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                                                  ABSTRACT 

    

 

            This project thesis provides a brief overview of Model Predictive Control 

(MPC).A brief history of industrial model predictive control technology has been 

presented first followed by a some concepts like the receding horizon, moves etc. 

which form the basis of the MPC. It follows the Optimization problem which 

ultimately leads to the description of the Dynamic Matrix Control (DMC).The MPC 

presented in this report is based on DMC. After this the application summary and the 

limitations of the existing technology has been discussed and the next generation 

MPC, with an emphasis on potential business and research opportunities has been 

reviewed. Finally in the last part we generate Matlab code to implement basic model 

predictive controller and introduce noise into the model. We have also taken up some 

case studies like Swimming pool water temperature control and helicopter flight 

control etc. by applying the MPC controller on these models. 

             

            Originally developed to meet the specialized control needs of power plants and 

petroleum refineries, MPC technology can now be found in a wide variety of 

application areas including chemicals, food processing, automotive, and aerospace 

applications Its reason for success is many, like it handles multivariable control 

problems naturally. But the most important reason for its success is its ability to 

handle constraints. Model predictive control (MPC) refers to a class of computer 

control algorithms that utilize an explicit process model to predict the future response 

of a plant. At each control interval an MPC algorithm attempts to optimize future plant 

behavior by computing a sequence of future manipulated variable adjustments. The 

first input in the optimal sequence is then sent into the plant, and the entire calculation 

is repeated at subsequent control intervals. The basic MPC controller can be designed 

with proper restrictions on the prediction horizon and model length. The prediction 

horizon has to be kept sufficiently larger than control horizon. But after applying to 

many other applications we find as the complexity increases then we need techniques 

other than DMC like generalized predictive control (GPC) which are better. 
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A Brief History of Industrial MPC 

This section presents an abbreviated history of industrial MPC technology. Control 

algorithms are emphasized here because relatively little published information is 

available on the identification technology.  

The development of modern control concepts can be traced to the work of Kalman in 

the early 1960's, who sought to determine when a linear control system can be said to 

be optimal [, ]. Kalman studied a Linear Quadratic Regulator (LQR) designed to 

minimize an quadratic objective function. The process to be controlled can be 

described by a discrete-time, deterministic linear state-space model:  

                                 

The vector represents process inputs, or manipulated variables; vector 

describes process output measurements. The vector represents process states. 

Figure 1 provides a schematic representation of a state space model. The state vector is 

defined such that knowing its value at time k and future inputs allows one to predict 

how the plant will evolve for all future time. Much of the power of Kalman's work 

relies on the fact that this general process model was used.  

The objective function to be minimized penalizes squared input and state deviations 

from the origin and includes separate state and input weight matrices and to allow 

for tuning trade-offs:  

                

where the norm terms in the objective function are defined as follows: 
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Implicit in the representation is the assumption that all variables are written in terms of 

deviations from a desired steady-state. The solution to the LQR problem was shown to 

be a proportional controller, with a gain matrix computed from the solution of a 

matrix Ricatti equation:  

                                      

The infinite prediction horizon of the LQR algorithm endowed the algorithm with 

powerful stabilizing properties; it was shown to be stabilizing for any reasonable 

linear plant (stablizable and detectable) as long as the objective function weight 

matrices Q and R are positive definite. A dual theory was developed to estimate plant 

states from noisy input and output measurements, using what is now known as a 

Kalman Filter. The combined LQR controller and Kalman filter is called a Linear 

Quadratic Gaussian (LQG) controller. Constraints on the process inputs, states and 

outputs were not considered in the development of LQG theory.  

Although LQG theory provides an elegant and powerful solution to the problem of 

controlling an unconstrained linear plant, it had little impact on control technology 

development in the process industries. The most significant of the reasons cited for 

this failure include [, ] :  

• constraints  

• process nonlinearities  

• model uncertainty (robustness)  

• unique performance criteria  

• Cultural reasons (people, education, etc.) 

It is well known that the economic operating point of a typical process unit often lies 

at the intersection of constraints []. A successful industrial controller must therefore 

maintain the system as close as possible to constraints without violating them. In 

addition, process units are typically complex, nonlinear, constrained multivariable 

systems whose dynamic behavior changes with time due to such effects as changes in 

operating conditions and catalyst aging. Process units are also quite individual so that 

development of process models from fundamental physics and chemistry is difficult to 
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justify economically. Indeed the application areas where LQG theory had a more 

immediate impact, such as the aerospace industry, are characterized by physical 

systems for which it is technically and economically feasible to develop accurate 

fundamental models. Process units may also have unique performance criteria that are 

difficult to express in the LQG framework, requiring time dependent output weights or 

additional logic to delineate different operating modes. However the most significant 

reasons that LQG theory failed to have a strong impact may have been related to the 

culture of the industrial process control community at the time, in which instrument 

technicians and control engineers either had no exposure to LQG concepts or regarded 

them as impractical.  

This environment led to the development, in industry, of a more general model based 

control methodology in which the dynamic optimization problem is solved on-line at 

each control execution. Process inputs are computed so as to optimize future plant 

behavior over a time interval known as the prediction horizon. In the general case any 

desired objective function can be used. Plant dynamics are described by an explicit 

process model which can take, in principle, any required mathematical form. Process 

input and output constraints are included directly in the problem formulation so that 

future constraint violations are anticipated and prevented. The first input of the 

optimal input sequence is injected into the plant and the problem is solved again at the 

next time interval using updated process measurements. In addition to developing 

more flexible control technology, new process identification technology was 

developed to allow quick estimation of empirical dynamic models from test data, 

substantially reducing the cost of model development. This new methodology for 

industrial process modeling and control is what we now refer to as Model Predictive 

Control (MPC) technology.  

In modern processing plants the MPC controller is part of a multi-level hierarchy of 

control functions. It is often difficult to translate the control requirements at this level 

into an appropriate conventional control structure. In the MPC methodology this 

combination of blocks is replaced by a single MPC controller.  
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Although the development and application of MPC technology was driven by 

industry, it should be noted that the idea of controlling a system by solving a sequence 

of open-loop dynamic optimization problems was not new. Propoi, for example, 

described a moving horizon controller in 1963 []. Lee and Markus [] anticipated 

current MPC practice in their 1967 optimal control text:  

One technique for obtaining a feedback controller synthesis from knowledge of open-

loop controllers is to measure the current control process state and then compute very 

rapidly for the open-loop control function. The first portion of this function is then 

used during a short time interval, after which a new measurement of the function is 

computed for this new measurement. The procedure is then repeated.  

There is, however, a wide gap between theory and practice. The essential contribution 

of industry was to put these ideas into practice on operating units. Out of this 

experience came a fresh set of problems that has kept theoreticians busy ever since.  
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The ‘receding horizon’ idea 

   

 

           Fig2.1      The receding horizon concept showing Optimization Problem 

 The figure shows the basic idea of predictive control. In this presentation of the 

basics, we confine ourselves to discussing the control of a single-input, single-output 

(SISO) plant. We assume a discrete-time setting, and that the current time is labeled as 

time step k.at the current time the plant output is y(k), and that the figure shows the 

previous history of the output trajectory. Also shown is a set point trajectory, which is 

the trajectory that the output should follow, ideally. The value of the set-point 

trajectory at any time t is denoted by s(t). 

           Distinct from the set-point trajectory is the reference trajectory .This starts at 

the  current output y(k), and defines an ideal trajectory along which the plant should 

return to the set-point trajectory, for instance after a disturbance occurs. The reference 

trajectory therefore defines an important aspect of the closed-loop behavior of the 

controlled plant. It is not necessary to insist that the plant should be driven back to the 

set-point trajectory as fast as possible, although that choice remains open. It is 

frequently assumed that the reference trajectory as fast as possible, although that 

choice remains open. It is frequently assumed that the reference trajectory approaches 

the set point exponentially, which we shall denote Tref , defining the speed of 

response. That is the current error is  
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                                                        Є (k) =s (k)-y(k) 

Then the reference trajectory is chosen such that the error i steps later , if the output 

followed it exactly, would be  

                                                      Є(k+i)=exp(-iTs/Tref) *Є(k) 

                                                                 = λi *Є(k) 

where Ts is the sampling interval and λ =exp(-Ts/Tref).(note that  0<λ<1). That is , the 

reference trajectory is defined to be  

                                                  r(k+i|k)=s(k+i)-Є(k+i) 

                                                              =s(k+i)- exp(-Ti/Ts) * Є(k) 

The notation r(k+i|k) indicates that the reference trajectory depends on the conditions 

at time k,in general. Alternative  definitions of the reference trajectory are possible—

For e.g. , a straight line from the current output which meets the set point trajectory 

after a specified time . 

                 A predictive controller has an internal model  which is used to predict the 

behaviour depends on the assumed input trajectory ŭ(k+i|k) (i=0,1,…,Hp-1) that is to 

applied over the prediction horizon, and the  idea is to select that input which promises 

best predicted behaviour.We shall assume that internal model is linear ; this makes the 

calculation of the best input relatively straightforward. The notation ŭ rather than u 

here indicates that at time step  k we only have  a prediction of what the input at time  

k+i may be; the actual input at that  time,u(k+i),will probably be different from 

ŭ(k+i|k).Note that we assume that we have the output measurement y(k) available 

when deciding, the value of the input u(k).This implies that our internal model must be 

strictly proper , namely that according to the model y(k) depends on the past inputs 

u(k-1),u(k-2), …, but not on the input u(k). 

In the simplest case we can try to choose the input trajectory such as to bring output at 

the end of the prediction horizon, namely at time k_Hp , to the required value r(k + 

Hp). In this case we say, using the terminology of richalet,that we have a single 

coincidence point at time k+Hp. There are several input trajectories 

{ŭ(k|k),ŭ(k+1|k),…,ŭ(k+Hp-1|k)} which achieve this , and we could choose one of 
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them , for example the one which requires smallest input energy. But is usually 

adequate , and in a fact preferable, to impose some simple structure  o the input 

trajectory, parameterized by a smaller number of variables. The figure shows the input 

assumed to vary over the first three steps of the prediction horizon, but to remain 

constant thereafter: ŭ(k|k)=ŭ(k+1|k)=…=ŭ(k+Hp-1|k).In this case there is only one 

equation to be satisfied  ---ŷ (k+Hp|k)=r(k+Hp|k)--- there is a unique solution . 

            Once a future input trajectory has been chosen , only the first element  of that 

trajectory is applied as the input signal to the plant . That is , we set u(k)=ǔ(k|k), where 

u(k) denotes the actual input signal applied. Then the whole cycle of output 

measurement is repeated, prediction, and input trajectory determination is repeated., 

one sampling interval later: a new output measurement y(k+1) is obtained ;a new 

reference trajectoryr(k+i|k+1)(i=2,3,…,) is defined ; predictions are made over the 

horizon k+1+I,with i=1,2,…Hp; a new  trajectory ǔ(k+1+i|k+1),with i=0,1,…,Hp-1) is 

chosen; and finally the next input is applied to the plant : u(k+1)=ǔ(k+1|k+1).Since the 

horizon prediction remains of the same length as before, but slides along by one 

sampling interval at each step this way of controlling a plant is often called a receding 

horizon strategy 
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OPTIMIZATION PROBLEM 

The term optimization implies a best value for some type of performance criterion. 

This performance criterion is Known as an objective function. Here, we first discuss 

possible objective functions, then possible process models that can be used for MPC. 

OBJECTIVE FUNCTIONS 

Here, there are several different choices for objectives functions. The first one that 

comes to mind is a standard least-squares or “quadratic “objective function. The 

objective function is a “sum of squares “ of the predicted errors (differences between 

the set points and model-predicted outputs) and the control moves (changes in control 

action from step to step) 

          A quadratic objective function for a prediction horizon of 3 and a control 

horizon of 2 can be written  

Ф = (Rk+1 – ŷk+1)^2  +  ((Rk+2 – ŷk+2)^2  + (Rk+3 – ŷk+3)^2  + w∆Uk^2                                                                                                                                                                                           

+  w∆Uk+1^2   

Where  ŷ  represents the model predicted output ,r is the set point, ∆U is the change in 

manipulated input  from one sample to the next ,w is a weight for the changes in the 

manipulated input, and the subscripts indicate the sample time (k is the current sample 

time ). For a prediction horizon of P and a control horizon of M,the least Squares  

objective function is written                

                                             Ф = ∑    (Rk+1 – ŷk+1)^2  + w∑ ∆Uk+1^2      

Another possible objective function is to simply take a sum of the absolute values of 

the predicted errors and control moves. 

        For a prediction horizon of 3 and a control horizon of 2, the absolute value 

objective function is  

              Ф = |   (Rk+1 – ŷk+1) | + |   (Rk+2– ŷk+2) | + | (Rk+3 – ŷk+3) |  + w| ∆Uk| +  

w| ∆Uk+1|        
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Which has the following general form for a prediction horizon of P and a control 

horizon of M: 

                                Ф = ∑   | (Rk+1 – ŷk+1)|  + w∑ |∆Uk+1| 

         The optimization problem solved stated as a minimization of the objective 

function, obtained by adjusting the M control moves, subject to modeling equations 

(equality constraints), and constraints on the inputs and outputs. 

                                 Min    Ф 

       Least-squares formulations are by far the most common objective functions in 

MPC.Least squares yields analytical solutions for unconstrained problems and 

penalizes larger errors(relatively) more then smaller errors. The absolute value 

objective function has been used in a few algorithms because linear programming (LP) 

problem results.LPs are routinely solved in large-scale scheduling and allocation 

problems. For example, an oil company often uses an LP to decide how to distribute 

oil to various refineries and to decide how much and what product to produce at each 

plant .The LP approach is not useful for model predictive control, because the 

manipulated variable moves often “ hop” from one extreme constraint to another. 

 

 

MODELS 

 Many different types of models are possible for calculating the predicted values of the 

process outputs, which are used in evaluating at discrete steps , it makes sense to use 

discrete models for the output prediction . Here , we review step and impulse response 

models both of which are used in common MPC algorithms. 

  FINITE STEP RESPONSE 

FSR models are obtained by making a unit step input change to a process operating at 

steady state. The model coefficients are simply the output values at each time step. 
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Here , si represents the step response coefficients for the ith sample time after the unit 

step input change. If a non-unit step change is made, the output is scaled accordingly. 

        The step response model is the vector of step response coefficients, 

                                      S=[ s1 s2 s3 s4 s5 . . . sN]’ 

Where the model length N is long enough so that the coefficients values are relatively 

constant (i.e. the process is close to a new steady state ). 

FINITE IMPULSE RESPONSE 

Another common form of model is a finite impulse (FIR). Here , a  unit pulse is 

applied to the manipulated input, and the model coefficients are simply the values of 

the  outputs the ith impulse response coefficients. 

          There is a direct relationship between step and impulse response models: 

                                                           Hi=Si-Si-1                                                                            

                                                           Si=∑hj 

The impulse response coefficients are simply the changes in the step response 

coefficient at each time step. Similarly , step response coefficient is the sum of the 

impulse response coefficients to that point. It should be noted that there are two major 

limitations to step and impulse response models. They can only be used to represent 

open-loop stable processes, and they require  a large number of parameters (model 

coefficients ) compared to state space and transfer function models.  
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DMC 

           Engineers at Shell Oil developed their own independent MPC technology in the 

early 1970's, with an initial application in 1973. Cutler and Ramaker presented details 

of an unconstrained multivariable control algorithm which they named Dynamic 

Matrix Control (DMC) at the 1979 National AIChE meeting [] and at the 1980 Joint 

Automatic Control Conference []. In a companion paper at the 1980 meeting Prett and 

Gillette [] described an application of DMC technology to an FCCU 

reactor/regenerator in which the algorithm was modified to handle nonlinearities and 

constraints. Neither paper discussed their process identification technology. Key 

features of the DMC control algorithm include:  

• linear step response model for the plant  

• quadratic performance objective over a finite prediction horizon  

• future plant output behavior specified by trying to follow the set point as closely 

as possible  

• optimal inputs computed as the solution to a least-squares problem  

The linear step response model used by the DMC algorithm relates changes in a 

process output to a weighted sum of past input changes, referred to as input moves. 

For the SISO case the step response model looks like:  

                       

The move weights are the step response coefficients. Mathematically the step 

response can be defined as the integral of the impulse response; given one model form 

the other can be easily obtained. Multiple outputs were handled by superposition. By 

using the step response model one can write predicted future output changes as a 

linear combination of future input moves. The matrix that ties the two together is the 

so-called Dynamic Matrix. Using this representation allows the optimal move vector 

to be computed analytically as the solution to a least-squares problem. Feed forward 

control is readily included in this formulation by modifying the predicted future 
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outputs. In practice the required matrix inverse can be computed off-line to save 

computation. Only the first row of the final controller gain matrix needs to be stored 

because only the first move needs to be computed.  

The objective of a DMC controller is to drive the output as close to the set point as 

possible in a least-squares sense with a penalty term on the MV moves. This is 

equivalent to increasing the size of the diagonal terms in the square solution matrix 

prior to inversion. This results in smaller computed input moves and a less aggressive 

output response. As with the IDCOM reference trajectory, this technique provides a 

degree of robustness to model error. Prett and Gillette formalized this concept 

mathematically by defining move suppression factors designed to penalize excessive 

input movement. Move suppression factors also provide an important numerical 

benefit in that they can be used to directly improve the conditioning of the numerical 

solution.  

Cutler and Ramaker showed results from a furnace temperature control application to 

demonstrate improved control quality using the DMC algorithm. Feedforward 

response of the DMC algorithm to inlet temperature changes was superior to that of a 

conventional PID lead/lag compensator.  

In their paper Prett and Gillette [] described an application of DMC technology to 

FCCU reactor/regenerator control. Four such applications were already completed and 

two additional applications were underway at the time the paper was written. The 

overall FCCU control system was implemented in a multi-level hierarchy, with a 

nonlinear steady-state FCCU model at the top. At the start of each optimization cycle, 

parameters in the nonlinear model were estimated so as to match model predictions 

with measured steady-state operating data. The calibrated nonlinear model was then 

perturbed numerically to generate partial derivatives of each process output with 

respect to each process input (the matrix of partial derivatives is known as the 

Jacobian matrix in numerical analysis). The partial derivatives were then used in a 

Linear Program (LP) to compute a new economic optimal operating point for the 

FCCU, subject to steady-state process constraints. The optimal process input and 

output targets were then passed to a DMC algorithm for implementation. As soon as 
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the DMC controller moved the unit to the new steady state the optimization cycle was 

repeated. This separation of the control system into constrained steady-state 

optimization and dynamic control is quite similar to the structure described by 

Richalet et al. and has since become standard in industrial control system design.  

The DMC algorithm had the job of moving from the system from one optimal steady-

state to another. Although the LP solution provided optimal targets for process inputs 

and outputs, dynamic disturbances could potentially cause the DMC algorithm to 

move inputs away from their optimal steady-state targets in order to keep outputs at 

their steady-state targets. Since moving one input away from its optimal target may be 

much more expensive than moving another, the control system should determine this 

trade-off in a rational way. The DMC algorithm was modified to account for such 

trade-offs by including an additional equation for each input in the process model. The 

new equation required that the sum of all moves for a particular input should equal the 

total adjustment required to bring that input to its optimal steady-state target. This 

allowed the inputs some freedom to move dynamically but required that the steady-

state input solution be satisfied in a least-squares sense, with trade-offs determined by 

the appropriate objective function weights.  

Prett and Gillette described additional modifications to the DMC algorithm to prevent 

violation of absolute input constraints. When a predicted future input came sufficiently 

close to an absolute constraint, an extra equation was added to the process model that 

would drive the input back into the feasible region. These were referred to as time 

variant constraints. Because the decision to add the equation had to be made on-line, 

the matrix inverse solution had to be recomputed at each control execution. Prett and 

Gillette developed a matrix tearing solution in which the original matrix inverse could 

be computed off-line, requiring only the matrix inverse corresponding to active time 

variant constraints to be computed on-line.  

The initial IDCOM and DMC algorithms represent the first generation of MPC 

technology; they had an enormous impact on industrial process control and served to 

define the industrial MPC paradigm.  
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Summarizing the main steps involved in implementing DMC on a process are as 

follows: 

1. Develop a discrete step response model with length N  based on sample time ∆t. 

2. Specify the prediction(P) and control (M) horizons.N≥P≥M 

3. Specify the weighting on the control action(w=0 if no weighting on the control 

action(w=0 if no weighting). 

4. All calculations assume deviation variable form, so remember to convert to/from 

physical units. 

The effect of all these tuning parameters is now discussed for SISO systems. 

 Model-length and sample-time selection are independent. The model length should be 

approximately the ‘settling time’ of the process, that is, the  time required to reach a 

new steady state after a step input change. For most systems, the model length is 

roughly 50 coefficients. The sample time is usually on the order of one tenth the 

dominant time constant, so the model length is roughly the settling time of the process. 

             Prediction and control horizons differ in length. Usually, the prediction 

horizon is selected to be much longer than the control horizon. This is particularly true 

if the control weighting factor is selected to be zero. Usually, if the prediction horizon 

is much longer than the control horizon, the control system is less sensitive to model 

error. Often P=20 or so , while M=1-3. 

     Control weighting  is often step to zero if the prediction horizon is much longer the 

control horizon. As the control horizon is increased, the control moves tend to become 

more aggressive so larger weight is needed to penalize the control moves. 
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                            VAN DE VUSSE REACTOR 

 

Consider the Van de Vusse reactor problem. The continuous state space model is 

given by 

 

                A= [ -2..4048  0; 0.8333  -2.2381]; 

                B= [7;-1.117] 

                C=  [0 1] 

                 D=  [ 0 ]   

Where the measured state (output) is the concentration of the second component and 

the manipulated input is the dilution rate. 

 

 

MATLAB code          

 

 

%initialization of parameters 

P=10;%prediction horizon 

M=1;%control horizon 

N=50;%model length 

w=0.0;%weight 

ysp=1;%output set point from 0 

timesp=1;%time of set point change 

delt=0.1;%sampling time interval 

tfinal=6;%final simulation time 

noise=0; 

%define time 

tvec=0:delt:tfinal; 

ksp=fix(timesp/delt); 

kfinal=length(tvec); 
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%define set point vector 

r=[zeros(1,ksp),ones(1,(kfinal-ksp))*ysp]; 

%////////////////define plant as 'SISO' LTI object//////////////////////// 

c=input('enter plant in     1.statespace    2.transferfunction     3.polezero    

4.frquencyresponse'); 

if c==1   a=input('enter A matrix');b=input('enter B matrix'); 

c=input('enter C matrix');d=input('enter D matrix');plant=ss(a,b,c,d); 

elseif c==2   nump=input('enter numerator coefficients');denp=input('enter 

denomenator coefficients');plant=tf(nump,denp); 

elseif c==3    zero=input('enter zeroes');pole=input('enter poles');K=input('enter gain'); 

plant=zpk(zero,pole,K); 

elseif c==4    resp=input('enter response');freq=input('enter 

frequencies');plant=frd(resp,freq,'Units','Hz'); 

end 

plant=tf(plant); 

%plant=s/(s*s - 1.4*s  +0.45),it is continous 

%define plant parameters here 

 

% nump=[1]; 

% denp=[1,-1.4,0.45]; 

% plant=tf(nump,denp); 

 

%discretize the plant 

plant=c2d(plant,delt); 

%//////////////////define model here//////////////////////////////////// 

%assumption plant = model 

model=plant; 

% [numm,denm,tm]=tfdata(plant); 

numm = get(model,'num'); numm = numm{:}; % Get numerator polynomial 

denm = get(model,'den'); denm = denm{:}; % Get denominator polynomial 

numm 
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%define step response coefficient matrix 

s=step(model,0:delt:N*delt); 

%define free response i.e. Sp matrix for past control moves 

for i=1:P 

    for j=1:N-2 

       if(i+j<=N-1) 

        Sp(i,j)=s(i+j); 

       else  

           Sp(1,j)=0; 

       end 

    end 

end 

 %define forced response i.e. Sf matrix for future and control moves 

 for i=1:P 

     for j=1:M 

         if i+1-j>0 

         Sf(i,j)=s(i+1-j); 

         else 

             Sf(i,j)=0; 

         end 

     end 

 end 

Sf 

 % obtain W matrix 

 W=w*eye(M,M); 

 %obtain Kmat where Kmat=(Sf'*Sf  +   W)^-1*Sf' 

Kmat=inv(Sf'*Sf + W)*Sf'; 

%piant initial conditions 

ndenm=length(denm)-1; 

nnumm=length(numm)-1; 

umpast=zeros(1,nnumm); 
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ympast=zeros(1,ndenm); 

% uu=zeros(1,kfinal); 

% yy=zeros(1,kfinal); 

% xinit=zeros(1,size( 

 

% nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros 

% numm=[zeros(1,ndenm-nnumm-1),numm]; 

uinit=0; 

yinit=0; 

%initialize input vector 

u=ones(1,min(P,kfinal))*uinit; 

u 

dist(1)=0; 

y(1)=yinit; 

% x(:,1)=xinit; 

dup=zeros(1,N-2); 

for k=1:kfinal 

     [m,p]=size(Kmat); 

    for i=1:p 

        if k-N+i>0 

            uold(i)=u(k-N+i);    

        else 

            uold(i)=0; 

        end 

    end 

    dvec=dist(k)*ones(1,p); 

    rvec=r(k)*ones(p,1); 

    y_free=Sp*dup' + s(N)*uold'+dvec'; 

    E=rvec-y_free; 

    delup(k)=Kmat(1,:)*E; 

    if k>1 
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        u(k)=u(k-1)+delup(k); 

    else 

        u(k)=delup(k)+uinit; 

    end 

    %plant equations 

    umpast=[u(k),umpast(1,1:length(umpast)-1)]; 

    y(k+1)=-denm(2:ndenm+1)*ympast'+numm(2:nnumm+1)*umpast'; 

    ympast=[y(k+1),ympast(1:length(ympast)-1)]; 

    %model prediction 

    if k-N+1>0 

        ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'+s(N)*u(k-N+1); 

    else 

        ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'; 

    end 

    %disturbance compensation 

    dist(k+1)=y(k+1)-ymod(k+1); 

    %additive disturbance compensation 

    %put input change into vector of past control moves 

    dup=[delup(k),dup(1,1:N-3)]; 

end 

%stairs plotting for input(zero order hold) and setpoint  

[tt,uu]=stairs(tvec,u); 

[ttr,rr]=stairs(tvec,r); 

figure(1) 

subplot(2,1,1) 

plot(ttr,rr,'--',tvec,y(1:length(tvec))) 

ylabel('y'); 

xlabel('time'); 

title('plant output'); 

subplot(2,1,2) 

plot(tt,uu) 
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ylabel('u'); 

xlabel('time'); 

                              

 OUTPUT IN MATLAB WINDOW 

 

 

enter plant in     1.statespace    2.transferfunction     3.polezero    4.frquencyresponse1 

enter A matrix[-2.4048 0;0.8333 -2.2381] 

enter B matrix[7;-1.117] 

enter C matrix[0 1] 

enter D matrix[0] 

 

numm = 

 

         0   -0.0751    0.1001 

 

 

Sf = 

 

         0 

   -0.0751 

   -0.0940 

   -0.0768 

   -0.0376 

    0.0137 

    0.0704 

    0.1281 

    0.1840 

    0.2362 
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u =     0     0     0     0     0     0     0     0     0     0 
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                       Fig 5.1   Output after applying MPC to the Van De Vusse Reactor 
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INFERENCE: 

 

Effect of prediction horizon: If we have a fixed control horizon, then it is seen 

that choosing a smaller prediction horizon results set point being achieved in smaller 

time .However the shorter prediction horizon is more sensitive to model uncertainty. 

 

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

y

time

plant output

0 1 2 3 4 5 6
-4

-2

0

2

4

u

time
 

  Fig 5.2   Output after applying MPC to the Van De Vusse Reactor with P=15 

As seen in figure when P=15 requires much more control action compared to P=10. 

But still we find that prediction horizon does not have appreciable effect for this case 

.The performance for this case is roughly the same for P=10 and P=15.However there 

is a lower limit to the length of the prediction horizon below which it results in an 

unstable system. Here it is P=3. This is not due to any model error, since we have 

assumed a perfect model in these simulations. If the prediction horizon is too short, the 

initial step response coefficients dominate. Since these are negative while the later 

coefficients are positive (corresponding to a positive process gain), the predictive is 
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really in error. The effect is the same as using a PID controller with a controller gain 

that is the wrong sign. 

Effect of model length: Choosing a smaller model length does not capture the 

complete dynamics of the process. This results in a model error and poor performance. 
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      Fig 5.3 Output after applying MPC to the Van De Vusse Reactor with N=70 

we find that N=50 gives better results than N=70.the performance degrades sharply as 

N increases. 
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INTRODUCTION OF NOISE IN  MODEL PREDICTIVE 

CONTROL 

 

 

This program provides offset tracking, but in addition simulates the effects of 

measurement noise, and of input and output disturbances as shown in figure 

 

 

 

 

 

                  Fig 5.4   Input and output disturbances with measurement Noise 
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MATLAB code 

 

%initialization of parameters 

P=10;%prediction horizon 

M=1;%control horizon 

N=50;%model length 

w=0.0;%weight 

ysp=1;%output set point from 0 

timesp=1;%time of set point change 

delt=0.1;%sampling time interval 

tfinal=4;%final simulation time 

noise=0; 

%define time 

tvec=0:delt:tfinal; 

ksp=fix(timesp/delt); 

kfinal=length(tvec); 

%define set point vector 

r=[zeros(1,ksp),ones(1,(kfinal-ksp))*ysp]; 

%////////////////define plant as 'SISO' LTI object//////////////////////// 

c=input('enter plant in     1.statespace    2.transferfunction     3.polezero    

4.frquencyresponse'); 

if c==1   a=input('enter A matrix');b=input('enter B matrix'); 

c=input('enter C matrix');d=input('enter D matrix');plant=ss(a,b,c,d); 

elseif c==2   nump=input('enter numerator coefficients');denp=input('enter 

denomenator coefficients');plant=tf(nump,denp); 

elseif c==3    zero=input('enter zeroes');pole=input('enter poles');K=input('enter gain'); 

plant=zpk(zero,pole,K); 

elseif c==4    resp=input('enter response');freq=input('enter 

frequencies');plant=frd(resp,freq,'Units','Hz'); 

end 
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plant=tf(plant); 

%plant=s/(s*s - 1.4*s  +0.45),it is continous 

%define plant parameters here 

 

% nump=[1]; 

% denp=[1,-1.4,0.45]; 

% plant=tf(nump,denp); 

 

%discritize the plant 

plant=c2d(plant,delt); 

%//////////////////define model here//////////////////////////////////// 

%assumption plant = model 

model=plant; 

% [numm,denm,tm]=tfdata(plant); 

numm = get(model,'num'); numm = numm{:}; % Get numerator polynomial 

denm = get(model,'den'); denm = denm{:}; % Get denominator polynomial 

numm 

%define step response coefficient matrix 

s=step(model,0:delt:N*delt); 

%define free response i.e. Sp matrix for past control moves 

for i=1:P 

    for j=1:N-2 

       if(i+j<=N-1) 

        Sp(i,j)=s(i+j); 

       else  

           Sp(1,j)=0; 

       end 

    end 

end 

 %define forced response i.e. Sf matrix for future and control moves 

 for i=1:P 
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     for j=1:M 

         if i+1-j>0 

         Sf(i,j)=s(i+1-j); 

         else 

             Sf(i,j)=0; 

         end 

     end 

 end 

Sf 

 % obtain W matrix 

 W=w*eye(M,M); 

 %obtain Kmat where Kmat=(Sf'*Sf  +   W)^-1*Sf' 

Kmat=inv(Sf'*Sf + W)*Sf'; 

 

 

% Noise and disturbances: 

sd = 0.1; % Standard deviation of measurement noise 

randn('state',0); % Resets state of random number generator. Change to  

                  % get different random sequences generated. 

noise = sd*randn(kfinal,1); % Measurement noise, normal distribution,  

                            % mean=0, standard deviation = sd. 

udist = 0.1*ones(kfinal,1); % Input disturbance (default constant 0.1) 

ydist = 0.1*[ones(floor(kfinal/2),1);-ones(ceil(kfinal/2),1)];  

  % Output disturbance (default constant +/-0.1, changing sign halfway) 

        

 

%piant initial conditions 

ndenm=length(denm)-1; 

nnumm=length(numm)-1; 

umpast=zeros(1,nnumm); 

ympast=zeros(1,ndenm); 
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% uu=zeros(1,kfinal); 

% yy=zeros(1,kfinal); 

% xinit=zeros(1,size( 

 

% nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros 

% numm=[zeros(1,ndenm-nnumm-1),numm]; 

uinit=0; 

yinit=0; 

%initialize input vector 

u=ones(1,min(P,kfinal))*uinit; 

u 

dist(1)=0; 

y(1)=yinit; 

% x(:,1)=xinit; 

dup=zeros(1,N-2); 

 

 

  for k=1:kfinal 

     [m,p]=size(Kmat); 

    for i=1:p 

        if k-N+i>0 

            uold(i)=u(k-N+i)+udist(k);    

        else 

            uold(i)=0+udist(k); 

        end 

    end 

    dvec=ydist(k)*ones(1,p); 

    rvec=r(k)*ones(p,1); 

    dnoise=noise(k)*ones(1,p); 

    y_freed=Sp*dup' + s(N)*uold'+dvec'; 

    y_free=y_freed+dnoise'; 



 41 

    E=rvec-y_free; 

    delup(k)=Kmat(1,:)*E; 

    if k>1 

        u(k)=u(k-1)+delup(k); 

    else 

        u(k)=delup(k)+uinit; 

    end 

    %plant equations 

    umpast=[u(k)+udist(k),umpast(1,1:length(umpast)-1)]; 

    y(k+1)=-denm(2:ndenm+1)*ympast'+numm(2:nnumm+1)*umpast'; 

    ympast=[y(k+1),ympast(1:length(ympast)-1)]; 

    %model prediction 

    if k-N+1>0 

        ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'+s(N)*u(k-N+1); 

    else 

        ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'; 

    end 

    %disturbance compensation 

    dist(k+1)=y(k+1)-ymod(k+1); 

    %additive disturbance compensation 

    %put input change into vector of past control moves 

    dup=[delup(k),dup(1,1:N-3)]; 

end 

%stairs plotting for input(zero order hold) and setpoint  

[tt,uu]=stairs(tvec,u); 

[ttr,rr]=stairs(tvec,r); 

figure(1) 

subplot(2,1,1) 

 

% Plot output, solid line and set-point, dottedd line: 

plot(tvec,y(1:length(tvec)),'-',tvec,y(1:length(tvec))+noise',':',... 
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 ttr,rr,'--'); 

grid;  

title(... 

'Plant output (solid), Measured output (dotted) and set-point (dashed)') 

xlabel('Time') 

 

subplot(212) 

% plot input signal as staircase graph: 

plot(tt,uu,'-'); 

hold on; 

plot(tvec,u+udist',':') 

grid;  

title('Controller output (solid), Plant input (dotted)') 

xlabel('Time') 

 

 

output in Matlab window 

 

enter plant in     1.statespace    2.transferfunction     3.polezero    4.frquencyresponse1 

enter A matrix[-2.4048 0;0.8333 -2.2381] 

enter B matrix[7;-1.117] 

enter C matrix[0 1] 

enter D matrix[0] 

 

numm = 

 

         0   -0.0751    0.1001 
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Sf = 

 

         0 

   -0.0751 

   -0.0940 

   -0.0768 

   -0.0376 

    0.0137 

    0.0704 

    0.1281 

    0.1840 

    0.2362 

 

 

u = 

 

     0     0     0     0     0     0     0     0     0     0 
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    Fig 5.5   Output after adding Input and output disturbances with measurement Noise 
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                                                                                                       CHAPTER 6 

   CASE STUDIES 

 

 

 

 

 

                                CONTROL OF UNSTABLE HELICOPTER 

              SWIMMING POOL WATER TEMPERATURE CONTROL 

                              CESSNA CITATION 500 AIRCRAFT CONTROL 
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          CONTROL OF UNSTABLE HELICOPTER 

 

 

The transfer function from the rotor angle to the forward speed of a helicopter in a 

particular flight condition is given by 

 

                9.8(S^2  -  0.5  +  6.3) /  ( (S  +  0.6565)(S^2  -  0.2366S  +0.1493) ) 

 

        This has zeros at +0.25 + 2.5j ,+0.25 – 2.5j and poles at +0.118 + 0.37j,+0.118 – 

0.37j. It is therefore both minimum phase and unstable –certainly a difficult plant to 

control .The  figure below shows the response obtained using the program below when 

an exact model is assumed, and parameters Tref=6 and Ts=0.6 are used,with a single 

coincidence point P1=8,Hu=1. 

 

MATLAB code: 

 

% CONTROLLING HELICOPTER's FLIGHT CONDITION BY USING MODEL 

PREDICTIVE CONTROL 

% The transfer function from the rotor angle to the forward speed of a helicopter  

% in a particular flight condition is given by 

% T(s)=9.8(s^2 -0.5s +6.3)/(s +0.6565)(s^2 -0.2366s +0.1493); 

 

% Define time-constant of reference trajectory Tref: 

Tref = 6; 

 

% Define sampling interval Ts (default Tref/10): 

if Tref == 0, 

  Ts = 1; 

else 
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  Ts = Tref/10; 

end 

 

% Define plant as SISO discrete-time 'lti' object 'plant' 

%%%%%  CHANGE FROM  HERE TO DEFINE NEW PLANT %%%%% 

nump=9.8*[1, -0.5, 6.3];                     % Helicopter example 

denp=conv([1, 0.6565],[1, -0.2366, 0.1493]); % Continuous time 

plant = tf(nump,denp); 

plant = c2d(plant,Ts);  % Discretise plant 

%%%%%  CHANGE UP TO HERE TO DEFINE NEW PLANT  %%%%% 

plant = tf(plant);  % Coerce to transfer function form 

nump = get(plant,'num'); nump = nump{:}; % Get numerator polynomial 

denp = get(plant,'den'); denp = denp{:}; % Get denominator polynomial 

nnump = length(nump)-1; % Degree of plant numerator 

ndenp = length(denp)-1; % Degree of plant denominator 

if nump(1)~=0, error('Plant must be strictly proper'), end; 

if any(abs(roots(denp))>1), disp('Warning: Unstable plant'), end 

 

% Define model as SISO discrete-time 'lti' object 'model'  

% (default model=plant): 

%%%%%  CHANGE FROM  HERE TO DEFINE NEW MODEL %%%%% 

model = plant; 

%%%%%  CHANGE UP TO HERE TO DEFINE NEW MODEL  %%%%% 

model = tf(model);  % Coerce to transfer function form 

numm = get(model,'num'); numm = numm{:}; % Get numerator polynomial 

denm = get(model,'den'); denm = denm{:}; % Get denominator polynomial 

nnumm = length(numm)-1; % Degree of model numerator 

ndenm = length(denm)-1; % Degree of model denominator 

if numm(1)~=0, error('Model must be strictly proper'), end; 

if any(abs(roots(denm))>1), disp('Warning: Unstable model'), end 
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nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros 

numm=[zeros(1,ndenm-nnumm-1),numm]; % Pad numerator with leading zeros 

 

% Define prediction horizon P (steps)(default corresponds to 0.8*Tref): 

if Tref == 0, 

  P = 5; 

else 

  P = round(0.8*Tref/Ts); 

end 

 

% Define control horizon (default 1): 

M = 1; 

 

% Compute model step response values over coincidence horizon: 

stepresp = step(model,[0:Ts:max(P)*Ts]); 

N=50;%model length 

w=0.0;%weight 

ysp=1;%output set point from 0 

timesp=1;%time of set point change 

delt=0.6;%sampling time interval 

tfinal=25;%final simulation time 

noise=0; 

%define time 

tvec=0:delt:tfinal; 

ksp=fix(timesp/delt); 

kfinal=length(tvec); 

%define set point vector 

r=[zeros(1,ksp),ones(1,(kfinal-ksp))*ysp]; 

%define step response coefficient matrix 

s=step(model,0:delt:N*delt); 

%define free response i.e. Sp matrix for past control moves 
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for i=1:P 

    for j=1:N-2 

       if(i+j<=N-1) 

        Sp(i,j)=s(i+j); 

       else  

           Sp(1,j)=0; 

       end 

    end 

end 

 %define forced response i.e. Sf matrix for future and control moves 

 for i=1:P 

     for j=1:M 

         if i+1-j>0 

         Sf(i,j)=s(i+1-j); 

         else 

             Sf(i,j)=0; 

         end 

     end 

 end 

Sf 

 % obtain W matrix 

 W=w*eye(M,M); 

 %obtain Kmat where Kmat=(Sf'*Sf  +   W)^-1*Sf' 

Kmat=inv(Sf'*Sf + W)*Sf'; 

%piant initial conditions 

ndenm=length(denm)-1; 

nnumm=length(numm)-1; 

umpast=zeros(1,nnumm); 

ympast=zeros(1,ndenm); 

% uu=zeros(1,kfinal); 

% yy=zeros(1,kfinal); 



 50 

% xinit=zeros(1,size( 

 

% nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros 

% numm=[zeros(1,ndenm-nnumm-1),numm]; 

uinit=0; 

yinit=0; 

%initialize input vector 

u=ones(1,min(P,kfinal))*uinit; 

u 

dist(1)=0; 

y(1)=yinit; 

% x(:,1)=xinit; 

dup=zeros(1,N-2); 

for k=1:kfinal 

     [m,p]=size(Kmat); 

    for i=1:p 

        if k-N+i>0 

            uold(i)=u(k-N+i);    

        else 

            uold(i)=0; 

        end 

    end 

    dvec=dist(k)*ones(1,p); 

    rvec=r(k)*ones(p,1); 

    y_free=Sp*dup' + s(N)*uold'+dvec'; 

    E=rvec-y_free; 

    delup(k)=Kmat(1,:)*E; 

    if k>1 

        u(k)=u(k-1)+delup(k); 

    else 

        u(k)=delup(k)+uinit; 
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    end 

    %plant equations 

    umpast=[u(k),umpast(1,1:length(umpast)-1)]; 

    y(k+1)=-denm(2:ndenm+1)*ympast'+numm(2:nnumm+1)*umpast'; 

    ympast=[y(k+1),ympast(1:length(ympast)-1)]; 

    %model prediction 

    if k-N+1>0 

        ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'+s(N)*u(k-N+1); 

    else 

        ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'; 

    end 

    %disturbance compensation 

    dist(k+1)=y(k+1)-ymod(k+1); 

    %additive disturbance compensation 

    %put input change into vector of past control moves 

    dup=[delup(k),dup(1,1:N-3)]; 

end 

disp('***** Results from program file :') 

disp(['Tref = ',num2str(Tref),',  Ts = ',num2str(Ts),... 

   '  P = ',int2str(P'),' (steps),  M = ',int2str(M)]) 

diffpm = get(plant-model,'num'); 

if diffpm{:}==0, 

  disp('Model = Plant') 

else 

  disp('Plant-Model mismatch') 

end 

 

figure 

subplot(211) 

% Plot output, solid line and set-point, dashed line: 

[tt,uu]=stairs(tvec,u); 
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[ttr,rr]=stairs(tvec,r); 

figure(1) 

subplot(2,1,1) 

plot(ttr,rr,'--',tvec,y(1:length(tvec)),'-') 

ylabel('y'); 

xlabel('time'); 

title('plant output'); 

 

% plot(tvec,yp(1:nsteps),'-',tvec,setpoint(1:nsteps),'--'); 

grid; title('Plant output (solid) and set-point (dashed)') 

% xlabel('Time') 

 

subplot(212) 

% plot input signal as staircase graph: 

% stairs(tvec,uu,'-'); 

plot(tt,uu) 

ylabel('u'); 

xlabel('time'); 

grid; title('Input') 

% xlabel('Time') 
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OUTPUT IN MATLAB WINDOW 

 

Warning: Unstable plant 

Warning: Unstable model 

 

Sf = 

 

         0 

    6.4720 

   21.9203 

   55.8944 

  115.3825 

  204.9810 

  326.9132 

  480.9769 

 

 

u = 

 

     0     0     0     0     0     0     0     0 

 

***** Results from program file : 

Tref = 6,  Ts = 0.6  P = 8 (steps),  M = 1 

Model = Plant 
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                 Fig 6.1   Output after applying MPC to control of unstable helicopter. 
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This example shows that predictive control, although simple and intuitive in its 

formulation can produced some very sophisticated control action when required. In 

order to stabilize this unstable plant, classical theory tells us that Nyquist locus of the 

loop-gain frequency response must encircle the point -1 twice, and this can only be 

achieved by supplying phase lead at the appropriate frequencies. Doing this requires 

classical ‘loop shaping’ techniques. Predictive control achieves this implicitly, given 

only some reasonable design specifications. 

On the other hand classical theory cannot be forgotten .This example tells us, 

for instance that the loop gain must increase to values greater than 1 at a frequency no 

lower than 0.4 rad/sec, approximately, and must decrease again to values smaller than 

1 at a frequency no higher than 2.5 rad/sec approximately. Its range of possible 

behavior is rather restricted. This knowledge certainly helps to give the predictive 

controller a ‘reasonable’ specification to achieve. We find that improving the 

performance (for e.g. reducing the overshoot or speeding up the response) by adjusting 

the parameters of the predictive controller is not easy in this case. 
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SWIMMING POOL WATER TEMPERATURE 

CONTROL 

 

The water temperature in a heated swimming pool ,θ, is related to the heater input 

power ,q, and the ambient air temperature ,θa, according to the equation  

                             

                           T(dθ/dt) = kq + θa –θ 

 

Where T=1 hour and k=0.2 °C/kW (it is assumed that water is perfectly mixed, so that 

it has uniform temperature).Predictive control is to be applied to keep the water at a 

desired temperature, and a sampling interval Ts=0.25 hour is to be used. The control 

update is to be same as Ts. 

         Suppose the air temperature follows a sinusoidal diurnal variation with 

amplitude 10°C 

                                     

                              θa(t) =15 + 10sin(2πt/24) 

 

(Where t is measured in hours). Verify that in the steady state the mean water 

temperature reaches the set-point exactly, but that θ has a small oscillation of 

amplitude approximately 0.5°C. 

 

MATLAB CODE: 

 

% define parameters 

 

%hour, sampling interval 

Ts=0.25; 

% input constraints, default 

 ulim = [-inf,inf,1e6]; 

 % hour, time constant, default 
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Tplant = 1; 

% degC/kW, heater gain, default 

kplant = 0.2; 

% artificial noise covariance, default 

V =1e-3; 

  % artificial process noise, default 

  W =1; 

  

   

  % Define parameters of internal model: 

 

Tmodel = 1;   % hour, time constant 

kmodel = 0.2; % degC/kW, heater gain 

 

% Weights for MPC cost function: 

Q=1; R=0; 

% Horizons for MPC: 

Hp=10; Hu=3; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Define plant: 

 

aplantc = -1/Tplant;  bplantc = [kplant, 1]/Tplant; % continuous-time 

cplant = 1;           dplant = [0, 0]; 

plantc = ss(aplantc,bplantc,cplant,dplant);  % LTI object 

 

plantd = c2d(plantc,Ts);  % discrete-time equivalent 

[aplantd,bplantd] = ssdata(plantd); % A and B matrices. (C and D stay unchanged) 

 

plantinfo = [Ts,1,1,0,1,1,0]; % information for MOD format 
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                          % (1 state, SISO, 1 unmeasured disturbance) 

plant = ss2mod(aplantd,bplantd,cplant,dplant,plantinfo); % plant in MOD format 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Define controller's internal model: 

 

% Disturbance dynamics (diurnal variation): 

aairc = [0, 1; -(2*pi/24)^2, 0]; % Air temp A matrix, continuous-time 

% Complete continuous-time model, with state vector = 

%   [water temp, air temp, air temp derivative]': 

amodelc = [-1/Tmodel, 1/Tmodel, 0; 

            zeros(2,1),  aairc    ]; 

bmodelc = [kmodel/Tmodel; 0; 0]; 

cmodel = [1, 0, 0]; 

dmodel = 0; 

modelc = ss(amodelc,bmodelc,cmodel,dmodel);  % LTI object 

 

modeld = c2d(modelc,Ts); % discrete-time equivalent 

[amodeld,bmodeld] = ssdata(modeld); % A and B matrices. (C and D stay unchanged) 

 

modinfo = [Ts,3,1,0,0,1,0]; 

model = ss2mod(amodeld,bmodeld,cmodel,dmodel,modinfo); % model in MOD 

format 

% Now compute observer gain: 

 % Kest = smpcest(model,W,V); 

% Kest = smpccon(model,Q,R,Hu,Hp); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Now simulate pool with predictive control: 
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tend = 50; % end time for simulation 

tvector = [0:0.25:tend]';  % time vector for plots etc 

setpoint =  20; % deg C, setpoint for water temperature 

 

airtemp = 15 + 10*sin(2*pi*tvector/24); % sine wave, period 24 hours 

 

[wtemp,power] = scmpc(plant,model,Q,R,Hu,Hp,tend,setpoint,ulim,[],[],... 

                      [],[],airtemp,[]); 

 

 % Display results: 

figure  % New figure 

plotall(wtemp,power,tvector); 

subplot(211), grid 

hold on 

plot(tvector,airtemp,'--') 

xlabel('Time (hours)'), ylabel('Temperature (deg C)') 

title('Water (solid) and Air (broken) Temperatures') 

subplot(212), grid 

xlabel('Time (hours)'), ylabel('Heater power (kW)') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                  
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Fig 6.2   Output after applying MPC to control of water temperature of swimming 

pool 
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Here to investigate the behavior of the predictive system we use Model 

Predictive Control toolbox function scmpc.                                                                                                                                                                                         

SCMPC--  It simulates closed loop problems by designing an MPC-type 

controller for constrained problems 

USAGE: [y,u,ym]=scmpc(pmod,imod,ywt,uwt,M,P,tend, ... 

                  r,ulim,ylim,Kest,z,v,w,wu) 

 

Above program shows that a predictive controller with standard ‘DMC’ 

disturbance model does not compensate perfectly for  a sinusoidal  diurnal variation 

for a sinusoidal variation of the air temperature  if the air temperature is not measured 

With the particular choice of parameters used there and a 10°C amplitude of the air 

temperature ,the water temperature oscillates with an amplitude of about 0.5°C if there 

are no constraints on the heater power. It is seen that if the air temperature is measured 

and used for feed forward control, then air temperature is perfectly 

compensated,providing that model is perfect .if some modeling error then residual 

oscillation remains. But if we want to remove it completely, then we have to model the 

sinusoidal disturbance and designing a suitable observer, even if the air temperature is 

not measured. 
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Conclusions 

MPC technology has progressed steadily in the twenty two years since the first 

IDCOM and DMC applications. Survey data reveal approximately 2200 applications 

to date, with a solid foundation in refining and petrochemicals, and significant 

penetration into a wide range of application areas from chemicals to food processing.  

Current generation MPC technology offers significant new capabilities but the 

controllers still retain, for the most part, an IDCOM-like or a DMC-like personality. 

The SMC-Idcom and HIECON algorithms are IDCOM-like controllers which have 

evolved to use multiple objective functions and ranked constraints. The DMC, 

RMPCT and OPC algorithms are DMC-like controllers that use a single dynamic 

objective function to evaluate control and economic trade-offs using weighting factors. 

The PFC controller inherits some of the IDCOM personality but is significantly 

different in that it can accommodate nonlinear and unstable processes and uses basis 

functions to parameterize the input function.  

An important observation is that industrial MPC controllers almost always use 

empirical dynamic models identified from test data. The impact of identification 

theory on process modeling is perhaps comparable to the impact of optimal control 

theory on model predictive control. It is probably safe to say that MPC practice is one 

of the largest application areas of system identification. The current success of MPC 

technology may be due to carefully designed plant tests.  

Another observation is that process identification and control design are clearly 

separated in current MPC technology. Efforts towards integrating identification and 

control design may bring significant benefits to industrial practice. For example, 

uncertainty estimates from process identification could be used more directly in robust 

control design. Ill-conditioned process structures could be reflected in the identified 

models and also used in control design.  

Choosing an MPC technology for a given application is a complex question involving 

issues not addressed in this paper. It is the opinion of the authors that for most 

applications, a knowledgeable control engineer could probably achieve acceptable 

control performance using any of the packages discussed here, although the time and 
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effort required may differ. If the process is nonlinear or unstable, or needs to track a 

complex set point trajectory with no offset, the PFC algorithm may offer significant 

advantages. If a vendor is to be selected to design and implement the control system, it 

would be wise to weigh heavily their experience with the particular process in 

question.  

Research needs as perceived by industry are mostly control engineering issues, not 

algorithm issues. Industrial practitioners do not perceive closed loop stability, for 

example, to be a serious problem. Their problems are more like: Which variables 

should be used for control? When is a model good enough to stop the identification 

plant test? How do you determine the source of a problem when a controller is 

performing poorly? When can the added expense of an MPC controller be justified? 

How do you design a control system for an entire plant? How do you estimate the 

benefits of a control system? Answering these questions could provide control 

practitioners and theoreticians with plenty of work in the foreseeable future.  

Several technical advances have not yet been incorporated into industrial MPC 

technology. These include using an infinite prediction horizon to guarantee nominal 

closed loop stability, and using linear estimation theory to improve output feedback. In 

addition, robust stability conditions have been developed for a modified QDMC 

algorithm. It would seem that the company which first implements these advances will 

have a significant marketing and technical advantage.  

The future of MPC technology is bright, with all of the vendors surveyed here 

reporting significant applications in progress. Next-generation MPC technology is 

likely to include multiple objective functions, an infinite prediction horizon, nonlinear 

process models, better use of model uncertainty estimates, and better handling of ill-

conditioning. 
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