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ABSTRACT 

 
 

In many control system applications Linear Variable Differential Transformer (LVDT) 

plays an important role to measure the displacement. The performance of the control system 

depends on the performance of the sensing element. It is observed that the LVDT exhibits the 

same nonlinear input-output characteristics. Due to such nonlinearities direct digital readout is 

not possible. As a result we employ the LVDTs only in the linear region of their characteristics. 

In other words their usable range gets restricted due to the presence of nonlinearity. If the LVDT 

is used for full range of its nonlinear characteristics, accuracy of measurement is severely 

affected. So, to reduce this nonlinearities different ANN techniques is being used such as single 

neuron structure, MLP structure, RBFNN and ANFIS structure. 

Another problem considered here is with flow measurement. Generally flow 

measurements uses conventional flow meters for feedback on the flow-control loop cause 

pressure drop in the flow and in turn lead to the usage of more energy for pumping the fluid. An 

alternative approach for determining the flow rate without flow meters is thought. The restriction 

characteristics of the flow-control valve are captured by a neural network (NN) model. The 

relationship between the flow rate and the physical properties of the flow as well as flow-control 

valve, that is, pressure drop, pressure, temperature, and flow-control valve coefficient (valve 

position) is found. With these accessible properties, the NN model yields the flow rate of fluid 

across the flow-control valve, which acts as a flow meter. The viability of the methodology 

proposed is illustrated by real flow measurements of water flow which is widely used in 

hydraulic systems. 

 

Control of fluid flow is essential in process-control plants. The signal of flow measured 

using the flow meter is compared with the signal of the desired flow by the controller. The 

controller output accordingly adjusts the opening/closing actuator of the flow-control valve in 

order to maintain the actual flow close to the desired flow. Typically, flow meters of 

comparatively low cost such as turbine-type flow meters and venturi-type meters are used to 

measure the volumetric quantity of fluid flow in unit time in a flow process. However, the flow  
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meter inevitably induces a pressure drop in the flow. In turn, this results in the use of more 

energy for pumping the fluid. To avoid this problem, non-contact flow meters, i.e. 

electromagnetic-type flow meters, have been developed and are widely used in process plants not 

only because there is no requirement for installation in the pipeline but also because introduction 

to the differential pressure across pipelines is not necessitated. Unfortunately, the cost of such 

non-contact measurement is comparatively much higher than that of its conventional 

counterparts. 

 

Here, an alternative approach is proposed to obtain the fluid flow measurement for flow-

control valves without the pressure drop and the consequent power loss that appear in 

conventional flow meters. Without the flow meter, it is a fact that the flow rate can be 

determined from the characteristics of the control valve for flow measurements. In this method, 

the restriction characteristics of the control valve embedded in a neural network (NN) model are 

used in determining the flow rate instead of actual measurement using a conventional flow 

meter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ii



 
LIST OF ABBREVIATIONS 

 
 

ADC Analog-to-Digital Converter 

ANFIS Adaptive Neuro Fuzzy Inference System 

ANN Artificial Neural Network 

ASP Adaptive Signal Processing 

BP Back-Propagation algorithm 

DAC Digital-to-Analog Converter 

FL Fuzzy Logic 

FPGA Field Programmable Gate Array 

FSO Full-Scale Output 

LMS Least Mean Square 

LVDT Linear Variable Differential Transformer 

MDS Minimum Detectable Signal 

MLP Multi-Layer Perceptron 

MR Measured Range 

MSE Mean Square Error 

LPH Liter per Hour 

PIM Plug-In-Module 

RBFNN Radial Basis Function based Neural Network 

VLSI Very Large Scale Integration 
 
 
 
 
 
 

 

 iii



 
LIST OF FIGURES 

 
 
Figure Number / Name         Page 

Fig 1.1 General structure of sensor        3 

Fig 1.2 Repeatability          4 

Fig 1.3 Nonlinearity curve         5 

Fig 1.4 Hysteresis curve         5 

Fig 2.1 Structure of Single Neuron        15 

Fig 2.2 Different types of nonlinear activation function     16 

Fig 2.3 Structure of multilayer perceptron       18 

Fig 2.4 Radial Basis Function neural network structure     20 

Fig 2.5 ANFIS Structure         22 

Fig 3.1 Linear Displacement measurement       27 

Fig 3.2 General LVDT Assembly        28 

Fig 3.3 Cross-Sectional Views of LVDT Core and Windings    29 

Fig 3.4 Coupling to First Secondary Caused by Associated      30 

Core Displacement 

Fig 3.5 Coupling to Second Secondary Caused by Associated     30 

Core Displacement 

Fig 3. 6 Proportionally Linear LVDT Responses to Core      31 

Displacement 

Fig 3.7 Sophisticated Phase-Sensitive LVDT Signal      32 

Conditioning Circuit 

Fig 3.8 Scheme of nonlinearity compensation of LVDT     34 

Fig. 3.9 Practical set-up of LVDT after training      35 

Fig 3.10 Architecture of ADALIN Network       36 

Fig 3.11 Response of ADALIN Network for LVDT nonlinearity     37 

Compensation 

Fig 3.12 Mean Square Error (MSE) Plot of ADALIN for LVDT     37 

Nonlinearity compensation 

 

 iv



 

 

 

Fig 3.13 Response of MLP Network for LVDT nonlinearity     39 

Compensation 

Fig 3.14 Mean Square Error (MSE) Plot of MLP for LVDT     39 

Nonlinearity compensation 

Fig 3.15 Response of RBFNN Network for LVDT nonlinearity     41 

Compensation 

Fig 3.16 Mean Square Error (MSE) Plot of RBFNN for LVDT     41 

Nonlinearity compensation 

Fig 3.17 ANFIS model for LVDTs nonlinearity compensation    43 

Fig 3.18 Response of ANFIS Network for LVDT nonlinearity     43 

compensation 

Fig 3.19 Input membership function for ANFIS structure used     44 

for nonlinearity compensation of LVDT 

Fig 4.1 Conventional Flow Control        48 

Fig 4.2 Cross sectional view of Control valve (Action Air to open)    51 

Fig 4.3 Arrangement for Control valve measurement     53 

Fig 4.4 Normalized Valve position Vs Normalized flow     54 

Fig 4.5 Normalized valve position Vs differential pressure (Psi)    54 

Fig 4.6 Relation between Stem position, Differential pressure and     55 

Flow of control Valve 

Fig 4.7 Real-time implementation of proposed flow-control valve.    55 

Fig 4.8 Plot of true and estimated forward characteristics of     57 

Control valve by MLP 

Fig 4.9 Flow-rate profile of MLP model against valve position and     57 

Pressure drop with constant upstream pressure 

Fig 4.10 Mean Square Error plot while training MLP system for     58 

direct model of Control valve 

Fig 4.11 Plot of true and estimated forward characteristics of Control    59 

Valve by RBF (NN) 

 v



 

 

 

Fig 4.12 Mean Square Error plot while training RBF (NN) system     59 

for direct model of Control valve 

Fig 5.1 Flow-control valve with inverse of NN model.     63 

Fig 5.2 Relation between Normalized flow and Valve opening    64 

Fig 5.3 Relation between Normalized flow and Back Pressure     64 

of control valve 

Fig 5.4 MLP based inverse control valve model      66 

Fig 5.5 Mean Square Error plot while training MLP system     66 

 for Inverse model of Control valve  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



 
LIST OF TABLE 

 
 

Table Number/ Name        Page 

Table 3.1 Experimental Measured Data      35 

Table 3.2 ADALIN Simulation Validation      38 

Table 3.3 MLP Simulation Validation      40 

Table 3.4 RBFNN Simulation Validation      42 

Table 3.5 ANFIS Simulation Validation      44 

Table 3.6 Comparison of Different network       45 

for nonlinearity compensation 

Table 4.1 MLP Experimental results       60 

Table 4.2 RBFNN Experimental results      61 

 

 

 

 
 
 
 
 

 

 vii



     
 
 
 
 

Chapter 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

 

 

 

 

 



                                                                                                                                        Introduction 

The sensors are devices which, for the purpose of measurement, turn physical input 

quantities into electrical output signals, their output-input and output-time relationship being 

predictable to a known degree of accuracy at specified environmental conditions. The definition 

of sensors or transducers according to The Instrument Society of America is “a device which 

provides a usable output in response to a specified measurand”. Here the output is an ‘electrical 

quantity’ and measurand is a ‘physical quantity’. It can also be defined as an element that senses 

a variation in input energy to produce a variation in another or same form of energy is called a 

sensor, whereas, transducer involves a transduction principle which converts a specified 

measurand into an usable output. 

 

This Chapter deals with the fundamental of the sensors and their characteristics. Section 

1.1 deals with the sensor fundamental along with its characteristics. The literature survey is 

discussed in Section 1.2. Problem formulation of the thesis is depicted in Section 1.3. Finally the 

Chapter-wise organization of the thesis is presented in Section 1.4.  

1.1 Sensors Fundamentals 
 

The sensor consists of several elements or blocks such as sensing element, signal 

conditioning element, signal processing element and data presentation element.  

Sensing element: This is in contact with the process and gives an output which depends in some 

way on the variable to be measured. Examples are: thermocouple where millivolt emf depends 

on temperature, capacitive pressure sensor where capacitance of a chamber depends on pressure, 

linear variable differential transformer where emf at the secondary coil depends on displacement, 

etc.  

If there is more than one sensing element in a system, the element in contact with the 

process is termed the primary sensing element, the others secondary sensing elements.  

Signal conditioning element: This takes the output of the sensing element and converts it into a 

form more suitable for further processing, usually a dc voltage, dc current or frequency signal. 

Examples are: deflection bridge which converts an impedance change into a voltage change, 

amplifier which amplifies millivolts to volts, etc.  
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Signal processing element: This takes the output of the conditioning element and converts it into 

a form more suitable for presentation. Examples are: analog-to-digital converter (ADC) which 

converts a voltage into a digital form for input to a computer; a microcontroller which calculates 

the measured value of the variable from the incoming digital data.  

Data presentation element: This presents the measured value in a form which can be easily 

recognized by the observer. Examples are: a simple pointer-scale indicator, chart recorder, and 

alphanumeric display etc. 

 
Fig 1.1 General structure of sensor 

 

1.1.1 Characteristics of sensor 

Sensors or all measurement systems, have two general characteristics, i.e. (i) static 

characteristics, and (ii) dynamic characteristics. 

The static characteristics comprise of:  

(a) Accuracy: These characteristics specified by error. And it is given by, 

 
Where t is for true value, m for measured value and variable x stands for measurand. This 

is often expressed for the full scale output and is given by, 

 
(b) Precision: It describes how far a measured quantity is reproducible as also how close it is 

to the true value. 

Term repeatability is similar to precision which is the difference in output y at a given 

value of the input x when this is obtained in two consecutive measurements. It may be 

expressed as % Full-scale Output (FSO). Fig 1.2 shows the repeatability. 

 3
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Fig 1.2 Repeatability 

(c) Resolution: It is defined as the smallest incremental change in the input that would 

produce a detectable change in the output. This is often expressed as percentage of the 

measured range, MR. The measured range is defined as the difference of the maximum 

input and the minimum input, xmax-xmin = MR. For a detectable output Δy, if the 

minimum change in x is Δxmin, then the maximum resolution is 

 
(d)Threshold: This is the smallest input change that produces a detectable output at zero 

value condition of the measured. 

(e)Sensitivity: This is defined as the ratio of the incremental output (Δy) to incremental input 

(Δx), i.e 

 

(f)Nonlinearity: The deviation from linearity, which itself is defined in terms of 

superposition principles, is expressed as a percentage of the full scale output at a given 

value of the input. Nonlinearity can, however, be specified here. 

• deviation from a straight line joining the end points of the scale.  

These are shown in Figs. below 
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Fig 1.3 Nonlinearity curve 

(g) Hysteresis: It is the difference in the output of the sensor y for a given input x when x 

reaches the value in upscale and downscale directions as shown in Fig. below. The causes 

are different for different types of sensors. In magnetic types, it is lag in alignment of the 

dipoles, while in semiconductor types it is the injection type slow traps producing the 

effect, and so on. 
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Fig 1.4 Hysteresis curve 

The dynamic characteristics involve determination of transfer function, frequency response, 

impulse response and step response and then evaluation of the time-dependent outputs. The two 

important parameters in these connections are:  

• Fidelity determined by dynamic error, and  
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• Speed of response determined by lag.  

For determining the dynamic characteristics different inputs are given to the sensor and the 

response characteristics are to be studied. With step input, the specifications in terms of the time 

constant of the sensor are to be made. Impulse response as well as its Fourier transform is also to 

be considered for time domain as well as frequency domain studies. 

Environmental Parameters: The external variables such as temperatures, pressure, humidity, 

vibration, etc. which affects the performance of the sensor. Aging is also an important parameter 

of the sensor. These parameters are not the ones that are to be sensed. For any environmental 

parameters, the performance of the sensor can be studied in terms of its effect on the static and 

dynamic characteristics. For this study, one environmental parameter at a time is considered 

variable while others are fixed. 

  

1.2 Literature Survey 

In many control system applications Linear Variable Differential Transformer (LVDT) 

plays an important role to measure the displacement. The performance of the control system 

depends on the performance of the sensing element. It is observed that the LVDT exhibits the 

same nonlinear input-output characteristics. Due to such nonlinearities direct digital readout is 

not possible. As a result we employ the LVDTs only in the linear region of their characteristics. 

In other words their usable range gets restricted due to the presence of nonlinearity. If the LVDT 

is used for full range of its nonlinear characteristics, accuracy of measurement is severely 

affected.  

The nonlinearity present is usually time-varying and unpredictable as it depends on many 

uncertain factors. Attempts have been made by many researchers to increase the range of 

linearity of LVDT. In the conventional design of LVDT sophisticated and precise winding 

machines are used to compensate the nonlinearity effects. The nonlinearity compensation can 

also be achieved by square coil method in which the core moves perpendicular to the axis instead 

of along the axis. A self-compensated LVDT has been modeled using a dual secondary coil 

which is insensitive to the variation in excitation current and frequency. Some soft computing 
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techniques have been employed on LVDT to achieve better sensitivity and to implement the 

signal conditioning circuits.  

Flow measurements using conventional flow meters for feedback on the flow-control 

loop cause pressure drop in the flow and in turn lead to the usage of more energy for pumping 

the fluid. An alternative approach for determining the flow rate without flow meters is thought. 

The restriction characteristics of the flow-control valve are captured by a neural network (NN) 

model. The relationship between the flow rate and the physical properties of the flow as well as 

flow-control valve, that is, pressure drop, pressure, temperature, and flow-control valve 

coefficient (valve position) is found. With these accessible properties, the NN model yields the 

flow rate of fluid across the flow-control valve, which acts as a flow meter. The viability of the 

methodology proposed is illustrated by real flow measurements of water flow which is widely 

used in hydraulic systems. 

 

Control of fluid flow is essential in process-control plants. The signal of flow measured 

using the flow meter is compared with the signal of the desired flow by the controller. The 

controller output accordingly adjusts the opening/closing actuator of the flow-control valve in 

order to maintain the actual flow close to the desired flow. Typically, flow meters of 

comparatively low cost such as turbine-type flow meters and venturi-type meters are used to 

measure the volumetric quantity of fluid flow in unit time in a flow process. However, the flow 

meter inevitably induces a pressure drop in the flow. In turn, this results in the use of more 

energy for pumping the fluid. To avoid this problem, non-contact flow meters, i.e. 

electromagnetic-type flow meters, have been developed and are widely used in process plants not 

only because there is no requirement for installation in the pipeline but also because introduction 

to the differential pressure across pipelines is not necessitated. Unfortunately, the cost of such 

non-contact measurement is comparatively much higher than that of its conventional 

counterparts. 

 

Here, an alternative approach is proposed to obtain the fluid flow measurement for flow-

control valves without the pressure drop and the consequent power loss that appear in 

conventional flow meters. Without the flow meter, it is a fact that the flow rate can be 

determined from the characteristics of the control valve for flow measurements. In this method, 
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the restriction characteristics of the control valve embedded in a neural network (NN) model are 

used in determining the flow rate instead of actual measurement using a conventional flow 

meter. 

 
1.3 Problem Formulation 
 

The sensors exhibit nonlinear characteristics which limit the dynamic range of these 

devices. As a result the direct digital readout of the output is not possible for the whole input 

range of the sensors. In addition the full potential of the sensors cannot be utilized. Thus there is 

a real challenge for designing and implementing novel sensors which circumvent the nonlinearity 

problems associated with them. In recent past few attempts have been made but not much has 

been achieved in this direction. The second problem is the accuracy of measurements in these 

sensors which is greatly affected by aging of the sensor, temperature and humidity variations.  

Both these issues detoriate the accuracy of measurement. Therefore nonlinearity 

compensation is required to achieve accurate measurement under adverse conditions. Most of the 

existing nonlinearity compensation techniques work well for fixed and known type of 

nonlinearities. But in actual practice the nonlinearity behavior of the sensors changes with time 

and is usually unknown. The adaptive inverse model of the LVDTs can be designed and 

connected in series with these devices, so that the associated nonlinearity can be compensated 

and direct digital readout is possible for the whole input range. A scheme of direct modeling and 

inverse modeling of the LVDTs using different ANN structure has been developed. The direct 

modeling is proposed for calibration of inputs and estimation of internal parameters of the 

LVDTs. The purpose of the direct model is to obtain an ANN model of the LVDTs in such a way 

that the outputs of the LVDTs and the ANN match closely. Once a model of the LVDTs is 

available, it may be used for fault detection of the sensor. The LVDTs output provides a voltage 

signal proportional to the displacement change.. And the inverse modeling is proposed for 

estimation of applied input displacement. The adaptive inverse model can be developed using 

soft-computing techniques such as Artificial Neural Networks (ANN) and Neuro-Fuzzy 

algorithms are potential candidates for developing adaptive inverse model of these devices.  

Another problem for flow measurements using conventional flow meters for feedback on 

the flow-control loop cause pressure drop in the flow and in turn lead to the usage of more 
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energy for pumping the fluid. An alternative approach for determining the flow rate without flow 

meters is thought. The restriction characteristics of the flow-control valve are captured by a  

 

neural network (NN) model. The relationship between the flow rate and the physical properties 

of the flow as well as flow-control valve, that is, pressure drop, pressure, temperature, and flow-

control valve coefficient (valve position) is found. With these accessible properties, the NN 

model yields the flow rate of fluid across the flow-control valve, which acts as a flow meter. The 

viability of the methodology proposed is illustrated by real flow measurements of water flow 

which is widely used in hydraulic systems. 

 

Control of fluid flow is essential in process-control plants. The signal of flow measured 

using the flow meter is compared with the signal of the desired flow by the controller. The 

controller output accordingly adjusts the opening/closing actuator of the flow-control valve in 

order to maintain the actual flow close to the desired flow. Typically, flow meters of 

comparatively low cost such as turbine-type flow meters and venturi-type meters are used to 

measure the volumetric quantity of fluid flow in unit time in a flow process. However, the flow 

meter inevitably induces a pressure drop in the flow. In turn, this results in the use of more 

energy for pumping the fluid. To avoid this problem, non-contact flow meters, i.e. 

electromagnetic-type flow meters, have been developed and are widely used in process plants not 

only because there is no requirement for installation in the pipeline but also because introduction 

to the differential pressure across pipelines is not necessitated. Unfortunately, the cost of such 

non-contact measurement is comparatively much higher than that of its conventional 

counterparts. Here, an alternative approach is proposed to obtain the fluid flow measurement for 

flow-control valves without the pressure drop and the consequent power loss that appear in 

conventional flow meters. Without the flow meter, it is a fact that the flow rate can be 

determined from the characteristics of the control valve for flow measurements. In this method, 

the restriction characteristics of the control valve embedded in a neural network (NN) model are 

used in determining the flow rate instead of actual measurement using a conventional flow 

meter. 
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1.4 Chapter-wise Organization 

The chapter-wise organization of the thesis is outlined below.  

CHAPTER 1 Introduction   

Brief Introduction                  

1.1 Sensors Fundamentals 

1.1.1Characteristics of sensor 

1.2 Literature Survey 

1.3 Problem Formulation 

1.4 Chapter-wise Organization 

CHAPTER 2 Soft Computing Techniques and Algorithm             

2.1 Introduction 

2.2 Artificial Neural Network 

2.2.1 Single Neuron Structure 

2.2.2 Multi-Layer Perceptron (MLP) 

2.2.3 Radial Basis Function Neural Network (RBF-NN) 

2.2.4 Adaptive Neuro Fuzzy Inference System (ANFIS) 

2.3 Summary and Discussion 

CHAPTER 3  Nonlinear Compensation of Linear Variable Differential Transformer (LVDT) 

Using Soft Computing Techniques 

 Brief Introduction    

3.1 Linear Variable Differential Transformer (LVDT)     

3.1.1 Signal Conditioning for LVDTs 

3.1.2 Common Specifications 

3.1.3 Pros and Cons 

3.2 Nonlinearity Compensation of LVDTs 

3.3 Simulation Studies 

3.3.1 ADALIN Based Non-linearity Compensation 

3.3.2 MLP Based Non-linearity Compensation 

3.3.3 RBFNN Based Non-linearity Compensation 

3.3.4 ANFIS Based Non-linearity Compensation 

3.4 Comparison and Discussion 
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CHAPTER 4 Flow-Sensorless Control Valve (Equal Percentage Type): Using Soft Computing 

Techniques 

4.1  Introduction 

4.2  Background principle 

4.3 Equal Percentage type Control Valve Actuators 

4.4  Experimental Set-up 

4.5  Direct Modeling 

4.6  The MLP Based Direct Modeling 

4.7  Radial Basis Function NN based Direct modeling 

4.8  Experimental Validation 

4.9  Conclusion 

CHAPTER 5 Inverse Modeling of Control Valve (Equal Percentage Type) 

5.1 Introduction 

5.2 Simulation Work 

5.3 MLP based Inverse modeling of Control Valve 

5.4 Conclusion 

CHAPTER 6 Conclusions 

6.1 Conclusion 

6.2 Scope for Future Research Work 
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                                                                         Soft Computing Techniques And Algorithms 

 
2.1 Introduction 

In recent years, a growing field of research in “Adaptive Systems” has resulted in 

a variety of adaptive automations whose characteristics in limited ways resemble certain 

characteristics of living systems and biological adaptive processes. An adaptive 

automation is a system whose structure is alterable or adjustable in such a way that its 

behavior and performance improves by its environment. A simple example of an adaptive 

system is the automatic gain control used in radio and television receiver. The most 

important factor in adaptive system is its time-varying and self-adjusting performance. 

Their characteristic depends upon the input signal. If a signal is applied to the input of 

adaptive system to test its response characteristic, the system adapts to this specific input 

and thereby changes its parameters. Based on the different neural architecture of human 

brain, different Artificial Neural Algorithms are developed such as Artificial Neural 

Network (ANN), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Adaptive 

Neuro Fuzzy Inference System (ANFIS) etc. These are capable of mapping the input and 

output nonlinearly.  

This Chapter deals with different types of adaptive algorithms, which are used as 

a tool to compensate nonlinearity problem of different sensors. The present Chapter is 

organized as follows: Section 2.2 deals with different types of Artificial Neural Network 

(ANN) such as Single Neuron Network (ADALIN), Multi-Layer Perceptron (MLP), 

Radial Basis Function based Neural Network (RBFNN) and Adaptive Neuro Fuzzy 

Inference System (ANFIS). Finally the summary and discussion is presented in Section 

2.3.  

2.2 Artificial Neural Network 

 

Artificial neural network (ANN) takes their name from the network of nerve cells 

in the brain. Recently, ANN has been found to be an important technique for 

classification and optimization problem. McCulloch and Pitts have developed the neural 

networks for different computing machines. There are extensive applications of various 

types of ANN in the field of communication, control and instrumentation. The ANN is 

capable of performing nonlinear mapping between the input and output space due to its 
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large parallel interconnection between different layers and the nonlinear processing 

characteristics. An artificial neuron basically consists of a computing element that 

performs the weighted sum of the input signal and the connecting weight. The sum is 

added with the bias or threshold and the resultant signal is then passed through a 

nonlinear function of sigmoid or hyperbolic tangent type. Each neuron is associated with 

three parameters whose learning can be adjusted; these are the connecting weights, the 

bias and the slope of the nonlinear function. For the structural point of view a NN may be 

single layer or it may be multilayer. 

In multilayer structure, there is one or many artificial neurons in each layer and 

for a practical case there may be a number of layers. Each neuron of the one layer is 

connected to each and every neuron of the next layer. The functional-link ANN is another 

type of single layer NN. In this type of network the input data is allowed to pass through 

a functional expansion block where the input data are nonlinearly mapped to more 

number of points. This is achieved by using trigonometric functions, tensor products or 

power terms of the input. The output of the functional expansion is then passed through a 

single neuron.  

 
The learning of the NN may be supervised in the presence of the desired signal or 

it may be unsupervised when the desired signal is not accessible. Rumelhart developed 

the Back-propagation (BP) algorithm, which is central to much work on supervised 

learning in MLP. A feed-forward structure with input, output, hidden layers and 

nonlinear sigmoid functions are used in this type of network. In recent years many 

different types of learning algorithm using the incremental back-propagation algorithm, 

evolutionary learning using the nearest neighbor MLP and a fast learning algorithm based 

on the layer-by-layer optimization procedure are suggested in literature. In case of 

unsupervised learning the input vectors are classified into different clusters such that 

elements of a cluster are similar to each other in some sense. The method is called 

competitive learning, because during learning sets of hidden units compete with each 

other to become active and perform the weight change. The winning unit increases its 

weights on those links with high input values and decreases them on those with low input 
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values. This process allows the winning unit to be selective to some input values. 

Different types of NNs and their learning algorithms are discussed in sequel. 

 

2.2.1 Single Neuron Structure 

 

 
Fig 2.1 Structure of Single Neuron 

The basic structure of an artificial neuron is presented in Fig.. The operation in a 

neuron involves the computation of the weighted sum of inputs and threshold. The 

resultant signal is then passed through a nonlinear activation function. This is also called 

as a perceptron, which is built around a nonlinear neuron; whereas the LMS algorithm 

described in the preceding sections is built around a linear neuron. The output of the 

neuron may be represented as, 

 (2.1) 

 

Where is the threshold to the neurons at the first layer, wj(n) is the weight 

associated with jth the input, N is the no. of inputs to the neuron and φ(.) is the nonlinear 

activation function. Different types of nonlinear function are shown in Fig. 
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 (a)                                  (b)                                 (c)                                 (d) 

 
Fig 2.2 Different types of nonlinear activation function, 

(a) Signum function or hard limiter, 

(b) Threshold function, 

(c) Sigmoid function, 

(d) Piecewise Linear 

Signum Function: For this type of activation function, we have 

  (2.2) 

 

Threshold Function: This function is represented as, 

  (2.3) 

 

Sigmoid Function: This function is S-shaped, is the most common form of the activation 

function used in artificial neural network. It is a function that exhibits a graceful balance 

between linear and nonlinear behavior. 

   (2.4) 
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Where v is the input to the sigmoid function and a is the slope of the sigmoid 

function. For the steady convergence a proper choice of a is required. 

 
Piecewise-Linear Function: This function is 

  (2.5) 

 

Where the amplification factor inside the linear region of operation is assumed to 

be unity. This can be viewed as an approximation to a nonlinear amplifier. 

 

2.2.2 Multi-Layer Perceptron (MLP) 

In the multilayer neural network or multilayer perceptron (MLP), the input signal 

propagates through the network in a forward direction, on a layer-by-layer basis. This 

network has been applied successfully to solve some difficult and diverse problems by 

training in a supervised manner with a highly popular algorithm known as the error back-

propagation algorithm. The scheme of MLP using four layers is shown in Fig. below. 

xi(n) represent the input to the network, fj and fk represent the output of the two hidden 

layers and yl(n) represents the output of the final layer of the neural network. The 

connecting weights between the input to the first hidden layer, first to second hidden 

layer and the second hidden layer to the output layers are represented by wij, wjk and wkl 

respectively. 
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Fig 2.3 Structure of multilayer perceptron 

If P
1 

is the number of neurons in the first hidden layer, each element of the output 

vector of first hidden layer may be calculated as, 

 

 (2.6) 

 

where αj is the threshold to the neurons of the first hidden layer, N is the no. of 

inputs and φ(.) is the nonlinear activation function in the first hidden layer of these type. 

The time index n has been dropped to make the equations simpler. Let P
2 

be the number 

of neurons in the second hidden layer. The output of this layer is represented as, fk and 

may be written as 

   (2.7) 
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where, αk is the threshold to the neurons of the second hidden layer. The output of 

the final output layer can be calculated as 

 

 (2.8) 

 

Where, αl is the threshold to the neuron of the final layer and P
3 

is the no. of 

neurons in the output layer. The output of the MLP may be expressed as 

 

 (2.9) 
 
 
2.2.3 Radial Basis Function Neural Network (RBF-NN) 
 

The Radial Basis Function based neural network (RBFNN) consists of an input 

layer made up of source nodes and a hidden layer of large dimension. The number of 

input and output nodes is maintained same and while training the same pattern is 

simultaneously applied at the input and the output. The nodes within each layer are fully 

connected to the previous layer as shown in the Fig. 2.4. The input variables are each 

assigned to a node in the input layer and pass directly to the hidden layer without 

weights. The hidden nodes contain the radial basis functions (RBFs) which are Gaussian 

in characteristics. Each hidden unit in the network has two parameters called a center (μ), 

and a width (σ) associated with it. The Gaussian function of the hidden units is radially 

symmetric in the input space and the output of each hidden unit depends only on the 

radial distance between the input vector x and the center parameter μ for the hidden unit.  
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Fig 2.4 Radial Basis Function neural network structure 

The Gaussian function gives the highest output when the incoming variables are 

closest to the center position and decreases monotonically as the distance from the center 

decreases. The response of each hidden unit is scaled by its connecting weights (α
mi

’s) to 

the output units and then summed to produce the final network output and. The overall 

network output at the time index n is therefore  

  (2.10) 

 

For each input xj, N represents the no. of inputs, K = number of hidden units, α
mk 

= 

connecting weight of the k
th 

hidden unit to output layer, α
mo 

= bias term, m is the number 

of output.  

The value of φk (xj ) is given by  

     (2.11) 

Where μ
k 

is the center vector for the k
th 

hidden unit and σ
k 

is the width of the 

Gaussian function and denotes the Euclidean norm.  
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The parameters of the RBFNN are updated using the RBF algorithm. The RBF algorithm 

is an exact analytical procedure for evaluation of the first derivative of the output error 

with respect to network parameters. In the present paper we apply a three layer RBF 

network with nonlinear output units.  

Let the error vector at the n
th 

instant is e(n) = d(n)-y(n) where d(n) = desired output vector 

and y(n) = estimated output vector. Let ξ(n) = ½ Σe2(n). The update equations for the 

center and width of the Gaussian function as well as the connecting and bias weights are 

derived as  

  (2.12) 

  (2.13) 

  (2.14) 

  (2.15) 

where Δμk(n), are the change of the centers and spread of the Gaussian functions; the 

Δαmk(n) and Δαmk0(n)  are the change in weights and the threshold of the RBFNN. These 

are computed by taking the partial derivative of ξ(n) with respect to different network 

parameters. The key equations obtained are stated in (2.16) to (2.19).  

 (2.16) 

 (2.17) 

  (2.18) 

   (2.19) 
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where η is the learning rate parameter (0 ≤ η ≤ 1). By applying each input patterns, the 

change in center location, width of the Gaussian function as well as the connecting 

weights and bias weights are calculated.  

2.2.4 Adaptive Neuro Fuzzy Inference System (ANFIS) 

ANFIS is an adaptive network based on typical fuzzy inference systems, in which 

outputs have been obtained using fuzzy rules on inputs. The scheme of a 2 inputs 1 

output system is depicted in Fig. 2.5; it is referred to type-3 reasoning, but can be 

extended, by means of simple adjustments, to type-1 and type-2 reasoning too. A node 

represented by a square has parameters and it is called adaptive node, while the circle 

shaped one has none and it is called fixed node; it is clear that the network in Fig. 2.5 has 

5 layers, but only nodes of layer 1 and 4 are adaptive ones. 

 

 
Fig 2.5 ANFIS Structure 

 

Parameters of the first layer are called premise parameters and define the 

membership function of the node; normally this function is bell-shaped with maximum 

equal to 1 and minimum equal to 0. The bell-shaped function is given as: 

 

  (2.20) 

Where x is the node input and a, b and c are the premise parameters  

(Ai or Bi = {ai, bi, ci}). 
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Layers 2 and 3 have no parameters; nodes on layer 2 apply a scaling factor to their 

inputs, while nodes on layer 3 generate the weights according to: 

 

    (2.21) 

 

Where w1 and w2 are the outputs of the node 1 and 2 of second layer. Nodes of 

layer 4 perform a simple linear combination of system inputs x and y by means of 

parameters p, q, r, called consequent parameters, as reported in the following equation: 

 

  (2.22) 

 

These four layers represent the equivalent of the Takagi and Sugeno fuzzy “if-

then” rule. The premise part is a linguistic label characterized by an appropriate 

membership function, thus allowing to capture the imprecise modes of reasoning typical 

of the human ability to make decisions in an environment of uncertainty and imprecision. 

On the contrary, the consequent part is described by a non-fuzzy equation of the input, as 

shown in the next equation: 

 

If x is A and y is B then f = p x + q y + r  (2.23) 

 

Layer 5 simply computes the sum of the layer 4 outputs in order to obtain the 

system output; in a fuzzy system, generally, the output is the weighted sum of the rules 

results, but in this case the weights have already been considered by previous layers, so a 

simple sum is enough. The number of nodes in layer 1 represents the number of fuzzy  

 

sets, while the dimension of layer 4 determines the number of fuzzy rules used in the 

system. Compared to neural networks, fuzzy rules can be considered as the equivalent of 

neurons, therefore, the more the fuzzy rules are employed, the more the elaboration 

performed by the system could result complex and flexible. Obviously, also the training 
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process results more complicated and more calibration points are needed to accomplish it. 

Since the ANFIS is equivalent to an adaptive network, typical training procedure of 

neural network, as the gradient descent method, can be applied. This technique uses the 

gradient method to identify parameters. The output f can be expressed as: 

 

   (2.24) 

 

 

2.3 Summary and Discussion 

 The various adaptive techniques used in the thesis are presented in this Chapter. The 

single layer network or perceptron and an adaptive filter using the LMS algorithm are 

naturally related, as evidenced by their weights updates. However, the perceptron and 

LMS algorithm differ from each other in some fundamental respects:  

• The LMS algorithm uses a linear neuron, whereas the perceptron uses the nonlinear 

neuron.  

• The learning process in the perceptron is performed for a finite number of iterations 

and then stops. In contrast, continuous learning takes place in the LMS algorithm.  

For MLP, the back propagation learning is the standard algorithm. The back-propagation 

algorithm derives its name from the fact that the partial derivatives of the cost function 

(performance measure) with respect to the free parameters (synaptic weights and biases) 

of the network are determined by back-propagating the error signals (computed by output 

neurons) through the network, layer by layer.  

The structure of an RBFNN is unusual in that the constitution of its hidden units is 

entirely different from that of its output units. Each hidden node consists of a Gaussian 

function. The learning algorithm of RBFNN is more or less equivalent to LMS algorithm.  
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This chapter deals with the nonlinearity compensation of Linear Variable Differential 

Transformer (LVDT). In many practical control systems LVDT is used as the sensing element 

for displacement. The performance of the control system depends upon the performance of the 

sensing elements. Many researchers have worked to design LVDT with high linearity. In its 

conventional design methodology achieving high linearity involves complex design task. 

Sophisticated and precise winding machines are used to achieve that. It is difficult to have all 

LVDT fabricated in a factory at a time to be equally linear. LVDT having different nonlinearity 

present in a control system malfunctions at times because of the difference in sensor 

characteristics.  

In Section 3.1, the electrical characteristics of LVDT are presented. Section 3.2 deals with the 

nonlinearity compensation of LVDT and its experimental set-up. The simulation studies are 

carried out using different ANN models (ADALIN, MLP, RBFNN and ANFIS) and the 

experimental dataset of a standard LVDT is dealt in Section 3.3. The result obtained from 

different models is compared in Section 3.4. 

3.1  Linear Variable Differential Transformer (LVDT)  

Linear displacement is movement in one direction along a single axis. A position or linear 

displacement sensor is a device whose output signal represents the distance an object has 

traveled from a reference point. A displacement measurement also indicates the direction of 

motion (See Figure 1). 

 

 
Fig 3.1 Linear Displacement measurement 

 

A linear displacement typically has units of millimeters (mm) or inches (in.) and a 

negative or positive direction associated with it. 

Linear variable differential transformers (LVDT) are used to measure displacement. 

LVDTs operate on the principle of a transformer. As shown in Figure 2, an LVDT consists of a 
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coil assembly and a core. The coil assembly is typically mounted to a stationary form, while the 

core is secured to the object whose position is being measured. The coil assembly consists of 

three coils of wire wound on the hollow form. A core of permeable material can slide freely 

through the center of the form. The inner coil is the primary, which is excited by an AC source as 

shown. Magnetic flux produced by the primary is coupled to the two secondary coils, inducing 

an AC voltage in each coil. 

 

Figure 3.2 General LVDT Assembly 

The main advantage of the LVDT transducer over other types of displacement transducer 

is the high degree of robustness. Because there is no physical contact across the sensing element, 

there is no wear in the sensing element. 

Because the device relies on the coupling of magnetic flux, an LVDT can have infinite 

resolution. Therefore the smallest fraction of movement can be detected by suitable signal 

conditioning hardware, and the resolution of the transducer is solely determined by the resolution 

of the data acquisition system. 

An LVDT measures displacement by associating a specific signal value for any given 

position of the core. This association of a signal value to a position occurs through 

electromagnetic coupling of an AC excitation signal on the primary winding to the core and back 

to the secondary windings. The position of the core determines how tightly the signal of the 

primary coil is coupled to each of the secondary coils. The two secondary coils are series-

opposed, which means wound in series but in opposite directions. This results in the two signals  
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on each secondary being 180 deg out of phase. Therefore phase of the output signal determines 

direction and its amplitude, distance. 

 

Figure 3.3 depicts a cross-sectional view of an LVDT. The core causes the magnetic field 

generated by the primary winding to be coupled to the secondaries. When the core is centered 

perfectly between both secondaries and the primary, as shown, the voltage induced in each 

secondary is equal in amplitude and 180 deg out of phase. Thus the LVDT output (for the series-

opposed connection shown in this case) is zero because the voltages cancel each other. 

 

 

 

 
 
 
 
 

 
 

 

1st Secondary Primary 2nd Secondary 

1st Secondary Primary 2nd Secondary 

CORE 

+  EOUT  - 

 

 

Figure 3.3 Cross-Sectional Views of LVDT Core and Windings 

 

 

Displacing the core to the left (Figure 3.4) causes the first secondary to be more strongly 

coupled to the primary than the second secondary. The resulting higher voltage of the first 

secondary in relation to the second secondary causes an output voltage that is in phase with the 

primary voltage. 
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Figure 3.4 Coupling to First Secondary Caused by Associated Core Displacement 

 
Likewise, displacing the core to the right causes the second secondary to be more 

strongly coupled to the primary than the first secondary. The greater voltage of the second 

secondary causes an output voltage to be out of phase with the primary voltage. 
 
 
  

1st Secondary Primary 2nd Secondary 

1st Secondary Primary 2nd Secondary 

CORE 

+  EOUT  - 

+  EOUT  - 

1st Secondary Primary 2nd Secondary 

1st Secondary Primary 2nd Secondary 

CORE

EOUT

EIN

EOUT

EIN

 
 
 
 
 
 

 

Figure 3.5 Coupling to Second Secondary Caused by Associated Core Displacement 
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To summarize, “The LVDT closely models an ideal zeroth-order displacement sensor 

structure at low frequency, where the output is a direct and linear function of the input. It is a 

variable-reluctance device, where a primary center coil establishes a magnetic flux that is 

coupled through a center core (mobile armature) to a symmetrically wound secondary coil on 

either side of the primary. Thus, by measurement of the voltage amplitude and phase, one can 

determine the extent of the core motion and the direction, that is, the displacement.” Figure 3.6 

shows the linearity of the device within a range of core displacement. Note that the output is not 

linear as the core travels near the boundaries of its range. This is because less magnetic flux is 

coupled to the core from the primary. However, because LVDTs have excellent repeatability, 

nonlinearity near the boundaries of the range of the device can be predicted by a table or 

polynomial curve-fitting function, thus extending the range of the device. 
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Figure 3. 6 Proportionally Linear LVDT Responses to Core Displacement 

 
3.1.1 Signal Conditioning for LVDTs 

Because the output of an LVDT is an AC waveform, it has no polarity. The magnitude of 

the output of an LVDT increases regardless of the direction of movement from the electrical zero 

position. 
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In order to know in which half of the device the center of the core is located, one must 

consider the phase of the output as well as the magnitude as compared to the AC excitation 

source on the primary winding. The output phase is compared with the excitation phase and it 

can be either in or out of phase with the excitation source, depending upon which half of the coil 

the center of the core is in. 

The signal conditioning electronics must combine information on the phase of the output 

with information on the magnitude of the output, so the user can know the direction the core has 

moved as well as how far from the electrical zero position it has moved. 

 

LVDT signal conditioners generate a sinusoidal signal as an excitation source for the primary 

coil. “This signal is typically between 50 Hz and 25 kHz. The carrier frequency is generally 

selected to be at least 10 times greater than the highest expected frequency of the core motion.” 

The signal conditioning circuitry synchronously demodulates the secondary output signal with 

the same primary excitation source. The resulting DC voltage is proportional to core 

displacement. The polarity of the DC voltage indicates whether the displacement is toward or 

away from the first secondary (displacement left or right). 

Figure 3.7 shows a practical detection scheme, typically provided as a single integrated 

circuit (IC) manufactured specifically for LVDTs. The system contains a signal generator for the 

primary, a phase-sensitive detector (PSD) and amplifier/filter circuitry.  

 

Figure 3.7 Sophisticated Phase-Sensitive LVDT Signal Conditioning Circuit 
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Broad ranges of LVDTs are available with linear ranges from at least ±50 cm down to ±1 

mm. The time response is dependent on the equipment to which the core is connected. The units 

of an LVDT measurement are typically in mV/V/mm or mV/V/in. This indicates that for every 

volt of stimulation applied to the LVDT there is a definite feedback in mV per unit distance. A 

carefully manufactured LVDT can provide an output linear within ±0.25% over a range of core 

motion, with very fine resolution. The resolution is limited primarily by the ability of signal 

conditioning hardware to measure voltage changes. 

 

3.1.2 Common Specifications 

Common specifications for commercially available translational LVDT's are listed 

below:  

Input: Power input is a 3 to 15 V (rms) sine wave with a frequency between 60 to 20,000 Hz 

(the two most common signals are 3 V, 2.5 kHz and 6.3 V, 60 Hz). 

 

Stroke: Full-range stroke ranges from ±125 µm to ±75 mm (±0.005 to ±3 in).  

 

Sensitivity: Sensitivity usually ranges from 0.6 to 30 mV per 25 µm (0.001 in) under normal 

excitation of 3 to 6 V. Generally, the higher the frequency the higher the sensitivity.  

 

Nonlinearity: Inherent nonlinearity of standard units is on the order of 0.5% of full scale. 

  

3.1.3 Pros and Cons 

Pros 

• Relative low cost due to its popularity. 

• Solid and robust, capable of working in a wide variety of environments. 

• No friction resistance, since the iron core does not contact the transformer coils, resulting 

in an infinite (very long) service life. 

• High signal to noise ratio and low output impedance. 

• Negligible hysteresis. 

• Infinitesimal resolution (theoretically). In reality, displacement resolution is limited by 

the resolution of the amplifiers and voltage meters used to process the output signal. 
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• Short response time, only limited by the inertia of the iron core and the rise time of the 

amplifiers. 

Cons 

• The core must contact directly or indirectly with the measured surface which is not 

always possible or desirable. However, a non-contact thickness gage can be achieved by 

including a pneumatic servo to maintain the air gap between the nozzle and the work 

piece. 

• Dynamic measurements are limited to no more than 1/10 of the LVDT resonant 

frequency. In most cases, this results in a 2 kHz frequency cap. 

 

3.2  Nonlinearity Compensation of LVDTs 

The proposed nonlinearity compensation scheme is shown in Fig. . In this scheme the LVDT 

can be controlled by a displacement actuator. The main controller gives an actuating signal to the 

displacement actuator, which displaces the core of the LVDT. The differential voltage of the 

LVDT after being demodulated does not keep linear relationship with the displacement. The 

nonlinearity compensator can be developed by using different ANN techniques like ADALIN, 

MLP, RBF-NN and ANFIS. The output of the ANN based nonlinearity compensator is compared 

with the desired signal (actuating signal of the displacement actuator) to produce an error signal. 

With this error signal, the weight vectors of the ANN model are updated. This process is 

repeated till the mean square error (MSE) is minimized. Once the training is complete, the 

LVDT together with the ANN model acts like a linear LVDT with enhanced dynamic range.  

 

 

 

 
 

Memory 
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LVDT 
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Fig 3.8 Scheme of nonlinearity compensation of LVDT 
 

 34



                                                          Nonlinear Compensation of Linear Variable Differential Transformer (LVDT)  

The practical set-up of the LVDT along with the ANN based nonlinearity compensator 

after the training is shown in Fig. 3.9.  

 

 
LVDT ANN 

Model
Displacement 

Displacement 
Read-out 

 
 

Fig. 3.9 Practical set-up of LVDT after training 

 

3.3 Simulation Studies 

To demonstrate the effectiveness these ANN based nonlinear compensators, computer 

simulation studies are carried out using experimental data obtained from a typical LVDT. The 

observation readings are: 

Table 3.1 Experimental Measured Data 

Displacement 
(in mm) 

Differential Output 
Voltage 

(erms in mVolt ) 

Demodulated Voltage Output 
(e in mVolt) 

-30 4.085 5.185 

-25 3.956 5.017 

-20 3.731 4.717 

-15 3.221 4.039 
-10 2.359 2.896 
-5 1.273 1.494 

Null position (0) 0.204 0.001 

5 1.153 1.462 

10 2.226 1.810 

15 3.118 3.962 

20 3.748 4.799 
25 4.050 5.225 
30 4.085 5.276 
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3.3.1 ADALIN Based Non-linearity Compensation 

The differential or demodulated voltage e at the output of LVDT is normalized by 

dividing each value with the maximum value. The normalized voltage output e is subjected to 

functional expansion and than input to the single neuron perceptron based nonlinearity 

compensator. The output of neuron contains tanh(.) type activation function. The output of the 

ADALIN based nonlinearity compensator is compared with the normalized input displacement 

of the LVDT. The widrow-hoff algorithm, in which both the learning rates are chosen as 0.07, is 

used to adapt the weights of the Neuron. Applying various input patterns, the ANN weights are 

updated using the widrow-hoff algorithm. To enable complete learning, 1000 iterations are 

made. Then, the weights of neurons are frozen and stored in the memory. During the testing 

phase, the frozen weights are used in the ADALIN model. Fig. shows the nonlinearity 

compensation of LVDT by ADALIN. In this model the MSE is obtained to be 0.34 % 

 

 

 

 

 

 

 

 

 

 
Fig 3.10 Architecture of ADALIN Network 
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Fig 3.11 Response of ADALIN Network for LVDT nonlinearity compensation 

 

 
Fig 3.12 Mean Square Error (MSE) Plot of ADALIN for LVDT nonlinearity compensation 
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Table 3.2 ADALIN Simulation Validation 
 

Input to 
ADALIN 

Model 
(mVolt) 

Output of Actual Mean ADALIN Displacement Error  Square model in mm in mm d(n) Error y(n) 
-5.0170 -25.000 -25.3630 0.3630 

-2.8960 -10.000 -9.34840 -0.6516 

0.0010 0 0.2590 -0.2590 0.0034 

1.4620 5.0000 4.30340 0.6966 

4.7990 20.000 21.8853 -1.8853 

 
 

3.3.2 MLP Based Non-linearity Compensation 

 

The differential or demodulated voltage e at the output of LVDT is normalized by 

dividing each value with the maximum value. The normalized voltage output e is subjected to 

input to the MLP based nonlinearity compensator. In case of the MLP, we used different neurons 

with different layers. However, the 1-30-50-1 network is observed to perform better hence it is 

chosen for simulation. Each hidden layer and the output layer contains tanh(.) type activation 

function. The output of the MLP based nonlinearity compensator is compared with the 

normalized input displacement of the LVDT. The BP algorithm, in which both the learning rate 

and the momentum rate are chosen as 0.01 and 1 respectively, is used to adapt the weights of the 

MLP. Applying various input patterns, the ANN weights are updated using the BP algorithm. To 

enable complete learning, 400 iterations are made. Then, the weights of the various layers of the 

MLP are frozen and stored in the memory. During the testing phase, the frozen weights are used 

in the MLP model. Fig 3.13 shows the nonlinearity compensation of LVDT by MLP. In this 

model the MSE is obtained to be 0.0022.  
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Fig 3.13 Response of MLP Network for LVDT nonlinearity compensation 

 

 
Fig 3.14 Mean Square Error (MSE) Plot of MLP for LVDT nonlinearity compensation 
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Table 3.3 MLP Simulation Validation 

 

Input to Actual Output of Mean 
MLP Model 

(mVolt) 
Displacement 
in mm d(n) 

MLP model Error  Square 
in mm y(n) Error 

-5.0170   -25.0000   -24.5550    -0.4450 

 -4.0390   -15.0000   -15.4966    0.4966 

0.0010        0 -0.0108     0.0108 0.0022 

1.4620     5.0000     4.7072     0.2928 

4.7990    20.0000    21.6670    -1.6670 

 

3.3.3 RBFNN Based Non-linearity Compensation 

 
Unlike the MLP, the RBFNN is a single layered network. The detailed theory of RBFNN 

is depicted in Chapter 2. For the simulation, an RBFNN with a 1-5-1 structure is chosen for 

inverse modeling of a LVDT. (1, 5, and 1 denote the number of nodes in the input layer, the first 

layer including the bias units, i.e. the hidden layer and the output layer of the ANN, 

respectively). The update algorithm, in which both the learning rate is chosen as 0.07, is used to 

adapt the weights of the RBFNN. The normalized LVDT voltage ()is used as input pattern, and 

the LVDT input displacement () is used as the desired pattern to the RBFNN. After application 

of all patterns, the ANN weights are updated using the update algorithm. This process is repeated 

till the mean square error (MSE) is minimized. Once the training is complete, the RBFNN model 

will work as inverse model of LVDTs. To make the training successful, 2,000 iterations are 

needed. Once the training is complete the weights of the RBFNN can be frozen. During the 

testing phase, the frozen weights of RBFNN model are used for testing. Then the inputs, from 

the test set are fed to this model. The model output is computed and compared with the actual 

displacement to verify the effectiveness of the model. Here the centers of RBFNN were selected 

by hit and trial in order to get lowest mean square error. 
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Fig 3.15 Response of RBFNN Network for LVDT nonlinearity compensation 
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Fig 3.16 Mean Square Error (MSE) Plot of RBFNN for LVDT nonlinearity compensation 
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Table 3.4 RBFNN Simulation Validation 
 

Input to 
RBFNN 
Model 

(mVolt) 

Output of Actual Mean RBFNN Displacement Error  Square model in mm in mm d(n) Error y(n) 
-5.0170   -25.0000   -24.9626    -0.0374 

-2.8960   -10.0000   -10.9876    0.9876 

0.0010        0 -0.0643     0.0643 0.0014 

1.4620     5.0000     5.3526    -0.3526 

3.9620    15.0000    15.8476    -0.8476 

 
 

3.3.4 ANFIS Based Non-linearity Compensation 

 

Like the MLP, the ANFIS is a two layered network. The detailed theory of RBFNN is 

depicted in Chapter 2. For the simulation, an ANFIS with a 1 × 8 Fuzzy input triangular member 

(Rules) as shown in fig 3.19 is chosen for inverse modeling of a LVDT. The ANFIS structure 

chosen for nonlinearity compensation is shown in fig 3.16.  The LMS update algorithm is used 

for update of adaptive weights as it is of sugeno model. The normalized LVDT voltage ()is used 

as input pattern, and the LVDT input displacement () is used as the desired pattern to the ANFIS. 

After application of all patterns, the weights (Wi) are updated using the update algorithm. This 

process is repeated till the mean square error (MSE) is minimized. Once the training is complete, 

the RBFNN model will work as inverse model of LVDTs. To make the training successful, 200 

iterations are needed. Once the training is complete the weights of the ANFIS can be frozen. 

During the testing phase, the frozen weights of ANFIS model are used for testing. Then the 

inputs, from the test set are fed to this model. The model output is computed and compared with 

the actual displacement to verify the effectiveness of the model. In this model the MSE is 

obtained to be 0.00077. 
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Fig 3.17 ANFIS model for LVDTs nonlinearity compensation 
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Fig 3.18 Response of ANFIS Network for LVDT nonlinearity compensation 
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Fig 3.19 Input membership function for ANFIS structure used for nonlinearity compensation of 

LVDT 
 
 
 
 
 

Table 3.5 ANFIS Simulation Validation 
 

Actual Displacement
in mm 

d(n) 

Output of ANFIS model Error   in mm y(n) 

-20.001 -19.6380 1.815  

5.0010 4.97700 0.479  

15.000 14.9640 0.240  
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3.4 Comparison and Discussion 
 
 

Table 3.6 Comparison of Different network for nonlinearity compensation 
 

Network MSE 

ADALIN 0.00340 

MLP (1:30:50:1) 0.00220 

RBFNN (1:4:1) 0.00140 

ANFIS (sugeno) 0.00077 

 

Different efficient ANN based nonlinearity compensators for LVDT are developed in this 

Chapter. The nonlinearity compensation capability of ADALIN and MLP is poor; the MSE is 

about 0.0034 and 0.0022. The ANFIS based nonlinearity compensator improves the linearity 

quite appreciably about 0.00077.  
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Flow measurements using conventional flow meters for feedback on the flow-control 

loop cause pressure drop in the flow and in turn lead to the usage of more energy for pumping 

the fluid. This chapter presents an alternative approach for determining the flow rate without 

flow meters. The restriction characteristics of the flow-control valve are captured by a neural 

network (NN) model. The relationship between the flow rate and the physical properties of the 

flow as well as flow-control valve, that is, pressure drop, pressure, temperature, and flow-control 

valve coefficient (valve position) is found. With these accessible properties, the NN model yields 

the flow rate of fluid across the flow-control valve, which acts as a flow meter. The viability of 

the methodology proposed is illustrated by real flow measurements of water flow which is 

widely used in hydraulic systems. 

 

 

4.1 Introduction 

 

Control of fluid flow is essential in process-control plants. Fig. 4.1 shows the scheme of 

the conventional flow-control loop. The signal of flow measured using the flow meter is 

compared with the signal of the desired flow by the controller. The controller output accordingly 

adjusts the opening/closing actuator of the flow-control valve in order to maintain the actual flow 

close to the desired flow. Typically, flow meters of comparatively low cost such as turbine-type 

flow meters and venturi-type meters are used to measure the volumetric quantity of fluid flow in 

unit time in a flow process. However, the flow meter inevitably induces a pressure drop in the 

flow. In turn, this results in the use of more energy for pumping the fluid. To avoid this problem, 

non-contact flow meters, i.e. electromagnetic-type flow meters, have been developed and are 

widely used in process plants not only because there is no requirement for installation in the 

pipeline but also because introduction to the differential pressure across pipelines is not 

necessitated. Unfortunately, the cost of such non-contact measurement is comparatively much 

higher than that of its conventional counterparts. 
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Controller 
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Control Valve 

Fluid Flow Flow Meter

Fig 4.1 Conventional Flow Control 

 

In this study, an alternative approach is proposed to obtain the fluid flow measurement for 

flow-control valves without the pressure drop and the consequent power loss that appear in 

conventional flow meters. Without the flow meter, it is a fact that the flow rate can be 

determined from the characteristics of the control valve for flow measurements. In this method, 

the restriction characteristics of the control valve embedded in a neural network (NN) model are 

used in determining the flow rate instead of actual measurement using a conventional flow 

meter. 

 

4.2 Background principle 

For the restriction characteristics of the valve, the flow rate of fluid passing through the flow-

control valve can be determined by the physical properties of the flow and the control valve, that 

is, 

  (4.1) 

With the ratio of pressure drop to the upstream pressure, 

 

   (4.2) 

 

Where Q is the flow rate, η is the numerical multiplier for compatible units, Cv is the 

valve coefficient, P is the upstream pressure, Y is the expansion factor, γ is the specific gravity, T 
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is the upstream temperature, Z is the compressibility factor and ΔP is the pressure drop across the 

flow-control valve.  

The expansion factor can be calculated by: 

   (4.3) 

Where Fk is the ratio of specific heat factor and xT is the terminal pressure-drop ratio. The 

ratio of specific heat factor is defined as: 

   (4.4) 

With the specific heat ratio, k, expressed as: 

 

    (4.5) 

 

  

Where cp is the specific heat at constant pressure and cv is the specific heat at constant 

volume. For example, the value of k is equal to 1.4 for air. 

The compressibility ratio Z is determined by the pressure and temperature normalized 

with respect to the critical pressure and temperature. The normalized pressure and temperature 

are called the reduced pressure Pr and the reduced temperature Tr, respectively. The value of Z 

can be expressed as: 

Z=f(Pr,Tr)   (4.6) 

 
with 

   (4.7) 
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And 

    (4.8) 

 

Where Pc is the critical pressure and Tc is the critical temperature. For air, the critical 

pressure and temperature are specified as 3.39 MPa and −147 °C, respectively. 

 

Now, let us consider equation (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8). It can 

be concluded that the flow rate of fluid flowing through the control valve is dependent upon the 

properties of both the fluid and the control valve. These are the pressure drop ΔP, the upstream 

pressure P, the upstream temperature T, and the valve coefficient Cv that is given by Eq. (4.9). 

  (4.9) 

From Eq. (4.9), it should be noticed that the valve coefficient depends on not only the 

physical properties of the fluid but also the degree of variation of fluid flow in the opening of the 

control valve (%). Hence, the general relation of the flow rate can be written as a function in 

terms of the physical properties of the fluid and control valve in Eq. (4.10).

 

Q=f(ΔP,P,T,%)  (4.10) 
 

Now, if the non-linear relation in Eq. (4.10) is known, the flow rate of fluid can be obtained by 

simply measuring pressure, temperature and the percentage of opening in the control valve. 

However, the computational calculations of the flow rate from (4.1), (4.2), (4.3), (4.4), (4.5), 

(4.6), (4.7) and (4.8) may not be practical for the real-time control of the flow-control valve due 

to strong non-linearity and complexity. To overcome this problem, the NN is used to capture the 

relationship between the flow rate and the properties of the flow and the control valve. 
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4.3 Equal Percentage type Control Valve Actuators 

 

Valve is essentially a variable orifice. Control valve is a valve with a pneumatic, 

hydraulic, electric (excluding solenoids) or other externally powered actuator that automatically, 

fully or partially opens or closes the valve to a position dictated by primarily to throttle energy in 

a fluid system and not for shutoff purpose.  

 
 

Fig 4.2 Cross sectional view of Control valve (Action Air to open) 

 

The figure 4.2 shows basic elements and internal parts of typical pneumatic control valve. 

Depending upon the valve plug design the control valves can be classified as quick opening, 

linear and equal percent type. 

 

The relation between the flow through the valve and the valve stem position (or lift) is 

called the valve characteristics. It may be differentiated as inherent flow characteristics and 

installed flow characteristics. The inherent flow characteristics refer to the characteristics 

observed with constant pressure drop across the valve. Where as the installed flow 

characteristics refers to the characteristic observed when the valve is in service with varying 
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pressure drop and other changes in the system. The relation between the flow through the valve 

and the valve stem position (or lift) is called the valve characteristics. 

For the equal percentage valve, the sensitivity can be  

   (4.11) 

Where β is constant, m is flow and x is valve opening. 

Integration of (4.11) gives  

  (4.12) 

Or  

   (4.13) 

Where m0 
is the flow at x = 0. 

The basis for calling the valve characteristics equal percentage can be by rearranging (4.11) in 

the form  

  (4.14) 

in this form it can be seen that an equal fractional (or percentage) change in flow Δm/m occurs 

for a specified increment of change in stem position Δx, regardless of where the change in stem 

position occurs along the change the characteristic curve.  

 by inserting m=1 at x=1 into (4.13). The result is  The term β can be expressed in terms of m0
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Then (4.12) for m gives  

 

  (Equal percentage valve) 

m is the flow at x=0. m0 0 cannot be zero since there may be some leakage when the stem is at its 

lowest position. For some valves, especially large ones, the valve manufacturer intentionally 

allows some leakage at minimum lift (x=0) to prevent binding and wearing of the plug and seat 

surfaces.  

 

4.4 Experimental Set-up 

Experimental data were collected from laboratory control valve trainee set-up as shown 

in figure below. 

Inlet Outlet 

F P
PC

Control 
Valve 

F: Flow Measurement (LPH) 
P: Pressure Measurement(Psi) 
PC: Control Valve opening 
        Measurement (%) 

 

 

 

 

 

Fig 4.3 Arrangement for Control valve measurement 

The flow of water inside the pipe depends upon the opening of control valve. The 

opening of control valve is pneumatically controlled using pneumatic pressure ranges from 3 to 

15 Psi, and depending upon the opening of control valve position, flow inside the pipe changes 

from 100 to 1000 liter/hour (LPH). Relation between valve opening position (%) and flow (LPH) 

is shown below which is nonlinear. 
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Fig 4.4 Normalized Valve position Vs Normalized flow 

For each valve position its respective differential pressure (Psi) were also measured. For 

valve position (0 % to 100 %), differential pressure changes from 0 to 30 Psi. Relationship 

between valve position (%) and differential pressure (Psi) is shown in figure below. Thus using 

the relationship between flows, differential pressure and valve opening position the neural 

network (NN) can be trained to estimate the flow in LPH. 
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Fig 4.5 Normalized valve position Vs differential pressure (Psi) 
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Fig 4. 6 Relation between Stem position, Differential pressure and Flow of control Valve 

4.5 Direct Modeling 

 

Fig 4.7 Real-time implementation of proposed flow-control valve. 

The direct modeling is analogous to that of the system identification problem in control 

system. The purpose of the direct model is to obtain an ANN model of the control valve in such a 

way that flow through control valve and output of ANN match closely. Once a model of the 

Control valve is available, it may be used for determination of flow through valve. By changing 

the stem position of control valve, the response is the change in flow (LPH) value with respect to 

the change in pressure difference across valve. Since the temperature almost remain constant 

(26.50C), both normalized pressure () and normalized stem position () are used as input to the 

ANN model. The output flow () through Control valve and that of the ANN model are compared 

to produce the error signal. This error information is used to update the ANN model. The model 
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of Control valve has been developed by separately applying all types of neural models such as 

MLP, RBFNN and ANFIS. 

 
 

4.6 The MLP Based Direct Modeling 

 
The MLP technique based direct models have been simulated extensively in MATLAB 

7.0 environment. Simulation studies for MLP network are carried out to obtain a direct model of 

the Control valve. For the simulation study, a two-layer MLP with a 20-20-1 structure is chosen 

for direct modeling of a Control valve. (20, 20, and 1 denote the number of nodes including the 

bias units in the input layer, the first layer, i.e. the hidden layer and the output layer of the ANN, 

respectively). The hidden layer and the output layer contain the tanh (.) type activation function. 

The back-propagation (BP) algorithm, in which both the learning rate and the momentum rate 

are chosen as 0.08 and 1 respectively, is used to adapt the weights of the MLP. The normalized 

valve stem position () and the normalized differential pressure () are used as input pattern, and 

the respective flow through control valve () is used as the desired pattern to the MLP. After 

application of each pattern, the ANN weights are updated using the BP algorithm. Completion of 

all patterns of all the training sets constitutes one iteration of training. To make the learning 

complete and effective, 1000 epoch are made to train the ANN. Then, the weights of the MLP 

are frozen and stored in a database. During the testing phase, the frozen weights are loaded into 

the MLP model. Then the inputs, from the test set are fed to this model. The model output is 

computed and compared with the actual output to verify the effectiveness of the model which 

gives mean square error (MSE) of 0.0045. The Control valve response characteristic for 

respective valve opening is shown below. 
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Fig 4.8 Plot of true and estimated forward characteristics of Control valve by MLP 
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Fig 4.9 Flow-rate profile of MLP model against valve position and Pressure drop with constant 
upstream pressure 

 57



                                                                                                           Flow- sensorless control valve  
 

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Epoch

M
ea

n 
sq

ua
re

 e
rro

r

 

Fig 4.10 Mean Square Error plot while training MLP system for direct model of Control valve 

 

4.7 Radial Basis Function NN based Direct modeling 

 

The RBFNN technique based direct models have been simulated extensively in 

MATLAB 7.0 environment. Simulation studies for MLP network are carried out to obtain a 

direct model of the Control valve. For the simulation study, a RBFNN with a 1-4-1 structure is 

chosen for direct modeling of a Control valve. (1, 4, and 1 denote the number of nodes in the 

input layer, the first layer including the bias units, i.e. the hidden layer and the output layer of the 

ANN, respectively). The update algorithm, in which both the learning rate is chosen as 0.07, is 

used to adapt the weights of the RBFNN. The normalized valve stem position () and the 

normalized differential pressure () are used as input pattern, and the respective flow through 

control valve () is used as the desired pattern to the RBFNN. After application of each pattern, 

the ANN weights are updated using the RBF learning algorithm described in chapter 2. 

Completion of all patterns of all the training sets constitutes one iteration of training. Here the 

centers of RBFNN were selected by hit and trial in order to get lowest mean square error. To 

make the learning complete and effective, 1500 epoch are made to train the RBFNN.  Then, the 

weights of the RBFNN are frozen and stored in a database. During the testing phase, the frozen 
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weights are loaded into the RBFNN model. Then the inputs, from the test set are fed to this 

model. The model output is computed and compared with the actual output to verify the 

effectiveness of the model which gives mean square error (MSE) of 0.00027. The Control valve 

response characteristic for respective valve opening using RBFNN is shown below. 
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Fig 4.11 Plot of true and estimated forward characteristics of Control valve by RBF (NN) 
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Fig 4.12 Mean Square Error plot while training RBF (NN) system for direct model of Control 
valve 
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4.8 Experimental Validation 

Table 4.1 MLP Experimental results 

Normalized MLP Output 

Normalized desired Flow (Flow) 

1.000 0.8234 

0.7000 0.7207 

0.4950 0.5761 

0.3500 0.3882 

0.2400 0.2153 

0.1750 0.1407 

0.1200 0.1265 

0.0850 0.0911 

0.0650 0.0532 

 

 

The table 4.1 show the output of MLP ANN model, on the left column it represent 

normalized desired flow and right column shows the respective estimated flow of MLP structure. 

Similarly table 4.2 shows for RBFNN structure. By comparing both the table 4.1 and 4.2, it 

shows that RBFNN estimate more closely as compared to MLP structure. 
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Table 4.2 RBFNN Experimental results 

Normalized RBFNN 

Normalized desired Flow Output(Flow) 

0.9699     1.000 

0.7393     0.7000 

0.4930     0.4950 

0.3452     0.3500 

0.2345     0.2400 

0.1628     0.1750 

0.1263     0.1200 

0.0981     0.0850 

0.0718 0.0650 

 

4.9 Conclusion 

Conventional flow measurement for flow-control valves can cause undesired pressured 

drops and increase in pumping energy. Since the flow-control valve has already been used for 

flow control in the pipeline and the properties of flow and the flow-control valve are accessible, 

neural computing is proposed to determine the flow rate of fluid instead of using a flow meter. 

To obtain the NN model, the input/output data of the relationship between the flow rate and the 

properties of fluid flow and the flow-control valve are required. With these properties available, 

the NN model yields the flow rate of fluid across the flow-control valve, which acts as the flow 

meter. The experimental results show the viability of practical implementation for flow-control 

processes. 
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5.1 Introduction  

Since the NN model is capable of approximating any continuous non-linear function with 

certain accuracy, the NN model as described in chapter 4, which has been described in Section 

4.2, is used to determine the actual flow rate of the fluid across the flow-control valve after 

measuring the properties of the flow and flow-control valve. The flow rate obtained is compared 

with the desired one in order to adjust the flow-control valve such that the difference in flow rate 

is minimized. Fig. 4.7 shows the block schematic of the flow-control valve acting as the flow 

meter. Furthermore, it should be mentioned that Fig. 5.1 shows another possible scheme of fluid 

flow control by using the inverse of the NN model in Fig. 4.7. The inverse of the NN model 

provides the valve controller with the corresponding valve position (%) for the desired flow rate. 

The inverse of the NN model can be obtained with the same training dataset obtained in chapter 

4 by switching the flow rate to be the input of the NN model and the valve position (%) to be the 

output. 

 

 
 

Fig 5.1 Flow-control valve with inverse of NN model. 
 

 
5.2 Simulation Work 

First we found out the relation between flow Vs valve opening and flow Vs back pressure 

as shown in next page. Desired flow and back pressure is given as input to Inverse NN model 

and position of valve is computed by NN which is further compared with actual position and 

then error is calculated to trained the NN model to respond actual position. 
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Fig 5.2 Relation between Normalized flow and Valve opening 
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Fig 5.3 Relation between Normalized flow and Back Pressure of control valve 
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So, we have got the relation between flow, back pressure and valve position as, 

 

) = F (flow, temperature, back pressure) (5.1) 

ow, using these above relation the NN network will be trained and we have used MLP 

neural 

.3 MLP based Inverse modeling of Control Valve 

The MLP technique based direct models have been simulated extensively in MATLAB 

7.0 env

 

  Stem position (%

 

N

structure to design the inverse control valve model. 

 
 
 
 
 
5
 
 

ironment. Simulation studies for MLP network are carried out to obtain a inverse model 

of the Control valve. For the simulation study, a two-layer MLP with a 50-50-1 structure is 

chosen for direct modeling of a Control valve. (50, 50, and 1 denote the number of nodes 

including the bias units in the input layer, the first layer, i.e. the hidden layer and the output layer 

of the ANN, respectively). The hidden layer and the output layer contain the tanh (.) type 

activation function. The back-propagation (BP) algorithm, in which both the learning rate and 

the momentum rate are chosen as 0.08 and 1 respectively, is used to adapt the weights of the 

MLP. The normalized desired flow () and the normalized differential pressure () are used as 

input pattern, and the respective normalized valve stem position () is used as the desired pattern 

to the MLP. After application of each pattern, the ANN weights are updated using the BP 

algorithm. Completion of all patterns of all the training sets constitutes one iteration of training. 

To make the learning complete and effective, 1000 epoch are made to train the ANN. Then, the 

weights of the MLP are frozen and stored in a database. During the testing phase, the frozen 

weights are loaded into the MLP model. Then the inputs, from the test set are fed to this model. 

The model output is computed and compared with the actual output to verify the effectiveness of 

the model which gives mean square error (MSE) of 0.0052. The inverse Control valve response 

characteristic for respective valve opening is shown below. 
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Fig 5.4 MLP based inverse control valve model 
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Fig 5.5 Mean Square Error plot while training MLP system for Inverse model of Control valve  
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5.4 Conclusion 

The input to the flow controllers are generally position of the control valve. Here, the 

inverse model of control valve is perfectly designed using MLP network to give the position of 

valve, with this design we easily fulfill the input requirement of flow controller. The result has 

shown that the inverse ANN model of control valve totally estimate the position of control valve 

with the mean square error of 0.0052 which is tolerable. It will more closely estimate by 

designing inverse ANN model using RBF-NN or ANFIS structure. 
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6.1 Conclusion 

(1) It investigates on the nonlinearity issues relating to LVDT sensor. 

 (2) The nonlinearity problem gives rise to the following difficulties:  

(i) Non accuracy in measurement  

(ii) Limitation of dynamic range (linearity region)  

(iii) Full potentiality of the sensor cannot be utilized.  

(3) The nonlinearity problem arises due to:  

(i) Environmental changes such as change in temperature, humidity and atmospheric 

pressure  

(ii) Aging  

(iii) Constructional limitations.  

(4) In this thesis adaptive and intelligent methods for compensation of nonlinearities have been 

proposed and have been applied to three typical sensors.  

(5) These methods are based on the following structures:  

 (i) ADALIN  

 (ii) MLP  

 (iii) RBFNN 

 (iv) ANFIS  

The learning algorithms employed in the thesis are:  

 (i) LMS algorithm in ADALIN and ANFIS 

 (ii) BP algorithm in MLP  

 (iii) RBF learning algorithm  

(6) Basically nonlinear compensation has been achieved through Inverse modeling of the sensors  
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(7) Exhaustive simulation studies of various methods show that RBFNN and ANFIS structures 

provide improved non-linearity compensation performance but involves more computations and 

tedious to implement.  

(8) This thesis also include removal of conventional flow sensors which puts loss of energy by 

pumps in liquid flow line by implementing neural network (NN) flow sensors. The ANN 

includes MLP and RBFNN structure. 

6.2 Scope for Future Research Work 

Many further research works may be carried out on the same and related topics.  

(1) For developing the inverse model, supervised learning has been used. It has employed 

training data. In many situations the training data is not available. In absence of such data, 

training can be carried out by employing blind techniques which are known as unsupervised 

method. Investigation is needed to develop nonlinear compensator using blind techniques such as 

higher order statistics (HOS).  

(2) The investigation made in this thesis can also be extended to other types of sensors and 

instruments.  

(3) Practical implementation of the inverse model as a plug-in-module, cascading it with physical 

sensors and using the combined ones for real-time applications is very important. Further 

research work can be carried out in this direction.  

(4) ANFIS techniques can be used for implementing sensorless flow measurement, which can 

provide more estimation toward the desired flow. 

(5) DSP and FPGA implementation of the proposed nonlinearity compensators and sensorless 

flow can be carried out as further research work. 
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