
 MODEL PREDICTIVE CONTROL

 A THESIS SUBMITTED IN PARTIAL FUFILLMENT
 OF THE REQUIREMENTS FOR THE DEGREE OF

 BACHELOR OF TECHNOLOGY

 IN

 ELECTRONICS AND INSTRUMENTATION ENGINERING

 BY

 DEBADATTA PATRA

 DEBASISH JENA

 SUNIL KUMAR MOHANTY

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 NATIONAL INSTITUTE OF TECHNOLOGY

 ROURKELA

 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53186861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

 MODEL PREDICTIVE CONTROL

 A THESIS SUBMITTED IN PARTIAL FUFILLMENT
 OF THE REQUIREMENTS FOR THE DEGREE OF

 BACHELOR OF TECHNOLOGY

 IN

 ELECTRONICS AND INSTRUMENTATION ENGINERING

 BY

 DEBADATTA PATRA

 DEBASISH JENA

 SUNIL KUMAR MOHANTY

 Under the Guidance of

 Prof. TARUN KUMAR DAN

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 NATIONAL INSTITUTE OF TECHNOLOGY

 ROURKELA

 2007

 3

 National Institute of technology

 ROURKELA

 CERTIFICATE

This is to certify that the thesis entitled , “ MODEL PREDICTIVE CONTROL” ,

submitted by Mr. DEBADATTA PATRA in partial fulfillment of the requirements for

the award of Bachelor of Technology Degree in ‘ ELECTRONICS AND

INSTRUMENTATION ‘ Engineering at the national institute of Technology ,

Rourkela (Deemed University) is an authentic work carried out by him under my

supervision.

 To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other university / institute for the award of any Degree or Diploma

Date Prof. Tarun Kumar Dan

 Dept. of electronics and communication Engg.

 National Institute of Technology

 Rourkela-769008

 4

 ACKNOWLEDGEMENT

Under the esteem guidance of our project guide professor TARUN KUMAR DAN a

detail study of MODEL PREDICTIVE CONTROL and its applications to various

models has been studied as well as simulation has been done. We are very thankful for

his whole-hearted co-operation without which this project could not have been

completed.

 5

 ABSTRACT

 This project thesis provides a brief overview of Model Predictive Control

(MPC).A brief history of industrial model predictive control technology has been

presented first followed by a some concepts like the receding horizon, moves etc.

which form the basis of the MPC. It follows the Optimization problem which

ultimately leads to the description of the Dynamic Matrix Control (DMC).The MPC

presented in this report is based on DMC. After this the application summary and the

limitations of the existing technology has been discussed and the next generation

MPC, with an emphasis on potential business and research opportunities has been

reviewed. Finally in the last part we generate Matlab code to implement basic model

predictive controller and introduce noise into the model. We have also taken up some

case studies like Swimming pool water temperature control and helicopter flight

control etc. by applying the MPC controller on these models.

 Originally developed to meet the specialized control needs of power plants and

petroleum refineries, MPC technology can now be found in a wide variety of

application areas including chemicals, food processing, automotive, and aerospace

applications Its reason for success is many, like it handles multivariable control

problems naturally. But the most important reason for its success is its ability to

handle constraints. Model predictive control (MPC) refers to a class of computer

control algorithms that utilize an explicit process model to predict the future response

of a plant. At each control interval an MPC algorithm attempts to optimize future plant

behavior by computing a sequence of future manipulated variable adjustments. The

first input in the optimal sequence is then sent into the plant, and the entire calculation

is repeated at subsequent control intervals. The basic MPC controller can be designed

with proper restrictions on the prediction horizon and model length. The prediction

horizon has to be kept sufficiently larger than control horizon. But after applying to

many other applications we find as the complexity increases then we need techniques

other than DMC like generalized predictive control (GPC) which are better.

 6

 List of FIGURES

1. Fig 1.1 The receding horizon concept showing Optimization Problem (page 7).

2. Fig 5.1 Output after applying MPC to the Van De Vusse Reactor (page 27).

3. Fig 5.2 Output after applying MPC to the Van De Vusse Reactor with P=15

(Page 28)

4. Fig 5.3 Output after applying MPC to the Van De Vusse Reactor with N=70

(Page 29)

5. Fig 5.4 Input and output disturbances with measurement Noise (page 30).

6. Fig 5.5 Output after adding Input and output disturbances with measurement Noise

(page 38).

7. Fig 6.1 Output after applying MPC to control of unstable helicopter. (Page 48)

8. Fig 6.2 Output after applying MPC to control of water temperature of swimming

pool (page 54)

 7

 CONTENTS

 Pages

Chapter 1: A Brief history of MODEL PREDICTIVE CONTROL 1

Chapter 2: The Receding horizon 6

Chapter 3: Optimization Problem 10

 Objective functions 11

 Models 13

 Finite step response 13

 Finite impulse response 13

Chapter 4: Dynamic Matrix Control 15

Chapter 5: Implementation of MPC in Matlab 20

 Van DE Vusse reactor 21

 Introduction of noise to MPC 30

Chapter 6: Case studies 39

 Control of unstable helicopter 40

 Swimming pool water temperature control 50

Chapter 7: conclusion 56

Chapter 8: References 59

 8

 CHAPTER 1

 A BRIEF HISTORY OF INDUSTRIAL

 MODEL PREDICTIVE CONTROL

 9

A Brief History of Industrial MPC

This section presents an abbreviated history of industrial MPC technology. Control

algorithms are emphasized here because relatively little published information is

available on the identification technology.

The development of modern control concepts can be traced to the work of Kalman in

the early 1960's, who sought to determine when a linear control system can be said to

be optimal [,]. Kalman studied a Linear Quadratic Regulator (LQR) designed to

minimize an quadratic objective function. The process to be controlled can be

described by a discrete-time, deterministic linear state-space model:

The vector represents process inputs, or manipulated variables; vector

describes process output measurements. The vector represents process states.

Figure 1 provides a schematic representation of a state space model. The state vector is

defined such that knowing its value at time k and future inputs allows one to predict

how the plant will evolve for all future time. Much of the power of Kalman's work

relies on the fact that this general process model was used.

The objective function to be minimized penalizes squared input and state deviations

from the origin and includes separate state and input weight matrices and to allow

for tuning trade-offs:

where the norm terms in the objective function are defined as follows:

 10

Implicit in the representation is the assumption that all variables are written in terms of

deviations from a desired steady-state. The solution to the LQR problem was shown to

be a proportional controller, with a gain matrix computed from the solution of a

matrix Ricatti equation:

The infinite prediction horizon of the LQR algorithm endowed the algorithm with

powerful stabilizing properties; it was shown to be stabilizing for any reasonable

linear plant (stablizable and detectable) as long as the objective function weight

matrices Q and R are positive definite. A dual theory was developed to estimate plant

states from noisy input and output measurements, using what is now known as a

Kalman Filter. The combined LQR controller and Kalman filter is called a Linear

Quadratic Gaussian (LQG) controller. Constraints on the process inputs, states and

outputs were not considered in the development of LQG theory.

Although LQG theory provides an elegant and powerful solution to the problem of

controlling an unconstrained linear plant, it had little impact on control technology

development in the process industries. The most significant of the reasons cited for

this failure include [,] :

• constraints

• process nonlinearities

• model uncertainty (robustness)

• unique performance criteria

• Cultural reasons (people, education, etc.)

It is well known that the economic operating point of a typical process unit often lies

at the intersection of constraints []. A successful industrial controller must therefore

maintain the system as close as possible to constraints without violating them. In

addition, process units are typically complex, nonlinear, constrained multivariable

systems whose dynamic behavior changes with time due to such effects as changes in

operating conditions and catalyst aging. Process units are also quite individual so that

development of process models from fundamental physics and chemistry is difficult to

 11

justify economically. Indeed the application areas where LQG theory had a more

immediate impact, such as the aerospace industry, are characterized by physical

systems for which it is technically and economically feasible to develop accurate

fundamental models. Process units may also have unique performance criteria that are

difficult to express in the LQG framework, requiring time dependent output weights or

additional logic to delineate different operating modes. However the most significant

reasons that LQG theory failed to have a strong impact may have been related to the

culture of the industrial process control community at the time, in which instrument

technicians and control engineers either had no exposure to LQG concepts or regarded

them as impractical.

This environment led to the development, in industry, of a more general model based

control methodology in which the dynamic optimization problem is solved on-line at

each control execution. Process inputs are computed so as to optimize future plant

behavior over a time interval known as the prediction horizon. In the general case any

desired objective function can be used. Plant dynamics are described by an explicit

process model which can take, in principle, any required mathematical form. Process

input and output constraints are included directly in the problem formulation so that

future constraint violations are anticipated and prevented. The first input of the

optimal input sequence is injected into the plant and the problem is solved again at the

next time interval using updated process measurements. In addition to developing

more flexible control technology, new process identification technology was

developed to allow quick estimation of empirical dynamic models from test data,

substantially reducing the cost of model development. This new methodology for

industrial process modeling and control is what we now refer to as Model Predictive

Control (MPC) technology.

In modern processing plants the MPC controller is part of a multi-level hierarchy of

control functions. It is often difficult to translate the control requirements at this level

into an appropriate conventional control structure. In the MPC methodology this

combination of blocks is replaced by a single MPC controller.

 12

Although the development and application of MPC technology was driven by

industry, it should be noted that the idea of controlling a system by solving a sequence

of open-loop dynamic optimization problems was not new. Propoi, for example,

described a moving horizon controller in 1963 []. Lee and Markus [] anticipated

current MPC practice in their 1967 optimal control text:

One technique for obtaining a feedback controller synthesis from knowledge of open-

loop controllers is to measure the current control process state and then compute very

rapidly for the open-loop control function. The first portion of this function is then

used during a short time interval, after which a new measurement of the function is

computed for this new measurement. The procedure is then repeated.

There is, however, a wide gap between theory and practice. The essential contribution

of industry was to put these ideas into practice on operating units. Out of this

experience came a fresh set of problems that has kept theoreticians busy ever since.

 13

 CHAPTER 2

 THE RECEDING HORIZON

 14

The ‘receding horizon’ idea

 Fig2.1 The receding horizon concept showing Optimization Problem

 The figure shows the basic idea of predictive control. In this presentation of the

basics, we confine ourselves to discussing the control of a single-input, single-output

(SISO) plant. We assume a discrete-time setting, and that the current time is labeled as

time step k.at the current time the plant output is y(k), and that the figure shows the

previous history of the output trajectory. Also shown is a set point trajectory, which is

the trajectory that the output should follow, ideally. The value of the set-point

trajectory at any time t is denoted by s(t).

 Distinct from the set-point trajectory is the reference trajectory .This starts at

the current output y(k), and defines an ideal trajectory along which the plant should

return to the set-point trajectory, for instance after a disturbance occurs. The reference

trajectory therefore defines an important aspect of the closed-loop behavior of the

controlled plant. It is not necessary to insist that the plant should be driven back to the

set-point trajectory as fast as possible, although that choice remains open. It is

frequently assumed that the reference trajectory as fast as possible, although that

choice remains open. It is frequently assumed that the reference trajectory approaches

the set point exponentially, which we shall denote Tref , defining the speed of

response. That is the current error is

 15

 Є (k) =s (k)-y(k)

Then the reference trajectory is chosen such that the error i steps later , if the output

followed it exactly, would be

 Є(k+i)=exp(-iTs/Tref) *Є(k)

 = λi *Є(k)

where Ts is the sampling interval and λ =exp(-Ts/Tref).(note that 0<λ<1). That is , the

reference trajectory is defined to be

 r(k+i|k)=s(k+i)-Є(k+i)

 =s(k+i)- exp(-Ti/Ts) * Є(k)

The notation r(k+i|k) indicates that the reference trajectory depends on the conditions

at time k,in general. Alternative definitions of the reference trajectory are possible—

For e.g. , a straight line from the current output which meets the set point trajectory

after a specified time .

 A predictive controller has an internal model which is used to predict the

behaviour depends on the assumed input trajectory ŭ(k+i|k) (i=0,1,…,Hp-1) that is to

applied over the prediction horizon, and the idea is to select that input which promises

best predicted behaviour.We shall assume that internal model is linear ; this makes the

calculation of the best input relatively straightforward. The notation ŭ rather than u

here indicates that at time step k we only have a prediction of what the input at time

k+i may be; the actual input at that time,u(k+i),will probably be different from

ŭ(k+i|k).Note that we assume that we have the output measurement y(k) available

when deciding, the value of the input u(k).This implies that our internal model must be

strictly proper , namely that according to the model y(k) depends on the past inputs

u(k-1),u(k-2), …, but not on the input u(k).

In the simplest case we can try to choose the input trajectory such as to bring output at

the end of the prediction horizon, namely at time k_Hp , to the required value r(k +

Hp). In this case we say, using the terminology of richalet,that we have a single

coincidence point at time k+Hp. There are several input trajectories

{ŭ(k|k),ŭ(k+1|k),…,ŭ(k+Hp-1|k)} which achieve this , and we could choose one of

 16

them , for example the one which requires smallest input energy. But is usually

adequate , and in a fact preferable, to impose some simple structure o the input

trajectory, parameterized by a smaller number of variables. The figure shows the input

assumed to vary over the first three steps of the prediction horizon, but to remain

constant thereafter: ŭ(k|k)=ŭ(k+1|k)=…=ŭ(k+Hp-1|k).In this case there is only one

equation to be satisfied ---ŷ (k+Hp|k)=r(k+Hp|k)--- there is a unique solution .

 Once a future input trajectory has been chosen , only the first element of that

trajectory is applied as the input signal to the plant . That is , we set u(k)=ǔ(k|k), where

u(k) denotes the actual input signal applied. Then the whole cycle of output

measurement is repeated, prediction, and input trajectory determination is repeated.,

one sampling interval later: a new output measurement y(k+1) is obtained ;a new

reference trajectoryr(k+i|k+1)(i=2,3,…,) is defined ; predictions are made over the

horizon k+1+I,with i=1,2,…Hp; a new trajectory ǔ(k+1+i|k+1),with i=0,1,…,Hp-1) is

chosen; and finally the next input is applied to the plant : u(k+1)=ǔ(k+1|k+1).Since the

horizon prediction remains of the same length as before, but slides along by one

sampling interval at each step this way of controlling a plant is often called a receding

horizon strategy

 17

 CHAPTER 3

 OPTIMIZATION PROBLEM

 OBJECTIVE FUNCTIONS

 MOEDELS

 FINITE STEP RESPONSE

 FINITE IMPULSE RESPONSE

 18

OPTIMIZATION PROBLEM

The term optimization implies a best value for some type of performance criterion.

This performance criterion is Known as an objective function. Here, we first discuss

possible objective functions, then possible process models that can be used for MPC.

OBJECTIVE FUNCTIONS

Here, there are several different choices for objectives functions. The first one that

comes to mind is a standard least-squares or “quadratic “objective function. The

objective function is a “sum of squares “ of the predicted errors (differences between

the set points and model-predicted outputs) and the control moves (changes in control

action from step to step)

 A quadratic objective function for a prediction horizon of 3 and a control

horizon of 2 can be written

Ф = (Rk+1 – ŷk+1)^2 + ((Rk+2 – ŷk+2)^2 + (Rk+3 – ŷk+3)^2 + w∆Uk^2

+ w∆Uk+1^2

Where ŷ represents the model predicted output ,r is the set point, ∆U is the change in

manipulated input from one sample to the next ,w is a weight for the changes in the

manipulated input, and the subscripts indicate the sample time (k is the current sample

time). For a prediction horizon of P and a control horizon of M,the least Squares

objective function is written

 Ф = ∑ (Rk+1 – ŷk+1)^2 + w∑ ∆Uk+1^2

Another possible objective function is to simply take a sum of the absolute values of

the predicted errors and control moves.

 For a prediction horizon of 3 and a control horizon of 2, the absolute value

objective function is

 Ф = | (Rk+1 – ŷk+1) | + | (Rk+2– ŷk+2) | + | (Rk+3 – ŷk+3) | + w| ∆Uk| +

w| ∆Uk+1|

 19

Which has the following general form for a prediction horizon of P and a control

horizon of M:

 Ф = ∑ | (Rk+1 – ŷk+1)| + w∑ |∆Uk+1|

 The optimization problem solved stated as a minimization of the objective

function, obtained by adjusting the M control moves, subject to modeling equations

(equality constraints), and constraints on the inputs and outputs.

 Min Ф

 Least-squares formulations are by far the most common objective functions in

MPC.Least squares yields analytical solutions for unconstrained problems and

penalizes larger errors(relatively) more then smaller errors. The absolute value

objective function has been used in a few algorithms because linear programming (LP)

problem results.LPs are routinely solved in large-scale scheduling and allocation

problems. For example, an oil company often uses an LP to decide how to distribute

oil to various refineries and to decide how much and what product to produce at each

plant .The LP approach is not useful for model predictive control, because the

manipulated variable moves often “ hop” from one extreme constraint to another.

MODELS

 Many different types of models are possible for calculating the predicted values of the

process outputs, which are used in evaluating at discrete steps , it makes sense to use

discrete models for the output prediction . Here , we review step and impulse response

models both of which are used in common MPC algorithms.

 FINITE STEP RESPONSE

FSR models are obtained by making a unit step input change to a process operating at

steady state. The model coefficients are simply the output values at each time step.

 20

Here , si represents the step response coefficients for the ith sample time after the unit

step input change. If a non-unit step change is made, the output is scaled accordingly.

 The step response model is the vector of step response coefficients,

 S=[s1 s2 s3 s4 s5 . . . sN]’

Where the model length N is long enough so that the coefficients values are relatively

constant (i.e. the process is close to a new steady state).

FINITE IMPULSE RESPONSE

Another common form of model is a finite impulse (FIR). Here , a unit pulse is

applied to the manipulated input, and the model coefficients are simply the values of

the outputs the ith impulse response coefficients.

 There is a direct relationship between step and impulse response models:

 Hi=Si-Si-1

 Si=∑hj

The impulse response coefficients are simply the changes in the step response

coefficient at each time step. Similarly , step response coefficient is the sum of the

impulse response coefficients to that point. It should be noted that there are two major

limitations to step and impulse response models. They can only be used to represent

open-loop stable processes, and they require a large number of parameters (model

coefficients) compared to state space and transfer function models.

 21

 CHAPTER 4

 DYNAMIC MATRIX CONTROL

 22

DMC

 Engineers at Shell Oil developed their own independent MPC technology in the

early 1970's, with an initial application in 1973. Cutler and Ramaker presented details

of an unconstrained multivariable control algorithm which they named Dynamic

Matrix Control (DMC) at the 1979 National AIChE meeting [] and at the 1980 Joint

Automatic Control Conference []. In a companion paper at the 1980 meeting Prett and

Gillette [] described an application of DMC technology to an FCCU

reactor/regenerator in which the algorithm was modified to handle nonlinearities and

constraints. Neither paper discussed their process identification technology. Key

features of the DMC control algorithm include:

• linear step response model for the plant

• quadratic performance objective over a finite prediction horizon

• future plant output behavior specified by trying to follow the set point as closely

as possible

• optimal inputs computed as the solution to a least-squares problem

The linear step response model used by the DMC algorithm relates changes in a

process output to a weighted sum of past input changes, referred to as input moves.

For the SISO case the step response model looks like:

The move weights are the step response coefficients. Mathematically the step

response can be defined as the integral of the impulse response; given one model form

the other can be easily obtained. Multiple outputs were handled by superposition. By

using the step response model one can write predicted future output changes as a

linear combination of future input moves. The matrix that ties the two together is the

so-called Dynamic Matrix. Using this representation allows the optimal move vector

to be computed analytically as the solution to a least-squares problem. Feed forward

control is readily included in this formulation by modifying the predicted future

 23

outputs. In practice the required matrix inverse can be computed off-line to save

computation. Only the first row of the final controller gain matrix needs to be stored

because only the first move needs to be computed.

The objective of a DMC controller is to drive the output as close to the set point as

possible in a least-squares sense with a penalty term on the MV moves. This is

equivalent to increasing the size of the diagonal terms in the square solution matrix

prior to inversion. This results in smaller computed input moves and a less aggressive

output response. As with the IDCOM reference trajectory, this technique provides a

degree of robustness to model error. Prett and Gillette formalized this concept

mathematically by defining move suppression factors designed to penalize excessive

input movement. Move suppression factors also provide an important numerical

benefit in that they can be used to directly improve the conditioning of the numerical

solution.

Cutler and Ramaker showed results from a furnace temperature control application to

demonstrate improved control quality using the DMC algorithm. Feedforward

response of the DMC algorithm to inlet temperature changes was superior to that of a

conventional PID lead/lag compensator.

In their paper Prett and Gillette [] described an application of DMC technology to

FCCU reactor/regenerator control. Four such applications were already completed and

two additional applications were underway at the time the paper was written. The

overall FCCU control system was implemented in a multi-level hierarchy, with a

nonlinear steady-state FCCU model at the top. At the start of each optimization cycle,

parameters in the nonlinear model were estimated so as to match model predictions

with measured steady-state operating data. The calibrated nonlinear model was then

perturbed numerically to generate partial derivatives of each process output with

respect to each process input (the matrix of partial derivatives is known as the

Jacobian matrix in numerical analysis). The partial derivatives were then used in a

Linear Program (LP) to compute a new economic optimal operating point for the

FCCU, subject to steady-state process constraints. The optimal process input and

output targets were then passed to a DMC algorithm for implementation. As soon as

 24

the DMC controller moved the unit to the new steady state the optimization cycle was

repeated. This separation of the control system into constrained steady-state

optimization and dynamic control is quite similar to the structure described by

Richalet et al. and has since become standard in industrial control system design.

The DMC algorithm had the job of moving from the system from one optimal steady-

state to another. Although the LP solution provided optimal targets for process inputs

and outputs, dynamic disturbances could potentially cause the DMC algorithm to

move inputs away from their optimal steady-state targets in order to keep outputs at

their steady-state targets. Since moving one input away from its optimal target may be

much more expensive than moving another, the control system should determine this

trade-off in a rational way. The DMC algorithm was modified to account for such

trade-offs by including an additional equation for each input in the process model. The

new equation required that the sum of all moves for a particular input should equal the

total adjustment required to bring that input to its optimal steady-state target. This

allowed the inputs some freedom to move dynamically but required that the steady-

state input solution be satisfied in a least-squares sense, with trade-offs determined by

the appropriate objective function weights.

Prett and Gillette described additional modifications to the DMC algorithm to prevent

violation of absolute input constraints. When a predicted future input came sufficiently

close to an absolute constraint, an extra equation was added to the process model that

would drive the input back into the feasible region. These were referred to as time

variant constraints. Because the decision to add the equation had to be made on-line,

the matrix inverse solution had to be recomputed at each control execution. Prett and

Gillette developed a matrix tearing solution in which the original matrix inverse could

be computed off-line, requiring only the matrix inverse corresponding to active time

variant constraints to be computed on-line.

The initial IDCOM and DMC algorithms represent the first generation of MPC

technology; they had an enormous impact on industrial process control and served to

define the industrial MPC paradigm.

 25

Summarizing the main steps involved in implementing DMC on a process are as

follows:

1. Develop a discrete step response model with length N based on sample time ∆t.

2. Specify the prediction(P) and control (M) horizons.N≥P≥M

3. Specify the weighting on the control action(w=0 if no weighting on the control

action(w=0 if no weighting).

4. All calculations assume deviation variable form, so remember to convert to/from

physical units.

The effect of all these tuning parameters is now discussed for SISO systems.

 Model-length and sample-time selection are independent. The model length should be

approximately the ‘settling time’ of the process, that is, the time required to reach a

new steady state after a step input change. For most systems, the model length is

roughly 50 coefficients. The sample time is usually on the order of one tenth the

dominant time constant, so the model length is roughly the settling time of the process.

 Prediction and control horizons differ in length. Usually, the prediction

horizon is selected to be much longer than the control horizon. This is particularly true

if the control weighting factor is selected to be zero. Usually, if the prediction horizon

is much longer than the control horizon, the control system is less sensitive to model

error. Often P=20 or so , while M=1-3.

 Control weighting is often step to zero if the prediction horizon is much longer the

control horizon. As the control horizon is increased, the control moves tend to become

more aggressive so larger weight is needed to penalize the control moves.

 26

 CHAPTER5

 IMPLEMENTATION OF MPC IN MATLAB

 VAN DE VUSSE REACTOR

 INTRODUCTION OF NOISE TO MPC

 27

 VAN DE VUSSE REACTOR

Consider the Van de Vusse reactor problem. The continuous state space model is

given by

 A= [-2..4048 0; 0.8333 -2.2381];

 B= [7;-1.117]

 C= [0 1]

 D= [0]

Where the measured state (output) is the concentration of the second component and

the manipulated input is the dilution rate.

MATLAB code

%initialization of parameters

P=10;%prediction horizon

M=1;%control horizon

N=50;%model length

w=0.0;%weight

ysp=1;%output set point from 0

timesp=1;%time of set point change

delt=0.1;%sampling time interval

tfinal=6;%final simulation time

noise=0;

%define time

tvec=0:delt:tfinal;

ksp=fix(timesp/delt);

kfinal=length(tvec);

 28

%define set point vector

r=[zeros(1,ksp),ones(1,(kfinal-ksp))*ysp];

%////////////////define plant as 'SISO' LTI object////////////////////////

c=input('enter plant in 1.statespace 2.transferfunction 3.polezero

4.frquencyresponse');

if c==1 a=input('enter A matrix');b=input('enter B matrix');

c=input('enter C matrix');d=input('enter D matrix');plant=ss(a,b,c,d);

elseif c==2 nump=input('enter numerator coefficients');denp=input('enter

denomenator coefficients');plant=tf(nump,denp);

elseif c==3 zero=input('enter zeroes');pole=input('enter poles');K=input('enter gain');

plant=zpk(zero,pole,K);

elseif c==4 resp=input('enter response');freq=input('enter

frequencies');plant=frd(resp,freq,'Units','Hz');

end

plant=tf(plant);

%plant=s/(s*s - 1.4*s +0.45),it is continous

%define plant parameters here

% nump=[1];

% denp=[1,-1.4,0.45];

% plant=tf(nump,denp);

%discretize the plant

plant=c2d(plant,delt);

%//////////////////define model here////////////////////////////////////

%assumption plant = model

model=plant;

% [numm,denm,tm]=tfdata(plant);

numm = get(model,'num'); numm = numm{:}; % Get numerator polynomial

denm = get(model,'den'); denm = denm{:}; % Get denominator polynomial

numm

 29

%define step response coefficient matrix

s=step(model,0:delt:N*delt);

%define free response i.e. Sp matrix for past control moves

for i=1:P

 for j=1:N-2

 if(i+j<=N-1)

 Sp(i,j)=s(i+j);

 else

 Sp(1,j)=0;

 end

 end

end

 %define forced response i.e. Sf matrix for future and control moves

 for i=1:P

 for j=1:M

 if i+1-j>0

 Sf(i,j)=s(i+1-j);

 else

 Sf(i,j)=0;

 end

 end

 end

Sf

 % obtain W matrix

 W=w*eye(M,M);

 %obtain Kmat where Kmat=(Sf'*Sf + W)^-1*Sf'

Kmat=inv(Sf'*Sf + W)*Sf';

%piant initial conditions

ndenm=length(denm)-1;

nnumm=length(numm)-1;

umpast=zeros(1,nnumm);

 30

ympast=zeros(1,ndenm);

% uu=zeros(1,kfinal);

% yy=zeros(1,kfinal);

% xinit=zeros(1,size(

% nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros

% numm=[zeros(1,ndenm-nnumm-1),numm];

uinit=0;

yinit=0;

%initialize input vector

u=ones(1,min(P,kfinal))*uinit;

u

dist(1)=0;

y(1)=yinit;

% x(:,1)=xinit;

dup=zeros(1,N-2);

for k=1:kfinal

 [m,p]=size(Kmat);

 for i=1:p

 if k-N+i>0

 uold(i)=u(k-N+i);

 else

 uold(i)=0;

 end

 end

 dvec=dist(k)*ones(1,p);

 rvec=r(k)*ones(p,1);

 y_free=Sp*dup' + s(N)*uold'+dvec';

 E=rvec-y_free;

 delup(k)=Kmat(1,:)*E;

 if k>1

 31

 u(k)=u(k-1)+delup(k);

 else

 u(k)=delup(k)+uinit;

 end

 %plant equations

 umpast=[u(k),umpast(1,1:length(umpast)-1)];

 y(k+1)=-denm(2:ndenm+1)*ympast'+numm(2:nnumm+1)*umpast';

 ympast=[y(k+1),ympast(1:length(ympast)-1)];

 %model prediction

 if k-N+1>0

 ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'+s(N)*u(k-N+1);

 else

 ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup';

 end

 %disturbance compensation

 dist(k+1)=y(k+1)-ymod(k+1);

 %additive disturbance compensation

 %put input change into vector of past control moves

 dup=[delup(k),dup(1,1:N-3)];

end

%stairs plotting for input(zero order hold) and setpoint

[tt,uu]=stairs(tvec,u);

[ttr,rr]=stairs(tvec,r);

figure(1)

subplot(2,1,1)

plot(ttr,rr,'--',tvec,y(1:length(tvec)))

ylabel('y');

xlabel('time');

title('plant output');

subplot(2,1,2)

plot(tt,uu)

 32

ylabel('u');

xlabel('time');

 OUTPUT IN MATLAB WINDOW

enter plant in 1.statespace 2.transferfunction 3.polezero 4.frquencyresponse1

enter A matrix[-2.4048 0;0.8333 -2.2381]

enter B matrix[7;-1.117]

enter C matrix[0 1]

enter D matrix[0]

numm =

 0 -0.0751 0.1001

Sf =

 0

 -0.0751

 -0.0940

 -0.0768

 -0.0376

 0.0137

 0.0704

 0.1281

 0.1840

 0.2362

 33

u = 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

y

time

plant output

0 1 2 3 4 5 6
-4

-2

0

2

4

6

u

time

 Fig 5.1 Output after applying MPC to the Van De Vusse Reactor

 34

INFERENCE:

Effect of prediction horizon: If we have a fixed control horizon, then it is seen

that choosing a smaller prediction horizon results set point being achieved in smaller

time .However the shorter prediction horizon is more sensitive to model uncertainty.

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

y

time

plant output

0 1 2 3 4 5 6
-4

-2

0

2

4

u

time

 Fig 5.2 Output after applying MPC to the Van De Vusse Reactor with P=15

As seen in figure when P=15 requires much more control action compared to P=10.

But still we find that prediction horizon does not have appreciable effect for this case

.The performance for this case is roughly the same for P=10 and P=15.However there

is a lower limit to the length of the prediction horizon below which it results in an

unstable system. Here it is P=3. This is not due to any model error, since we have

assumed a perfect model in these simulations. If the prediction horizon is too short, the

initial step response coefficients dominate. Since these are negative while the later

coefficients are positive (corresponding to a positive process gain), the predictive is

 35

really in error. The effect is the same as using a PID controller with a controller gain

that is the wrong sign.

Effect of model length: Choosing a smaller model length does not capture the

complete dynamics of the process. This results in a model error and poor performance.

0 1 2 3 4 5 6
-1

0

1

2

y

time

plant output

0 1 2 3 4 5 6
0

1

2

3

4

u

time

 Fig 5.3 Output after applying MPC to the Van De Vusse Reactor with N=70

we find that N=50 gives better results than N=70.the performance degrades sharply as

N increases.

 36

INTRODUCTION OF NOISE IN MODEL PREDICTIVE

CONTROL

This program provides offset tracking, but in addition simulates the effects of

measurement noise, and of input and output disturbances as shown in figure

 Fig 5.4 Input and output disturbances with measurement Noise

 PLANT

Input disturbance

Controller

output

Output disturbance

noise

Measured output

Plant

output

 37

MATLAB code

%initialization of parameters

P=10;%prediction horizon

M=1;%control horizon

N=50;%model length

w=0.0;%weight

ysp=1;%output set point from 0

timesp=1;%time of set point change

delt=0.1;%sampling time interval

tfinal=4;%final simulation time

noise=0;

%define time

tvec=0:delt:tfinal;

ksp=fix(timesp/delt);

kfinal=length(tvec);

%define set point vector

r=[zeros(1,ksp),ones(1,(kfinal-ksp))*ysp];

%////////////////define plant as 'SISO' LTI object////////////////////////

c=input('enter plant in 1.statespace 2.transferfunction 3.polezero

4.frquencyresponse');

if c==1 a=input('enter A matrix');b=input('enter B matrix');

c=input('enter C matrix');d=input('enter D matrix');plant=ss(a,b,c,d);

elseif c==2 nump=input('enter numerator coefficients');denp=input('enter

denomenator coefficients');plant=tf(nump,denp);

elseif c==3 zero=input('enter zeroes');pole=input('enter poles');K=input('enter gain');

plant=zpk(zero,pole,K);

elseif c==4 resp=input('enter response');freq=input('enter

frequencies');plant=frd(resp,freq,'Units','Hz');

end

 38

plant=tf(plant);

%plant=s/(s*s - 1.4*s +0.45),it is continous

%define plant parameters here

% nump=[1];

% denp=[1,-1.4,0.45];

% plant=tf(nump,denp);

%discritize the plant

plant=c2d(plant,delt);

%//////////////////define model here////////////////////////////////////

%assumption plant = model

model=plant;

% [numm,denm,tm]=tfdata(plant);

numm = get(model,'num'); numm = numm{:}; % Get numerator polynomial

denm = get(model,'den'); denm = denm{:}; % Get denominator polynomial

numm

%define step response coefficient matrix

s=step(model,0:delt:N*delt);

%define free response i.e. Sp matrix for past control moves

for i=1:P

 for j=1:N-2

 if(i+j<=N-1)

 Sp(i,j)=s(i+j);

 else

 Sp(1,j)=0;

 end

 end

end

 %define forced response i.e. Sf matrix for future and control moves

 for i=1:P

 39

 for j=1:M

 if i+1-j>0

 Sf(i,j)=s(i+1-j);

 else

 Sf(i,j)=0;

 end

 end

 end

Sf

 % obtain W matrix

 W=w*eye(M,M);

 %obtain Kmat where Kmat=(Sf'*Sf + W)^-1*Sf'

Kmat=inv(Sf'*Sf + W)*Sf';

% Noise and disturbances:

sd = 0.1; % Standard deviation of measurement noise

randn('state',0); % Resets state of random number generator. Change to

 % get different random sequences generated.

noise = sd*randn(kfinal,1); % Measurement noise, normal distribution,

 % mean=0, standard deviation = sd.

udist = 0.1*ones(kfinal,1); % Input disturbance (default constant 0.1)

ydist = 0.1*[ones(floor(kfinal/2),1);-ones(ceil(kfinal/2),1)];

 % Output disturbance (default constant +/-0.1, changing sign halfway)

%piant initial conditions

ndenm=length(denm)-1;

nnumm=length(numm)-1;

umpast=zeros(1,nnumm);

ympast=zeros(1,ndenm);

 40

% uu=zeros(1,kfinal);

% yy=zeros(1,kfinal);

% xinit=zeros(1,size(

% nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros

% numm=[zeros(1,ndenm-nnumm-1),numm];

uinit=0;

yinit=0;

%initialize input vector

u=ones(1,min(P,kfinal))*uinit;

u

dist(1)=0;

y(1)=yinit;

% x(:,1)=xinit;

dup=zeros(1,N-2);

 for k=1:kfinal

 [m,p]=size(Kmat);

 for i=1:p

 if k-N+i>0

 uold(i)=u(k-N+i)+udist(k);

 else

 uold(i)=0+udist(k);

 end

 end

 dvec=ydist(k)*ones(1,p);

 rvec=r(k)*ones(p,1);

 dnoise=noise(k)*ones(1,p);

 y_freed=Sp*dup' + s(N)*uold'+dvec';

 y_free=y_freed+dnoise';

 41

 E=rvec-y_free;

 delup(k)=Kmat(1,:)*E;

 if k>1

 u(k)=u(k-1)+delup(k);

 else

 u(k)=delup(k)+uinit;

 end

 %plant equations

 umpast=[u(k)+udist(k),umpast(1,1:length(umpast)-1)];

 y(k+1)=-denm(2:ndenm+1)*ympast'+numm(2:nnumm+1)*umpast';

 ympast=[y(k+1),ympast(1:length(ympast)-1)];

 %model prediction

 if k-N+1>0

 ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'+s(N)*u(k-N+1);

 else

 ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup';

 end

 %disturbance compensation

 dist(k+1)=y(k+1)-ymod(k+1);

 %additive disturbance compensation

 %put input change into vector of past control moves

 dup=[delup(k),dup(1,1:N-3)];

end

%stairs plotting for input(zero order hold) and setpoint

[tt,uu]=stairs(tvec,u);

[ttr,rr]=stairs(tvec,r);

figure(1)

subplot(2,1,1)

% Plot output, solid line and set-point, dottedd line:

plot(tvec,y(1:length(tvec)),'-',tvec,y(1:length(tvec))+noise',':',...

 42

 ttr,rr,'--');

grid;

title(...

'Plant output (solid), Measured output (dotted) and set-point (dashed)')

xlabel('Time')

subplot(212)

% plot input signal as staircase graph:

plot(tt,uu,'-');

hold on;

plot(tvec,u+udist',':')

grid;

title('Controller output (solid), Plant input (dotted)')

xlabel('Time')

output in Matlab window

enter plant in 1.statespace 2.transferfunction 3.polezero 4.frquencyresponse1

enter A matrix[-2.4048 0;0.8333 -2.2381]

enter B matrix[7;-1.117]

enter C matrix[0 1]

enter D matrix[0]

numm =

 0 -0.0751 0.1001

 43

Sf =

 0

 -0.0751

 -0.0940

 -0.0768

 -0.0376

 0.0137

 0.0704

 0.1281

 0.1840

 0.2362

u =

 0 0 0 0 0 0 0 0 0 0

 44

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5
Plant output (solid), Measured output (dotted) and set-point (dashed)

Time

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3
Controller output (solid), Plant input (dotted)

Time

 Fig 5.5 Output after adding Input and output disturbances with measurement Noise

 45

 CHAPTER 6

 CASE STUDIES

 CONTROL OF UNSTABLE HELICOPTER

 SWIMMING POOL WATER TEMPERATURE CONTROL

 CESSNA CITATION 500 AIRCRAFT CONTROL

 46

 CONTROL OF UNSTABLE HELICOPTER

The transfer function from the rotor angle to the forward speed of a helicopter in a

particular flight condition is given by

 9.8(S^2 - 0.5 + 6.3) / ((S + 0.6565)(S^2 - 0.2366S +0.1493))

 This has zeros at +0.25 + 2.5j ,+0.25 – 2.5j and poles at +0.118 + 0.37j,+0.118 –

0.37j. It is therefore both minimum phase and unstable –certainly a difficult plant to

control .The figure below shows the response obtained using the program below when

an exact model is assumed, and parameters Tref=6 and Ts=0.6 are used,with a single

coincidence point P1=8,Hu=1.

MATLAB code:

% CONTROLLING HELICOPTER's FLIGHT CONDITION BY USING MODEL

PREDICTIVE CONTROL

% The transfer function from the rotor angle to the forward speed of a helicopter

% in a particular flight condition is given by

% T(s)=9.8(s^2 -0.5s +6.3)/(s +0.6565)(s^2 -0.2366s +0.1493);

% Define time-constant of reference trajectory Tref:

Tref = 6;

% Define sampling interval Ts (default Tref/10):

if Tref == 0,

 Ts = 1;

else

 47

 Ts = Tref/10;

end

% Define plant as SISO discrete-time 'lti' object 'plant'

%%%%% CHANGE FROM HERE TO DEFINE NEW PLANT %%%%%

nump=9.8*[1, -0.5, 6.3]; % Helicopter example

denp=conv([1, 0.6565],[1, -0.2366, 0.1493]); % Continuous time

plant = tf(nump,denp);

plant = c2d(plant,Ts); % Discretise plant

%%%%% CHANGE UP TO HERE TO DEFINE NEW PLANT %%%%%

plant = tf(plant); % Coerce to transfer function form

nump = get(plant,'num'); nump = nump{:}; % Get numerator polynomial

denp = get(plant,'den'); denp = denp{:}; % Get denominator polynomial

nnump = length(nump)-1; % Degree of plant numerator

ndenp = length(denp)-1; % Degree of plant denominator

if nump(1)~=0, error('Plant must be strictly proper'), end;

if any(abs(roots(denp))>1), disp('Warning: Unstable plant'), end

% Define model as SISO discrete-time 'lti' object 'model'

% (default model=plant):

%%%%% CHANGE FROM HERE TO DEFINE NEW MODEL %%%%%

model = plant;

%%%%% CHANGE UP TO HERE TO DEFINE NEW MODEL %%%%%

model = tf(model); % Coerce to transfer function form

numm = get(model,'num'); numm = numm{:}; % Get numerator polynomial

denm = get(model,'den'); denm = denm{:}; % Get denominator polynomial

nnumm = length(numm)-1; % Degree of model numerator

ndenm = length(denm)-1; % Degree of model denominator

if numm(1)~=0, error('Model must be strictly proper'), end;

if any(abs(roots(denm))>1), disp('Warning: Unstable model'), end

 48

nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros

numm=[zeros(1,ndenm-nnumm-1),numm]; % Pad numerator with leading zeros

% Define prediction horizon P (steps)(default corresponds to 0.8*Tref):

if Tref == 0,

 P = 5;

else

 P = round(0.8*Tref/Ts);

end

% Define control horizon (default 1):

M = 1;

% Compute model step response values over coincidence horizon:

stepresp = step(model,[0:Ts:max(P)*Ts]);

N=50;%model length

w=0.0;%weight

ysp=1;%output set point from 0

timesp=1;%time of set point change

delt=0.6;%sampling time interval

tfinal=25;%final simulation time

noise=0;

%define time

tvec=0:delt:tfinal;

ksp=fix(timesp/delt);

kfinal=length(tvec);

%define set point vector

r=[zeros(1,ksp),ones(1,(kfinal-ksp))*ysp];

%define step response coefficient matrix

s=step(model,0:delt:N*delt);

%define free response i.e. Sp matrix for past control moves

 49

for i=1:P

 for j=1:N-2

 if(i+j<=N-1)

 Sp(i,j)=s(i+j);

 else

 Sp(1,j)=0;

 end

 end

end

 %define forced response i.e. Sf matrix for future and control moves

 for i=1:P

 for j=1:M

 if i+1-j>0

 Sf(i,j)=s(i+1-j);

 else

 Sf(i,j)=0;

 end

 end

 end

Sf

 % obtain W matrix

 W=w*eye(M,M);

 %obtain Kmat where Kmat=(Sf'*Sf + W)^-1*Sf'

Kmat=inv(Sf'*Sf + W)*Sf';

%piant initial conditions

ndenm=length(denm)-1;

nnumm=length(numm)-1;

umpast=zeros(1,nnumm);

ympast=zeros(1,ndenm);

% uu=zeros(1,kfinal);

% yy=zeros(1,kfinal);

 50

% xinit=zeros(1,size(

% nump=[zeros(1,ndenp-nnump-1),nump]; % Pad numerator with leading zeros

% numm=[zeros(1,ndenm-nnumm-1),numm];

uinit=0;

yinit=0;

%initialize input vector

u=ones(1,min(P,kfinal))*uinit;

u

dist(1)=0;

y(1)=yinit;

% x(:,1)=xinit;

dup=zeros(1,N-2);

for k=1:kfinal

 [m,p]=size(Kmat);

 for i=1:p

 if k-N+i>0

 uold(i)=u(k-N+i);

 else

 uold(i)=0;

 end

 end

 dvec=dist(k)*ones(1,p);

 rvec=r(k)*ones(p,1);

 y_free=Sp*dup' + s(N)*uold'+dvec';

 E=rvec-y_free;

 delup(k)=Kmat(1,:)*E;

 if k>1

 u(k)=u(k-1)+delup(k);

 else

 u(k)=delup(k)+uinit;

 51

 end

 %plant equations

 umpast=[u(k),umpast(1,1:length(umpast)-1)];

 y(k+1)=-denm(2:ndenm+1)*ympast'+numm(2:nnumm+1)*umpast';

 ympast=[y(k+1),ympast(1:length(ympast)-1)];

 %model prediction

 if k-N+1>0

 ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup'+s(N)*u(k-N+1);

 else

 ymod(k+1)=Sf(1,1)*delup(k)+Sp(1,:)*dup';

 end

 %disturbance compensation

 dist(k+1)=y(k+1)-ymod(k+1);

 %additive disturbance compensation

 %put input change into vector of past control moves

 dup=[delup(k),dup(1,1:N-3)];

end

disp('***** Results from program file :')

disp(['Tref = ',num2str(Tref),', Ts = ',num2str(Ts),...

 ' P = ',int2str(P'),' (steps), M = ',int2str(M)])

diffpm = get(plant-model,'num');

if diffpm{:}==0,

 disp('Model = Plant')

else

 disp('Plant-Model mismatch')

end

figure

subplot(211)

% Plot output, solid line and set-point, dashed line:

[tt,uu]=stairs(tvec,u);

 52

[ttr,rr]=stairs(tvec,r);

figure(1)

subplot(2,1,1)

plot(ttr,rr,'--',tvec,y(1:length(tvec)),'-')

ylabel('y');

xlabel('time');

title('plant output');

% plot(tvec,yp(1:nsteps),'-',tvec,setpoint(1:nsteps),'--');

grid; title('Plant output (solid) and set-point (dashed)')

% xlabel('Time')

subplot(212)

% plot input signal as staircase graph:

% stairs(tvec,uu,'-');

plot(tt,uu)

ylabel('u');

xlabel('time');

grid; title('Input')

% xlabel('Time')

 53

OUTPUT IN MATLAB WINDOW

Warning: Unstable plant

Warning: Unstable model

Sf =

 0

 6.4720

 21.9203

 55.8944

 115.3825

 204.9810

 326.9132

 480.9769

u =

 0 0 0 0 0 0 0 0

***** Results from program file :

Tref = 6, Ts = 0.6 P = 8 (steps), M = 1

Model = Plant

 54

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

time

Plant output (solid) and set-point (dashed)

0 5 10 15 20 25
-1

0

1

2

3

4
x 10

-3

u

time

Input

 Fig 6.1 Output after applying MPC to control of unstable helicopter.

 55

INFERENCE

This example shows that predictive control, although simple and intuitive in its

formulation can produced some very sophisticated control action when required. In

order to stabilize this unstable plant, classical theory tells us that Nyquist locus of the

loop-gain frequency response must encircle the point -1 twice, and this can only be

achieved by supplying phase lead at the appropriate frequencies. Doing this requires

classical ‘loop shaping’ techniques. Predictive control achieves this implicitly, given

only some reasonable design specifications.

On the other hand classical theory cannot be forgotten .This example tells us,

for instance that the loop gain must increase to values greater than 1 at a frequency no

lower than 0.4 rad/sec, approximately, and must decrease again to values smaller than

1 at a frequency no higher than 2.5 rad/sec approximately. Its range of possible

behavior is rather restricted. This knowledge certainly helps to give the predictive

controller a ‘reasonable’ specification to achieve. We find that improving the

performance (for e.g. reducing the overshoot or speeding up the response) by adjusting

the parameters of the predictive controller is not easy in this case.

 56

SWIMMING POOL WATER TEMPERATURE

CONTROL

The water temperature in a heated swimming pool ,θ, is related to the heater input

power ,q, and the ambient air temperature ,θa, according to the equation

 T(dθ/dt) = kq + θa –θ

Where T=1 hour and k=0.2 °C/kW (it is assumed that water is perfectly mixed, so that

it has uniform temperature).Predictive control is to be applied to keep the water at a

desired temperature, and a sampling interval Ts=0.25 hour is to be used. The control

update is to be same as Ts.

 Suppose the air temperature follows a sinusoidal diurnal variation with

amplitude 10°C

 θa(t) =15 + 10sin(2πt/24)

(Where t is measured in hours). Verify that in the steady state the mean water

temperature reaches the set-point exactly, but that θ has a small oscillation of

amplitude approximately 0.5°C.

MATLAB CODE:

% define parameters

%hour, sampling interval

Ts=0.25;

% input constraints, default

 ulim = [-inf,inf,1e6];

 % hour, time constant, default

 57

Tplant = 1;

% degC/kW, heater gain, default

kplant = 0.2;

% artificial noise covariance, default

V =1e-3;

 % artificial process noise, default

 W =1;

 % Define parameters of internal model:

Tmodel = 1; % hour, time constant

kmodel = 0.2; % degC/kW, heater gain

% Weights for MPC cost function:

Q=1; R=0;

% Horizons for MPC:

Hp=10; Hu=3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define plant:

aplantc = -1/Tplant; bplantc = [kplant, 1]/Tplant; % continuous-time

cplant = 1; dplant = [0, 0];

plantc = ss(aplantc,bplantc,cplant,dplant); % LTI object

plantd = c2d(plantc,Ts); % discrete-time equivalent

[aplantd,bplantd] = ssdata(plantd); % A and B matrices. (C and D stay unchanged)

plantinfo = [Ts,1,1,0,1,1,0]; % information for MOD format

 58

 % (1 state, SISO, 1 unmeasured disturbance)

plant = ss2mod(aplantd,bplantd,cplant,dplant,plantinfo); % plant in MOD format

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define controller's internal model:

% Disturbance dynamics (diurnal variation):

aairc = [0, 1; -(2*pi/24)^2, 0]; % Air temp A matrix, continuous-time

% Complete continuous-time model, with state vector =

% [water temp, air temp, air temp derivative]':

amodelc = [-1/Tmodel, 1/Tmodel, 0;

 zeros(2,1), aairc];

bmodelc = [kmodel/Tmodel; 0; 0];

cmodel = [1, 0, 0];

dmodel = 0;

modelc = ss(amodelc,bmodelc,cmodel,dmodel); % LTI object

modeld = c2d(modelc,Ts); % discrete-time equivalent

[amodeld,bmodeld] = ssdata(modeld); % A and B matrices. (C and D stay unchanged)

modinfo = [Ts,3,1,0,0,1,0];

model = ss2mod(amodeld,bmodeld,cmodel,dmodel,modinfo); % model in MOD

format

% Now compute observer gain:

 % Kest = smpcest(model,W,V);

% Kest = smpccon(model,Q,R,Hu,Hp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Now simulate pool with predictive control:

 59

tend = 50; % end time for simulation

tvector = [0:0.25:tend]'; % time vector for plots etc

setpoint = 20; % deg C, setpoint for water temperature

airtemp = 15 + 10*sin(2*pi*tvector/24); % sine wave, period 24 hours

[wtemp,power] = scmpc(plant,model,Q,R,Hu,Hp,tend,setpoint,ulim,[],[],...

 [],[],airtemp,[]);

 % Display results:

figure % New figure

plotall(wtemp,power,tvector);

subplot(211), grid

hold on

plot(tvector,airtemp,'--')

xlabel('Time (hours)'), ylabel('Temperature (deg C)')

title('Water (solid) and Air (broken) Temperatures')

subplot(212), grid

xlabel('Time (hours)'), ylabel('Heater power (kW)')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 60

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30
Water (solid) and Air (broken) Temperatures

Time (hours)

T
e

m
p

e
ra

tu
re

 (
d

e
g

 C
)

0 5 10 15 20 25 30 35 40 45 50
-200

0

200

400

600
Manipulated Variables

Time (hours)

H
e

a
te

r
p

o
w

e
r

(k
W

)

Fig 6.2 Output after applying MPC to control of water temperature of swimming

pool

 61

INFERENCE

Here to investigate the behavior of the predictive system we use Model

Predictive Control toolbox function scmpc.

SCMPC-- It simulates closed loop problems by designing an MPC-type

controller for constrained problems

USAGE: [y,u,ym]=scmpc(pmod,imod,ywt,uwt,M,P,tend, ...

 r,ulim,ylim,Kest,z,v,w,wu)

Above program shows that a predictive controller with standard ‘DMC’

disturbance model does not compensate perfectly for a sinusoidal diurnal variation

for a sinusoidal variation of the air temperature if the air temperature is not measured

With the particular choice of parameters used there and a 10°C amplitude of the air

temperature ,the water temperature oscillates with an amplitude of about 0.5°C if there

are no constraints on the heater power. It is seen that if the air temperature is measured

and used for feed forward control, then air temperature is perfectly

compensated,providing that model is perfect .if some modeling error then residual

oscillation remains. But if we want to remove it completely, then we have to model the

sinusoidal disturbance and designing a suitable observer, even if the air temperature is

not measured.

 62

 CHAPTER11

 CONCLUSION

 63

Conclusions

MPC technology has progressed steadily in the twenty two years since the first

IDCOM and DMC applications. Survey data reveal approximately 2200 applications

to date, with a solid foundation in refining and petrochemicals, and significant

penetration into a wide range of application areas from chemicals to food processing.

Current generation MPC technology offers significant new capabilities but the

controllers still retain, for the most part, an IDCOM-like or a DMC-like personality.

The SMC-Idcom and HIECON algorithms are IDCOM-like controllers which have

evolved to use multiple objective functions and ranked constraints. The DMC,

RMPCT and OPC algorithms are DMC-like controllers that use a single dynamic

objective function to evaluate control and economic trade-offs using weighting factors.

The PFC controller inherits some of the IDCOM personality but is significantly

different in that it can accommodate nonlinear and unstable processes and uses basis

functions to parameterize the input function.

An important observation is that industrial MPC controllers almost always use

empirical dynamic models identified from test data. The impact of identification

theory on process modeling is perhaps comparable to the impact of optimal control

theory on model predictive control. It is probably safe to say that MPC practice is one

of the largest application areas of system identification. The current success of MPC

technology may be due to carefully designed plant tests.

Another observation is that process identification and control design are clearly

separated in current MPC technology. Efforts towards integrating identification and

control design may bring significant benefits to industrial practice. For example,

uncertainty estimates from process identification could be used more directly in robust

control design. Ill-conditioned process structures could be reflected in the identified

models and also used in control design.

Choosing an MPC technology for a given application is a complex question involving

issues not addressed in this paper. It is the opinion of the authors that for most

applications, a knowledgeable control engineer could probably achieve acceptable

control performance using any of the packages discussed here, although the time and

 64

effort required may differ. If the process is nonlinear or unstable, or needs to track a

complex set point trajectory with no offset, the PFC algorithm may offer significant

advantages. If a vendor is to be selected to design and implement the control system, it

would be wise to weigh heavily their experience with the particular process in

question.

Research needs as perceived by industry are mostly control engineering issues, not

algorithm issues. Industrial practitioners do not perceive closed loop stability, for

example, to be a serious problem. Their problems are more like: Which variables

should be used for control? When is a model good enough to stop the identification

plant test? How do you determine the source of a problem when a controller is

performing poorly? When can the added expense of an MPC controller be justified?

How do you design a control system for an entire plant? How do you estimate the

benefits of a control system? Answering these questions could provide control

practitioners and theoreticians with plenty of work in the foreseeable future.

Several technical advances have not yet been incorporated into industrial MPC

technology. These include using an infinite prediction horizon to guarantee nominal

closed loop stability, and using linear estimation theory to improve output feedback. In

addition, robust stability conditions have been developed for a modified QDMC

algorithm. It would seem that the company which first implements these advances will

have a significant marketing and technical advantage.

The future of MPC technology is bright, with all of the vendors surveyed here

reporting significant applications in progress. Next-generation MPC technology is

likely to include multiple objective functions, an infinite prediction horizon, nonlinear

process models, better use of model uncertainty estimates, and better handling of ill-

conditioning.

 65

 REFERENCE

BOOK

1. BEQUETTE B.W. “PROCESS CONTROL MODELLING

DESIGN AND SIMULATION” prentice hall edition

2. MACIEJOWSKI J.M. “PREDICTIVE CONTROL WITH

CONSTRAINTS”, prentice hall edition.

INTERNET

S. Joe Qin and Thomas A. Badgwell “An Overview of Industrial

Model Predictive Control Technology”

http://www.che.utexas.edu/~qin/cpcv/node2.html#

http://www.che.utexas.edu/~qin/cpcv/node4.html#

MIKAEL JOHANSON “Control theory and practice”

Mikael Johansson mikaelj@ee.kth.se

PDF file: William B. Dunbar “Notes on model predictive control”

dunbar@cds.caltech.edu

