the pseudo random binary number takes place.

The user is identified by the fact that the cotrelabetween the numbers generated for
the same user is very high while in the case oérmtisers the generated numbers are

orthogonal to each other.

PRBS'’s application in generating a spread spectsuatso some what similar, where the

obtained spectrum is multiplied with the generatpdeudo random number.

In all other applications the PRBS generates bimamynbers and provides all possible

numbers within the given range and hence helpsitnig for all possibilities.

37

CONCLUSION

The code for implementing the required PRBS isizedlby writing VHDL program.

In the program the logic implemented is very simple

A 16-bit PRBS is realized by shifting the inputdbgh the D-flip flops and feed backing
the outputs of some registers known as taps agtorthe first register after passing them
through a XOR gate.

The process of realizing LFSR is carried out bstftteveloping the VHDL code for a
D-flip flop. The same D- flip flop code is then 16 times in the main program code
to realize the required LFSR.

In the code for the PRBS tapings are taken so gsttthe maximum range of the binary
numbers generated.

In the developed code tapings are taken frén2f ,4" and 18 taps so as to obtain the
maximum length of binary digits produced.

Initially when the reset is kept at zero the ouspelt each of the registers is uninitialized
and hence the output is uninitialized as well.

However as soon as the reset is made high the tooitjpil the registers start coming out.

A dead lock condition arises in the case when titgal input into the first register as
output of the XOR gate are all 0’s.Under this ctiodithe output of all the register of the
PRBS Generator remains as 0 at all instants of. time

Therefore it is necessary that the initial inputiie PRBS Generator be equal to 1, the

output of the XOR gate.

The code for implementing the above circuit wagtemi and hence the simulation results
were generated and tested.

38

REFERENCES

1) The Art of Electronics, 2" Edition , Horowitz and Hill, 1989, pp 665-667

2) P.Alfke, “Efficient Shift Registers, LFSR , Counters and gdPseudo-Random
Sequence Generators,” XAPP 052, July 7, 1996(Verkib)

3) HDL Chip Design, Douglas J. Smith, Doone Publications, 1996
4) Woody Johnson, Freecqreinear Feedback Registers1997

5) www.Wikipedia.com

