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Independent Component Analysis (ICA) is a statistical signal processing 

technique having emerging new practical application areas, such as blind separation 

of mixed voices or images, analysis of several types of data or feature extraction. 

This thesis develops linear and nonlinear independent component analysis methods 

which exploit the computational intelligence of evolutionary techniques. A fixed-

point error estimation of the linear ICA techniques for their Very Large Scale 

Integrated Circuits (VLSI) implementation is carried out. The linear ICA technique 

is applied to interference cancellation in direct sequence spread spectrum 

communications.  

Novel methods for ICA using evolutionary computation techniques are 

developed. The use of evolutionary computation based optimizations in ICA 

resolves the permutation ambiguity to a large extent. This also ensures the 

convergence of the algorithm to a global optimum. 

Most of the real world mixtures are nonlinear in nature. Separation of signals 

from their nonlinear mixtures is performed by nonlinear ICA technique. Though 

several algorithms exist for linear ICA, very less work has been carried out on 

nonlinear ICA algorithms. A computationally intelligent technique called bacterial 

foraging based optimization is used for ICA algorithms for separation of signals 

from their post nonlinear mixtures. 

ICA techniques being computationally demanding, give rise to errors when 

implemented by using fixed-point arithmetic. Hence an error analysis becomes 

inevitable prior to their implementation by using any VLSI architecture. An analysis 

on the effects of finite register length on different ICA algorithms for their VLSI 
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implementation is carried out. The most popular fixed-point fast ICA algorithm is 

implemented in FPGA.  

The spread spectrum technology forms the backbone of the third generation 

wireless communication systems and possible future ones. ICA algorithms can be 

conveniently applied in wireless communication systems such as Direct Sequence 

Spread Spectrum receivers (DS-SS) based receivers. Different ICA techniques 

developed in this thesis are applied to mitigate the interference in Direct Sequence 

Spread Spectrum receivers. When ICA is used for separation of interference and the 

DS-SS signal, two antenna array diversity is used. However at the output of the ICA 

block, the recognition of the signal from the two separated outputs becomes very 

much necessary. This is due to the inherent permutation ambiguity of ICA 

techniques and is generally accomplished in many cases by correlation with a 

training signal. But in some cases the correlation techniques do not yield satisfactory 

result, and also it becomes advantageous to avoid the processing overhead of signal 

classification. In such cases the evolutionary ICA techniques seem to be beneficial. 

This issue has been taken up in the present work. 





 

Chapter 

I 





 

INTRODUCTION 

 

 

 
 

 

 

1.1 Motivation   
  

Real world problems very often provide minimum information regarding their 

causes. This is mainly due to the system complexities and noninvasive techniques 

employed by scientists and engineers to study such systems. Signal and image 

processing techniques used for analyzing such systems essentially tend to be blind. 

Earlier, training signal based techniques were used extensively for such analyses. 

But many times either these training signals are not practicable to be availed by the 

analyzer or become burden on the system itself. Hence blind signal/image 

processing techniques are becoming predominant in modern real time systems. In 

fact, blind signal processing has become a very important topic of research and 

development in many areas, especially biomedical engineering, medical imaging, 

speech enhancement, remote sensing, communication systems, exploration 

seismology, geophysics, econometrics, data mining, sensor networks etc. Blind 

Signal Processing has three major areas: Blind Signal Separation and Extraction, 

Independent Component Analysis (ICA) and Multichannel Blind Deconvolution and 

Equalization. ICA technique has also been typically applied to the other two areas 

mentioned above. Hence ICA research with its wide range of applications is quite 

interesting and has been taken up as the central domain of the present work. 

  Though several efficient ICA algorithms have been reported in literature, 

they suffer from the following problems. 
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Permutation and Scaling Ambiguity: 

Almost all of the ICA algorithms suffer from the problem that the recovered 

independent components are not in a proper order always. With different 

initializations their order of appearance varies. Also the components are estimated 

only up to multiplicative scalar. 

Convergence to different Solutions: 

Many (not all) gradient ICA algorithms converge to different solutions for 

different initializations.  

Nonlinear ICA: 

Most of the real world mixtures are nonlinear in nature. Separation of signals 

from their nonlinear mixtures is performed by nonlinear ICA technique.Though 

several algorithms exist for linear ICA, very less work has been carried out on 

nonlinear ICA algorithms. 

Apart from these problems, there has been no analysis in literature for error 

introduced due to fixed-point hardware implementation of any of the ICA 

algorithms. 

The spread spectrum technology forms the backbone of the third generation 

systems and possible future ones. ICA algorithms can be conveniently applied in 

wireless communication systems such as DS-SS based receivers.  

1.2 Scope of the Thesis 
 

 This thesis was born out of the need to develop linear and nonlinear 

independent component analysis methods which exploit the computational 

intelligence of evolutionary techniques, carry out a fixed-point error estimation of 

the linear ICA techniques for their Very Large Scale Integrated Circuits (VLSI) 

implementation and apply linear ICA to interference cancellation in direct sequence 

spread spectrum communications. Hence, the following are outlined as the scope of 

this thesis: 

1. To develop novel methods for ICA using evolutionary computation 

techniques. The use of evolutionary computation based optimizations in ICA 



Introduction 

 

 

3 

resolves the permutation ambiguity to a large extent. This also ensures the 

convergence of the algorithm to a global optimum. 

2. To apply the computationally intelligent techniques for ICA algorithms for 

separation of signals from their post nonlinear mixtures. 

3. To carry out an analysis on the effects of finite register length on different 

ICA algorithms for their VLSI implementation and to implement the most popular 

fast ICA algorithms in FPGA. ICA techniques being computationally demanding, 

give rise to errors when implemented by using fixed-point arithmetic. Hence an error 

analysis becomes inevitable prior to their implementation by using any VLSI 

architecture. The scope also covers a fixed-point implementation of fast ICA 

algorithm for prototype demonstration to supplement the validity of error analysis. 

4. To apply different ICA techniques to interference suppression in DS-SS 

receivers. When ICA is used for separation of interference and the DS-SS signal, 

two antenna array diversity is used. However at the output of the ICA block, the 

recognition of the signal from the two separated outputs becomes very much 

necessary. This is due to the inherent permutation ambiguity of ICA techniques and 

is generally accomplished in many cases by correlation with a training signal. But in 

some cases the correlation techniques do not yield satisfactory result, and also it 

becomes advantageous to avoid the processing overhead of signal classification. In 

such cases the evolutionary ICA techniques seem to be beneficial. This issue has 

been taken up in the present work. 

The structure of the proposed thesis is detailed below. 
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1.3 Structure and Chapter wise Contribution of the 

Thesis  
 

Chapter-I 

Introduction 

 
The motivation behind the Independent Component Analysis problem is 

introduced. The reported work on this topic is reviewed in this chapter. The 

summary of the contributions is also outlined. 

 

Chapter-II 
 

Review of Independent Component Analysis and its 

applications 
 

In this chapter the basic principle behind the independent component analysis 

technique is discussed. The contrast functions for different routes to independence 

are clearly depicted. Different existing algorithms for ICA are briefly illustrated and 

are critically examined with special reference to their algorithmic properties. The 

ambiguities present in these algorithms are also presented. Finally the application 

domains of this novel technique are presented. Some of the futuristic works on ICA 

technique which need further investigation are development of nonlinear ICA 

algorithms, design of low complexity ICA algorithms and use of evolutionary 

computing optimization tools for developing ICA and finally alleviation of 

permutation and scaling ambiguities existing in present ICA. 
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Chapter-III 

Development of Novel Constrained Genetic Algorithm 

Based ICA Algorithm 

 

The Genetic Algorithm based optimization is used in a constrained manner to  

estimate the independent components from their observed mixtures. This scheme is 

tested using several examples including the speech signals for instantaneous mixing 

cases. From the simulation results it is very clear that in the CGAICA algorithm the 

MSE of the estimated ICs decreases with increase in the number of chromosomes. 

Also for a fixed number of chromosomes the number of generations affects the 

MSE. The CGAICA algorithm yields almost comparable MSE as obtained by the 

fast ICA algorithm. The permutation ambiguity present in ICA techniques is 

resolved by use of the CGAICA algorithm if we have relative knowledge of the 

statistical characteristics of the signals to be estimated. But this doesn‘t resolve the 

uncertainty if the signals have nearly equal value of cost function.  

 

Chapter-IV 

Development of a New ICA Algorithm Based on 

Constrained Bacterial Foraging Optimization Technique  

 

In this Chapter the bacteria foraging based optimization is used in a 

constrained manner to estimate the independent components from their observed 

mixtures. This scheme is tested using several examples including the speech signals 

for instantaneous mixing cases. From the simulation results it is very clear that the 

BFOICA algorithm has faster convergence and better mean square error 

performance than as compared to the CGAICA algorithm. In comparison to the fast 

ICA algorithm it has good mean square error. The permutation ambiguity present in 

ICA techniques is resolved by use of the BFOICA algorithm if relative knowledge 
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of the statistical characteristics of the signals to be estimated is known. The 

computational complexity of the BFOICA is obviously higher as compared to the 

gradient based algorithms. But as the number of independent components increases 

the BFOICA algorithm performs better than the available gradient based methods. 

 

 

Chapter-V 

Development of Novel Nonlinear ICA Technique based 

on Bacteria Foraging Optimization  

 

A Bacteria Foraging Optimization based nonlinear ICA approach is proposed 

which is applied to post nonlinear mixtures of signals. BFO is used for estimating 

the nonlinear functions blindly and then the most popular fast ICA algorithm is 

hybridized with the algorithm to evaluate the linear demixing matrix. The developed 

technique is compared with the GA based nonlinear ICA technique and found to 

have better convergence. 

 

Chapter-VI 

On Effects of Finite Register Length on Different ICA 

Algorithms for VLSI Implementation 

The present paper studies the effect of finite register length on the accuracy of 

two different evolutionary computation based ICA algorithms BFOICA and 

CGAICA and also the most popular fast ICA algorithm. Extensive simulation 

studies reveal that kurtosis based CGAICA yields higher MSE compared to kurtosis 

based BFOICA. Further for the same bit length, the fixed-point BFOICA offers 

substantially low MSE compared to the CGAICA (kurtosis based) and fixed-point 

fast ICA offers better performance than both evolutionary computation based ICA 

algorithms. The separation ability of fixed-point ICA depends on the number of bits 
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used. Fixed-point BFOICA performs superior to the fixed-point CGAICA. 

Performance of fixed-point fast ICA in comparison to both fixed-point BFOICA and 

CGAICA algorithms is better due to less computational complexity involved in fast 

ICA algorithm. The performance of the proposed architecture for fast ICA is 

evaluated based on trial implementations with FPGA. It is also inferred that with 

speed optimization more resources are required for implementation.  

 

Chapter-VII 

Blind Jammer Suppression in DS-SS Systems using 

ICA Techniques 

This Chapter studies the jammer mitigation in Direct Sequence Spread 

Spectrum communications system by using fast ICA technique and proposes a new 

BFOICA and CGAICA based scheme. It is shown that both fast ICA CGAICA and 

BFOICA assisted DS-SS model yield better BER performance even at very high 

jammer power values. However selection of desired spread spectrum signal in case 

of fast ICA based scheme adds to the computational complexity. Our proposed 

CGAICA/BFOICA assisted jammer suppression in DS-SS communication systems 

has almost comparable performance as the fast ICA based jammer suppression. The 

additional signal selection block needed in case of fast ICA and other gradient based 

ICA techniques for jammer mitigation in DS-SS systems, is avoided by our 

proposed scheme. 

 

 

Chapter-VIII 

Conclusions and Future Work 

The overall contributions of the thesis are listed with reference to their 

limitations. The scope for future research activities is outlined. 
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1.5 Summary of Publications Related to Thesis 
 

 

[P 1] This paper evaluates the error performance of fast ICA algorithm for its 

fixed-point implementations. Simulation study is carried on both fixed- and 

floating-point fast ICA. It is observed that the word length greatly influences the 

separation performance.  The performance analysis is compared for fast ICA 

algorithm with three different optimization functions. Out of the three kurtosis 

based and exponential contrast function based fast ICA offers superior 

performance than tanhy based fast ICA when the same word length is used in all 

the cases. 

[P 2]  This work proposes Very Large Scale Integrated Circuits (VLSI) 

architecture for fixed-point implementation of fast ICA algorithm using kurtosis 

as optimization function. Simulation analysis is carried out for fixed-point 

number representation of the fast ICA algorithm with the proposed architecture. 

With an optimized register length, the proposed architecture is described in 

VHDL for implementation through Field Programmable Gate Array (FPGA) and 

Altera Quartus II tool is used for synthesis and fitting. An Altera Stratix II FPGA 

is used as the target device. Results of FPGA simulation and synthesis are 

reported. 

[P 3] This investigation evaluates the error performance of fast ICA and algebraic 

ICA algorithms for their fixed-point implementations. Algebraic ICA is the 

fastest ICA but as the number of sources to be separated increases the 

complexity increases. Simulation study is carried on both fixed and floating 

point ICAs. Out of the two ICAs studied the algebraic ICA offers superior 

performance when the same word length is used in both the cases. 

[P 4] This paper proposes a constrained genetic algorithm optimization based 

independent component analysis assuming a noise free Independent Component 

Analysis (ICA) model. It investigates on the application and performance of GA, 

a popular evolutionary computation technique, in independent component 
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analysis problem. It is observed that the proposed constrained genetic algorithm 

optimization based ICA overcomes the long standing permutation ambiguity and 

recovers the independent components in a fixed order which is dependent on the 

statistical characteristics of the signals to be estimated. The constrained GA 

based ICA has also been compared with the most popular fast ICA algorithm. 

[P 5] The present paper proposes a bacteria foraging optimization based 

independent component analysis (BFOICA) algorithm assuming a linear noise 

free model. It is observed that the proposed BFOICA algorithm overcomes the 

long standing permutation ambiguity and recovers the independent 

components(IC) in a fixed order which depends on the statistical characteristics 

of the signals to be estimated. The paper compares the performance of BFOICA 

algorithm with the constrained genetic algorithm based ICA (CGAICA) and 

most popular fast ICA algorithm. The proposed algorithm offers comparable or 

even better performance compared to fast ICA algorithm and faster convergence 

and better mean square error performance compared to CGAICA. 

[P 6] The present work studies and analyses the issues involved in interference 

rejection in direct sequence spread spectrum communication systems based on 

Independent Component Analysis technique. The ICA technique tries to separate 

the unwanted interfering signal from the desired signal so that contamination of 

the desired spread spectrum signal is minimized. The effect of the inherent 

ambiguities of ICA on this model is also analyzed. Results of the simulation 

study carried out on the fast ICA assisted jammer mitigation for spread spectrum 

communication is presented in this work. 

[P 7] This work evaluates the error performance of BFOICA and CGAICA 

algorithm for its fixed-point implementation. Simulation study is carried on both 

fixed and floating point ICA algorithms. It is observed that the word length used 

greatly influences the separation performance. A comparison of fixed-point error 

performance of both the algorithms is also carried out in this work. 

[P 8] The present work proposes the interference rejection in direct sequence 

spread spectrum (DS-SS) communication systems based on BFOICA technique. 
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The BFOICA technique separates the unwanted interfering signal from the 

desired signal so that contamination of the desired spread spectrum signal is 

minimized. The effect of the inherent ambiguities of fast ICA on ICA assisted 

jammer suppression in case of DS-SS system model is also analyzed. Results of 

the simulation study carried out on the BFOICA assisted interference mitigation 

for direct sequence spread spectrum communication is compared with fast ICA 

assisted jammer mitigation DS-SS communication in this work. A continuous 

wave sinusoidal jammer is considered here. 

[P 9] This paper uses the proposed BFOICA technique for jammer mitigation in 

direct sequence spread spectrum (DS-SS) communication receivers. The 

BFOICA technique separates the unwanted interfering signal from the desired 

signal so that contamination of the desired spread spectrum signal is minimized. 

The effect of the inherent ambiguities of fast ICA on ICA assisted jammer 

suppression in case of DS-SS system model is also analyzed.  BFOICA is 

reported to have over come the permutation ambiguity in many cases. Results of 

computer simulation carried out on the BFOICA assisted jammer mitigation for 

direct sequence spread spectrum communication is compared with fast ICA 

assisted jammer mitigation DS-SS communication in this work. The jammers 

considered here are continuous wave sinusoidal and random in nature. 

[P 10] The bacteria foraging based optimization is used in a constrained manner to 

estimate the independent components from their observed mixtures. This scheme 

is tested using several examples including the speech signals for instantaneous 

mixing cases. From the simulation results it is very clear that the BFOICA 

algorithm has faster convergence and better mean square error performance than 

compared to the CGAICA algorithm. In comparison to the fast ICA algorithm it 

has good mean square error. The permutation ambiguity present in ICA 

techniques has been resolved by use of the BFOICA algorithm if we have 

relative knowledge of the statistical characteristics of the signals to be estimated.  

 

 



 

Chapter 

II 



 

REVIEW OF INDEPENDENT COMPONENT 

ANALYSIS AND ITS APPLICATIONS 

 

 

 
 

 

2.1  Introduction to ICA 
 

Recently, there has been an increasing interest in statistical models for 

learning data representations. A very popular method for this task is independent 

component analysis (ICA), the concept of which was initially proposed by Comon 

[2.1]. The ICA algorithm was initially proposed to solve the blind source separation 

(BSS) problem i.e. given only mixtures of a set of underlying sources, the task is to 

separate the mixed signals and retrieve the original sources [2.2, 2.3]. Neither the 

mixing process nor the distribution of sources is known in the process. A simple 

mathematical representation of ICA model is as follows. 

Consider a simple linear model which consists of N  sources of T  samples 

i.e. )]T(s...)t(s...)1(s[
iiii

s . The symbol t  here represents time but it may 

represent some other parameter like space. M weighted mixtures of the sources are 

observed as X , where )]T(X...)t(X...)1(X[
iiii

X . This can be represented as 

nSX  A                                                                (2.1) 

where 
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and n  represents the additive white Gaussian noise (AWGN). It is assumed 

that there are at least as many observations as sources i.e. NM  . The NM  

matrix A  is represented as  





















MN2M1M

N22221

N11211

a...aa

............

a...aa

a...aa

A                                (2.3) 

 

relates X  andS . A  is called the mixing matrix. The estimation of the matrix 

S  with knowledge of X  is the linear source separation problem. This is 

schematically shown in Fig 2.1. Fig 2.2 shows two original signals and their 

mixtures. 

                  

Fig 2.1 Illustration of mixing and separation system. 

 

A  is  the mixing matrix and B  is the unmixing matrix. 

 The source separation problem cannot be solved if there is no knowledge of 

either A  or S  apart from the observed mixed data X . If the mixing matrix A  is 

known and the additive noise n is negligible then the original sources can be 

estimated by evaluating the pseudo inverse of the matrix A  which is known as the 

unmixing matrix B  such that  

SSX  ABB                                     (2.4) 
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Fig 2.2 Effect of mixing. The original sources s1 and s2 are shown in left plot, and 

the mixed signals x1 and x2 are shown in the right plot. 

     

                                                                                                  

For cases where the number of observations M  equals number of sources N  

(i.e. NM  ), the mixing matrix A  is a square matrix with full rank and
1AB  . 

The necessary and sufficient condition for the pseudo-inverse of A  to exist is 

that it should be of full rank. When there are more observations than the sources 

(i.e. NM  ), there exist many matrices B  which satisfy the condition IAB  . 

Here the choice B  depends on the components of S  that we are interested in. When 

the number of observations is less than the number of sources (i.e. NM  ), a 

solution does not exist unless further assumptions are made. 

 

On the other side of the problem, if there is no prior knowledge of the mixing 

matrix A  then the estimation of both A  and S  is known as the blind source 

separation (BSS) problem. The problem defined in (2.1) under the assumption of 

negligible Gaussian noise n  is solvable with the following restrictions. 

 The sources (i.e. the components ofS ) are statistically independent. 

 At most one of the sources is Gaussian distributed 
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 The mixing matrix is of full rank. 

 

A very popular technique for solution of the BSS problem is independent 

component analysis [2.4]. Estimation of the underlying independent sources is the 

primary objective of the BSS problem. Above discussion leads to following 

definitions of ICA. 

Definition1: ICA is a linear transformation XS W  of a multivariate 

signal X , such that the components of S  are as independent as possible in the sense 

of maximizing some objective function )s,...,s(f
N1

, which is a measure of 

statistical independence. 

Definition2: ICA can be defined as computationally efficient statistical signal 

processing technique for separating a multivariate signal into its components 

assuming that all of these components are statistically independent. 

2.2. Statistical Independence 
 

 The above discussions make it clear that statistical independence is the key 

foundation of independent component analysis. For the case of two different random 

variables x  and y , x  is independent of the value of y   if knowing the value of y  

does not give any information on the value of x . Statistical independence is defined 

mathematically in terms of the probability densities as: the random variables  x  and 

y  are said to be independent if and only if 

)y(p)x(p)y,x(p
yxy,x

                                                                    (2.5) 

where )y,x(p
y,x

 is the joint density of  x  and y , )x(p
x

 and )y(p
y

 are 

marginal probability densities of  x  and y  respectively. Marginal probability 

density function of x  is defined as 

 dy)y,x(p)x(p
y,xx

                     (2.6) 
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 Generalizing this for a random vector 
T

N1
]s,...,s[s   with multivariate 

density )s(p  has statistically independent components if the density can be 

factorized as 





N

1i
ii
)s(p)s(p                                (2.7) 

Otherway stated, the density of 
1

s  is unaffected by 
2

s  when two variables 
1

s  

and 
2

s  are independent. Statistical independence is a much stronger property than 

uncorrelatedness which takes into account the second order statistics only. If the 

variables are independent, they are uncorrelated but the converse is not true. 

2.3. Central Limit Theorem 
 

The central limit theorem is the most popular theorem in statistical theory and 

plays a predominant role in ICA. According to it let 


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
K

1i
ik

zx                                            (2.8) 

be a partial sum of sequence }z{
i

 of independent and identically distributed 

random variables 
i

z . Since the mean and variance of 
k

x can grow without bound as 

k , consider the standardized variables 
k

y  instead of 
k

x , 
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
                                                                (2.9) 

where 
kx

m and 
kx

 are mean and variance of 
k

x . The distribution of 

k
y converges to a Gaussian distribution with zero mean and unit variance when 

k . 

This theorem has implicit consequences in ICA and BSS. A typical mixture or 

component of the data vector x  is of the form 
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



M

1j
jiji

sax                                                      (2.10) 

where 
ij

a , M,...,1j are constant mixing coefficients and 
j

s , M,...,1j  

are the Munknown source signals. Even for a fairly small number of sources the 

distribution of the mixture 
k

x is usually close to Gaussian. In a very simple way, the 

central limit theorem can be stated as the sum of even two independent identically 

distributed random variables is more Gaussian than the original random variables. 

This implies that independent random variables are more non-gaussian than their 

mixtures. Hence non-gaussianity is independence. This is one of the bases of 

independent component analysis. 

2.4. Contrast Functions for ICA 
 

The data model for independent component analysis is estimated by 

formulating an objective function and then minimizing or maximizing it. Such a 

function is often called a contrast function or cost function or objective function. 

The optimization of the contrast function enables the estimation of the independent 

components. The ICA method combines the choice of an objective function and an 

optimization algorithm. The statistical properties like consistency, asymptotic 

variance, and robustness of the ICA technique depend on the choice of the objective 

function and the algorithmic properties like convergence speed, memory 

requirements, and numerical stability depend on the optimization algorithm. The 

contrast function in some way or other is a measure of independence. In this section 

different measures of independence is discussed which is frequently used as contrast 

functions for ICA. 

2.4.1 Measuring Nongaussianity 
 

Kurtosis:  

Central limit theorem discussed above provides a good intuitive idea that 

nongaussian is independent. So nongaussianity is a strong measure of independence. 
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The first quantitative measure of nongaussianity is kurtosis which is the fourth order 

moment of random data. Given some random data y  the kurtosis of y denoted by 

kurt(y)is defined as 

}y{E3}y{E)y(kurt 24                                                         (2.11) 

where {.}E is the statistical expectation operator. For simplicity if we assume y  to 

be normalized so that the variance is equal to unity i.e. 1}y{E 2  , 

then 3}y{E)y(kurt 4  . This indicates kurtosis is simply the normalized version 

of the fourth moment }y{E 4
. 

For a Gaussian y , the fourth moment equals to 
22})y{E(3 . So for Gaussian 

random variables the kurtosis value is zero and for nongaussian random variables 

kurtosis value is non-zero. Particularly when kurtosis value is positive the random 

variables are called supergaussian or leptokurtic and when negative called 

subgaussian or platykurtic. Supergaussian random variables have a ‗spiky‘ 

probability density function with heavy tails and subgaussian random variables have 

a flat probability density function. However kurtosis is very sensitive to outliers in 

data set and this is a limitation of kurtosis as the contrast function. 

 

Negentropy:  

A second optimal quantitative measure of nongaussianity is negentropy which is 

based on the information theoretic differential entropy. The entropy of data is related 

to the information that is observed. The more random and unpredictable the data is 

the larger entropy it will have. The entropy S  of a random variable y with a density 

of )(p
y
 is  

 

)(dp)(plog)(p)y(S
yyy
                                     (2.12) 

Of all the observed random variables with unit variance a Gaussian variable has 

the largest entropy value. Differential entropy normalized with respect to Gaussian 

variables result in negentropy. Negentropy of y denoted by )y(H is defined as  
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)y(S)y(S)y(H
gausss

                                                    (2.13) 

where 
gauss

y is a Gaussian random variable with the same correlation and covariance 

as y . Since the negentropy is normalized, it is always nonnegative and zero if y  is 

Gaussian distributed. Negentropy has the additional interesting property that it is 

invariant for invertible linear transformations. 

 

Approximations to negentropy:  

However negentropy is practically difficult to compute and require complex 

computation. Hence the approximations to negentropy in terms of expectation of 

certain nonlinear function G  is expressed as 

 

2

i
)}](G{E)}y(G{E[K)y(H                             (2.14) 

where K is a constant and  is a Gaussian variable of zero mean and unit variance. 

Wise choice of G makes a good contrast function )y(H for optimization in ICA. 

Particularly if G is chosen such that it does not grow too fast then more robust 

estimators are obtained. The frequent choices of G  that have proved useful are  

 

)
1

cosh(log

1

1
)(

1
ya

a
yG                                                      (2.15) 

)2/2y
2

aexp(

2
a

1
)y(

2
G                                                (2.16) 

4

3
y

4

1
)y(G                                                     (2.17) 

 

where 
1

a and 
2

a are constants. 

Under the approximation 
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ij

T

j

T

i
wzwE )})({(                                                      (2.18) 

where 
ij

  is known as Kronecker delta function. 

)y(H  expression in equation simplifies to 

 

)}zw(G{E)w(H T            (2.19) 

which is a good contrast function for optimization in ICA problems. 

2.4.2 Mutual Information 
Mutual information is natural measure of dependency between random 

variables i.e. it is a measure of the information that member of a set of random 

variables have on the other random variable in the set. 

If y is a n -dimensional random variable and )(p
y
 its probability density 

function then vector y has mutually independent components if and only if 

 

)(p)...(p).(p)(p
ny2y1yy n21

                            (2.20) 

 

A natural way of checking whether y has ICs is to measure a distance between 

both sides of above equation 

 

)p,p()p(I
iyyy                    (2.21) 

Average mutual information of y as given by Comon [2.5] is given by 
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Average mutual information vanishes if and only if the variables are mutually 

independent and strictly positive otherwise. In terms of negentropy mutual 

information is written as 
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 )y(H)y(H)y,...,y,y(I
in21

                             (2.23) 

But the contrast functions based on mutual information discussed above 

require the estimation of the density function and this has severely restricted the use 

of these contrast functions. 

Before these optimization functions are used in ICA optimization algorithm 

the observed data is processed as described in the following section. 

2.5. Preprocessing of Data for ICA 
 

Generally ICA is performed on multidimensional data. This data may be 

corrupted by noise, and several original dimensions of data may contain only noise. 

So if ICA is performed on a high dimensional data then this may lead to poor results 

due to the fact that such data contain very few latent components. Hence, reduction 

of the dimensionality of the data is a preprocessing technique that is carried prior to 

ICA. Thus finding a principal subspace where the data exist reduces the noise. 

Besides this when number of parameters is larger compared to the number of data 

points, the estimation of those parameters becomes very difficult and often lead to 

over-learning. Over learning in ICA typically produces estimates of the independent 

components that have a single spike or bump and are practically zero everywhere 

else [2.5]. This is because in the space of source signals of unit variance, 

nongaussianity is more or less maximized by such spike / bump signals. 

Apart from reducing the dimension the observed signals are centered and 

decorrelated. The observed signal X is centered by subtracting its mean: 

}{E XXX                                                                   (2.24) 

Second-order dependences are removed by decorrelation which is achieved by 

the principal component analysis (PCA) [2.6, 2.7]. ICA problem is greatly 

simplified if the observed mixture vectors are first whitened. A zero-mean random 

vector
T

ji
)z.....z(z  is said to be white if its elements

i
z  are uncorrelated and have 

unit variances
j,iji

}zz{E   

In terms of Covariance matrix, above equation can be restated as, 
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IzzE T }{                                 (2.25) 

where I is the identity matrix. A synonymous term for white is sphered. If the 

density of the vector z is radially symmetric and suitably scaled, then it is sphered, 

but converse is not always true. Because whitening is essentially decorrelation 

followed by scaling for which the PCA technique can be used. The problem of 

whitening now: Given a random vector x  with n  elements, we have to have a 

linear transformation V  into another vector z  such that  

xVz                     (2.26) 

is white or sphered. 

Suppose ]ee[E
n..........1

  is the matrix whose columns are the unit-norm 

eigenvectors of the covariance matrix }xx{EC T

x
 and ]d.........d[diagD

n1
 is 

the diagonal matrix of the eigenvalues of 
x

C  then
T

x
EDEC  .This is called the 

eigenvectors decomposition of the covariance matrix. The linear whitening 

transform is expressed as 

TEDV 2
1

                  (2.27) 

 

Hence xEDV T2
1

                                 (2.28) 

 

Now ICA estimation is performed on the whitened data z  instead of original 

data x . For whitened data it is sufficient to find an orthogonal separation matrix if 

the independent components are assumed white.  

Dimensionality reduction by PCA is carried on by projecting the N  

dimensional data to a lower dimensional space spanned by m  ( Nm  ) dominant 

eigenvectors (i.e. eigenvectors corresponding to large eigenvectors) of the 

correlation matrix 
x

C .The eigenvectors matrix E  and the diagonal matrix of 

eigenvectors D  are of dimension mN  and mm  respectively. Practically it is 

a non-trivial task to identify the lower dimensional subspace properly. For noise free 

data, a subspace corresponding to the non-zero eigenvalues is required to be found. 
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In most of the scenario data are corrupted by noise and are not contained exactly 

within the subspace. In this case the eigenvectors corresponding to the largest 

eigenvalues should describe the data well; however, in general ―weak‖ independent 

components may be lost in dimension reduction process. This involves a hit and trial 

process. 

Dimensionality reduction can also be accomplished by methods other than PCA. 

These methods include local PCA [2.8] and random projection. For noise reduction 

another popular technique called principal factor analysis [2.9] is used. 

The unmixing matrix B in Fig.2.1 can be regarded as two step process i.e. 

whitening and rotation. Hence    

VWB T                  (2.29) 

The whitening matrix 
TEDV 2

1

  is estimated by PCA and rotation matrix W  is 

found by one of the ICA techniques described in the following section. This process 

can be depicted in figure 3 below. 

 

 
Fig. 2.3 Schematic of separation: whitening and rotation. The unmixing matrix 

B in figure 1 can be regarded as a concatenation of the whitening matrix V and 

the (orthogonal) rotation matrix W 

 

 

Whitening 

(V) 

 

 

Rotation 

(W) 

x z y = s 
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2.6. Algorithms for ICA 
 

Some of the ICA algorithms require a preprocessing of data X and some may 

not. Algorithms those need no preprocessing (centering and whitening), often 

converge better with whitened data. However in certain cases if it is necessary then 

sphered data Z  is used otherwise no mention of sphering is done for cases where 

whitened is not required. 

2.6.1 Non-linear cross correlation based Algorithm: 
 

Principle of cancellation of non-linear cross correlation is used to estimate 

independent components in [2.10, 2.11]. Non-linear cross correlations are of the 

form )},y(g)y(g{E
j2i1

where
1

g and
2

g  are some suitably chosen nonlinearities. If 

i
y and

j
y are independent, then these cross correlations are zero for 

i
y and

j
y  having 

symmetric densities. The objective function in such cases is formulated implicitly 

and exact objective function may not even exist. Jutten and Herault in [2.5] used this 

principle to update the nondiagonal terms of the matrix W according to  

 

)y(g)y(gW
j2i1ij

 for ji                   (2.30) 

Here 
i

y are computed at every iteration as z)WI(y 1 and the diagonal 

terms 
ii

W are set to zero. After convergence 
i

y give the estimates of the independent 

components. However the algorithm converges only under severe restrictions [2.12]. 

2.6.2 Nonlinear Decorrelation Algorithm 
 

To reduce the computational overhead by avoiding matrix inversions in Jutten-

Herault algorithm and improve stability some algorithm has been proposed in [2.13]. 

In those the following algorithm has been proposed  
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W))y(g)y(gI(W T

21
                 (2.31) 

where xWy  , the nonlinearities (.)g
1

and  (.)g
2

are applied separately on 

every component of the vector y , and the identity matrix can be replaced by any 

positive definite diagonal matrix. EASI algorithm has been proposed in [2.14, 2.15]. 

 

According to EASI, 

 

W))y(gyy)y(gyyI(W TTT                   (2.32) 

 

The choice of the nonlinearities used in above rules is generally provided by 

the maximum likelihood (or infomax) approach. 

2.6.3 Infomax Estimation or Maximum Likelihood 

Algorithm 
 

Maximum likelihood (ML) estimation is based on the assumption that the 

unknown parameters to be estimated   are constants or no prior information is 

available on them. When the number of samples is large ML estimator becomes a 

desirable choice due to its asymptotic optimality properties. This ML estimation can 

be simply interpreted as those parameters having highest probability for the 

observations act as the estimates. The simplest algorithm for maximizing the 

likelihood (also log-likelihood) is given by Bell and Sejnowski [2.16] by using 

stochastic gradient methods. The algorithm for ML estimation derived by Bell and 

Sejnowski in [2.16] is 

}x)Wx(g{E]W[W T1T  
                             (2.33) 

Here the nonlinearity g is very often chosen as tanh function because it is the 

derivative of log density of the logistic distribution. This function works for 

estimation of most super-gaussian independent components; however other 

functions should be used for subgaussian independent components. The convergence 

of the algorithm described by above equation is very slow especially due to the 
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inversion of the matrix W that is needed at every step. The convergence of the 

algorithm can be improved by whitening the data, and especially by using the 

natural gradient. 

The natural (or relative) gradient method simplifies the maximization of the 

likelihood and makes it better conditioned. The natural gradient principle is based on 

the geometrical structure of parameter space. This is related to the relative gradient 

principle, which uses the Lie group structure of the ICA problem. In the case of 

basic ICA, both these principles amount to multiplying the right side of above 

equation by WWT
. This gives  

W})y)y(g{EI(W T                   (2.34) 

where Wxy  . After this modification the algorithm needs no sphering. This 

algorithm can be interpreted as a special case of nonlinear decorrelation algorithm 

described in pervious section. 

A Newton method for maximizing the likelihood has been introduced in 

[2.26]. Though it converges with less iteration but suffers from the problem that a 

matrix inversion is needed in each iteration. 

 

Infomax principle [2.16] is a very closely related maximum likelihood 

estimation principle for ICA [2.17]. This is based on maximizing the output entropy 

or information flow of a neural network with nonlinear outputs. Hence it is named as 

infomax. 

2.6.4 Nonlinear PCA Algorithm 
 

Another approach to ICA that is related to PCA is the so called non-linear 

representation is sought for the input data that minimizes a least mean square error 

criterion. For linear case principal components are obtained and in some cases the 

nonlinear PCA approach gives independent components instead. In [2.10] the 

following version of a hierarchical PCA learning rule is introduced. 
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ji

i

1j
ii

w)y(g)y(gx)y(gw 


       (2.35) 

where g is a suitable non-linear scalar function. The introduction of non-

linearities means that the learning rule uses higher order information in the learning. 

In [2.18] it is proven that for well chosen non-linearities, the learning rule in above 

equation does indeed perform ICA, if the data is whitened. Algorithms for exactly 

maximizing the nonlinear PCA criteria are introduced in [2.11]. 

2.6.5 One-unit neural learning rules: 
 

Simple algorithms from the one-unit contrast functions can be derived using 

the principle of stochastic gradient descent. Considering whitened data Hebbian like 

learning rule [2.19, 2.20] is obtained by taking instantaneous gradient of contrast 

function with respect to w  

 

)xw(xg)}](G{E)}xw(G{E[w TT        (2.36) 

 

Such one unit algorithms were first introduced is [2.21] using kurtosis. For 

estimation of several independent components of system of several units is needed. 

2.6.6 Tensor based ICA Algorithm 
 

Another approach for the estimation of independent components consists of 

using higher-order cumulant tensors. Tensors are generalizations of matrices, or 

linear operators. Cumulant tensors are then generalizations of the covariance 

matrix
x

C . The covariance matrix is the second order cumulant tensor, and the 

fourth order tensor is defined by fourth-order cumulants as )x,x,x,x(cum
lkji

. 

Eigenvalue decomposition (EVD) is used to whiten the data. By whitening, the data 

is transformed so that its second-order correlations are zero. This principle can be 

generalized so that the off-diagonal elements of the fourth-order cumulant tensor can 
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be minimized. This kind of (approximate) higher-order decorrelation results in a 

class of methods for ICA estimation. 

Joint approximate diagonalization of eigenmatrices (JADE) proposed by 

Cardoso [2.6] is based on the principle of computing several cumulant 

tensors )M(F
i

, where F represents the cumulant tensor and 
i

M  represents the 

eigenmatrices. These tensors are diagonalized jointly as well as possible. If a matrix 

W diagonalizes )M(F for any M  then 
TW)M(FW  is diagonal since the matrix F 

is a linear combination of the terms
T

ii
ww , assuming that the ICA model in 

equation (1) holds. A measure of the diagonality of 
T

i
W)M(WFQ  is the sum of 

squares of the off-diagonal elements lk

2

kl
q . In other words, since the matrix W is 

orthogonal and it does not change the total sum of squares of a matrix, minimization 

of the sum of squares of the off-diagonal elements is equivalent to the maximization 

of the squares of the diagonal elements. Thus, the following function can be a good 

measure of the joint diagonalization process. 

 

2

i

T

iJADE
)W)M(WF(diag)W(J      (2.37) 

This represents the sum of squares of all the diagonal elements of all the 

diagonalized cumulant tensors. 

i
M  are chosen as the eigenmatrices of the cumulant tensor because the 

n eigenmatrices span the same subspace as the cumulant tensor, and hence they 

contain all the relevant information on the cumulants. With this choice the contrast 

function expressed in above equation can be restated as 

 





iiklijkl

2

lkjiJADE
))y,y,y,y(cum()W(J         (2.38) 

where y is the estimate of the independent sources obtained as Wxy  . 

Above equation means that by minimizing 
JADE

J , sum of squared cross cumulants of 
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i
y is also minimized. But JADE is restricted to small dimensions mostly due to the 

computational complexity of explicit tensor EVD. Its statistical properties are 

inferior to methods using likelihood or non-polynomial cumulants [2.22]. However, 

with low dimensional data, JADE is a competitive alternative to most popular 

FastICA algorithm described in the next section. 

A similar approach that uses the EVD is the fourth-order blind identification 

(FOBI) method [2.7] which is simpler, and deals with the EVD of the weighted 

correlation matrix. It is of reasonable complexity, and is probably the most efficient 

of all the ICA methods. However, it fails to separate the sources when they have 

identical kurtosis. Other approaches include maximization of squared cumulants 

[2.23], and fourth-order cumulant based methods as described in [2.24, 2.25]. 

2.6.7 Fast ICA Algorithm 
 

One of the most popular solutions for linear ICA/BSS problem is Fast ICA 

[2.26] due to its simplicity and fast convergence. The basic algorithm involves the 

preprocessing and a fixed-point iteration scheme for one unit.  

 

Fixed-point Iteration for one unit: 

The fast ICA algorithm for one unit estimates one row of the demixing matrix 

W  as a vector 
Tw  that is an extremum of contrast functions. FastICA [2.26, 2.19] 

is an iterative fixed point algorithm, derived from a general objective or a contrast 

function. Assume x  is the whitened data vector and 
Tw  is one of the rows of the 

rotation/separating matrix W . Estimation of w  proceeds iteratively with following 

steps until a convergence as stated below is achieved. 

1) Choose an initial random vector w  of unit norm. 

2) { ( )} { '( )}T TW E zg w z E g w z w       (2.39) 

where   
3

1
y)y(g   (derivative of kurtosis),             

              2a1),aytanh()y(g
2

              

and )y('g  are the corresponding derivatives. 
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3)  / || ||w w w where ||w|| is the norm of w.          

4) if 
newold

ww  is not satisfied then go back to step 2 where 

 is a convergence parameter (~10
-4

)   and 
old

w  is the value of w  before it‘s 

replacement by the newly calculated value
new

w . 

 

Fixed-point Iteration for Several units: 

The independent components (ICs) can be estimated one by one — 

deflationary approach — or can be estimated simultaneously — symmetric 

approach. In the deflationary approach, it must be ensured that the rows 
j

w  of the 

separating matrix W  are orthogonal. This can be done after every iteration step by 

subtracting from the current estimate 
p

w  the projections of all previously estimated 

1p  vectors before normalization. 

 







1p

1j
jj

T

ppp
w)ww(ww            (2.40) 

 

In the symmetric approach the iteration step is computed for all 
p

w  and after 

the matrix W  is orthogonalized as  

 

W)WW(W 2
1T 

                                (2.41) 

 

The convergence properties of the FastICA algorithm are discussed in [2.26, 

2.27]. The asymptotic convergence of the algorithm is at least quadratic and usually 

cubic when the ICA model (1) holds. This rate is much faster than that of gradient-

based optimization algorithms. With a kurtosis based contrast function, FastICA can 

be shown to converge globally to the independent components [2.19]. 
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2.6.8 Algebraic ICA Algorithm 
 

An algebraic solution to ICA is proposed by Taro Yamaguchi et al. in [2.28]. 

This is a non-iterative algorithm but becomes extremely complex to compute when 

the number of sources goes more than two. For two sources separation it works very 

fast .Two observed signals 
1

x  and 
2

x  are given by linear mixture of two 

independent original signals 
1

s  and 
2

s   as:    































2

1

2

1

s

s

1

1

x

x
                                              (2.42) 

where    and   are unknown mixing rates. 

The algebraic solution to   and   are given by 

13

32

CC

CC




                                                       (2.43) 

0)CCCC(

)CC3CC3CC3CC(

)CC3CC3CC3CC3(
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







   (2.44) 

where   

2

1

2

11
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]x[E]xx[E]xx[EC
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2

21
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  

]x[E]x[E]xx[EC 3

21

3

2110
  

]x[E]x[E]x[EC
2

3

2

4

211
                             (2.45) 

         

Where [.]E denotes the expectation operation. 

 

  and    are obtained by solving the equations (2.43, 2.44, 2.45) with the 

Ferrari method. Excluding the solutions having non-zero imaginary parts and 

negative sizes the proper solution is selected. Original independent signals are 

computed from equation (2.42) by solving value of    and  . 

2.6.9 Evolutionary ICA Algorithm 
 

Evolutionary computation techniques are very popular population search 

based optimization methods. Genetic Algorithms, Swarm intelligence are the most 

used evolutionary computation based optimization techniques. By evolutionary 

mechanism, GA can search for the optimal separating matrix that minimizes the 

dependence. Instead of updating the matrix by a fixed formula, GA transforms a 

population of individuals into a new population using genetic operators based on 

fitness function. However the success of GA relies on the definition of fitness 

function. The population based search methods like GA converge to a global 

optimum unlike the case of gradient based methods which gets trapped in local 

optima. GA has been used for nonlinear blind source separation in [2.29, 2.30] and 

for noise separation from electrocardiogram signals in [2.31]. Particle swarm 

optimization (PSO) is used in ICA technique in [2.32].  Currently, several 

biologically motivated optimization algorithms are also used in ICA method. 

However the price paid by evolutionary computation based ICA techniques is the 

heavy computational complexity of the methods. But with the advent of highly 

parallel processors these methods provide competitive solutions to the problems. 
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2.6.10 Some Extensions to ICA Algorithm 

2.6.10.1 Noisy ICA Algorithm 

 

The estimation of the noiseless model seems to be a challenging task in itself, 

and thus the noise is usually neglected in order to obtain tractable and simple results. 

Moreover, it may be unrealistic in many cases to assume that the data could be 

divided into signals and noise in any meaningful way. Perhaps the most promising 

approach to noisy ICA is given by bias removal techniques. This means that noise-

free ICA methods are modified so that the bias due to noise is removed or at least 

removed. In [2.33] bias reduction is performed by modifying the natural gradient 

ascent for likelihood. The new concept of Gaussian moments is introduced in [2.34] 

to derive one-unit contrast functions and to obtain a version of the fast ICA 

algorithm that has no asymptotic bias i.e. is consistent even in the presence of noise. 

These techniques can even be used in large dimensions. In [2.35], J. Cao et al. have 

proposed a robust approach for independent component analysis (ICA) of signals 

that observations are contaminated with high-level additive noise and/or outliers. 

2.6.10.2 Complex ICA Algorithm 

 

Separation of complex valued signals is a frequently arising problem in signal 

processing. For example, separation of convolutively mixed source signals involves 

computations on complex valued signals. The FastICA algorithm can be extended to 

complex valued signals. In [2.36], it is assumed that the original, complex valued 

source signals are mutually statistically independent, and the problem is solved by 

the independent component analysis (ICA) model. 

2.6.10.3 Nonlinear ICA Algorithms 

 

In most of the practical cases the linear mixtures pass though a certain type of 

nonlinearity before being actually observed. Most often the observing sensor 

introduces the nonlinearity by itself. So ICA must perform the separation from these 
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observed nonlinear mixtures. The case of ICA for post nonlinear mixtures has been 

an area of interest for researchers [2.29, 2.30]. 

 

2.7. Ambiguities of ICA 

2.7.1 Permutation Ambiguity 
 

The order of independent components can not be determined. The linear noise 

free version of ICA model can be represented as 





N

1i
ii

SAsaX                           (2.46) 

Now, both A  and S  being unknown, the order of the terms can be changed 

freely in above equation and any of the independent components can be called the 

first one. This implies that the correspondence between a physical signal and the 

estimated independent component is not one-to-one. This indeterminacy is 

particularly severe in many applications where identification of the estimated 

components is of very high importance. Formally, this means that the following 

relation between the mixing matrix A  and the separation matrix B  holds 

PBA                                (2.47) 

where P  is a permutation matrix. 

2.7.2 Scaling Ambiguity 
 

The energy of the independent components can not be determined. Since both 

A and S are unknown, the effect of multiplication of one of the source estimates 

with a scalar constant k is canceled by dividing its corresponding column in the 

mixing matrix by k . This indeterminacy can be solved by ensuring that the random 

variables have unit variance i.e,  

1}s{E 2

i
                                 (2.48) 
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This still leaves the ambiguity of sign. While this is insignificant in certain 

applications, care has to be taken in applications where sign plays a crucial role. 

2.8. Applications of ICA 
 

ICA being a blind statistical signal processing technique finds application in 

many emerging new application areas such as blind separation of mixed voices or 

images [2.37, 2.38], analysis of several types of data [2.5], feature extraction [2.12], 

speech and image recognition [2.39, 2.17], data communication [2.40], sensor signal 

processing [2.41, 2.14], system identification[2.42, 2.43], biomedical signal 

processing [2.44, 2. 45,  2.13,  2.29] and several others [2.30, 2.46].  

 

2.8.1 Biomedical Signal Processing 
 

Magnetoencephalography (MEG) is a noninvasive technique by which the 

activity or the cortical neurons can be measured with very good temporal resolution 

and moderate spatial resolution. When using a MEG record, as a research or clinical 

tool, the investigator may face a problem of extracting the essential features of the 

neuromagnetic signals in the presence of artifacts. The amplitude of the disturbances 

may be higher than that of the brain signals, and the artifacts may resemble 

pathological signals in shape. In [2.47], a new method to separate brain activity from 

artifacts using ICA has been introduced. 

2.8.2 Telecommunications 
 

Another emerging application area of great potential is telecommunications. 

An example of a real-world communications application where blind separation 

techniques are useful is the separation of the user‘s own signal from the interfering 

other users‘ signals in CDMA (Code-Division Multiple Access) mobile 

communications [2.48]. This problem is semi-blind in the sense that certain 

additional prior information is available on the CDMA data model. But the number 
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of parameters to be estimated is often so high that suitable blind source separation 

techniques taking into account the available prior knowledge provide a clear 

performance improvement over more traditional estimation techniques. 

2.8.3 Revealing Hidden Factors in Financial Data 
 

It is a tempting alternative to try ICA on financial data. There are many 

situations in that application domain in which parallel time series are available, such 

as currency exchange rates or daily returns of stocks, that may have some common 

underlying factors. ICA might reveal some driving mechanisms that otherwise 

remain hidden. In a recent study of a stock portfolio [2.49], it was found that ICA is 

a complementary tool to PCA, allowing the underlying structure of the data to be 

more readily observed. 

2.8.4 Natural Image Denoising 
 

Bell and Sejnowski proposed a method to extract features from natural scenes 

by assuming a linear image synthesis model [2.50]. In such a model each patch of an 

image is a linear combination of several underlying basis functions. A set of 

digitized natural images were used. Denote the vector of pixel gray levels in an 

image window by x. Note that, multivalued time series or images changing with 

time are not considered here; instead the elements of x are indexed by the location in 

the image window or patch. The sample windows were taken at random locations. 

The 2-D structure of the windows is of no significance here: row by row scanning 

was used to turn a square image window into a vector of pixel values. Each window 

corresponds to one of the columns ai of the mixing matrix A. Thus an observed 

image window is a superposition of these windows with independent coefficients 

[2.50]. 

Now, suppose a noisy image model holds: 

 

nxz                        (2.49) 
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where n is uncorrelated noise, with elements indexed in the image window in 

the same way as x, and z is the measured image window corrupted with noise. Let us 

further assume that n is Gaussian and x is non-Gaussian. There are many ways to 

clean the noise; one example is to make a transformation to spatial frequency space 

by DFT, do low-pass filtering, and return to the image space by IDFT. This is not 

very efficient, however. A better method is the recently introduced Wavelet 

Shrinkage method [2.51] in which a transform based on wavelets is used, or methods 

based on median filtering. None of these methods is explicitly taking advantage of 

the image statistics, however. 

2.8.5 Feature Extraction 
 

ICA is successfully used for face recognition and lipreading. The goal in face 

recognition is to train a system that can recognize and classify familiar faces given a 

different image of the trained face. The test images may show the faces in a different 

pose or under different lighting conditions. Traditional methods for face recognition 

have employed PCA-like methods. Bartlett and Sejnowski [2.52] compare the face 

recognition performance of PCA and ICA for two different tasks: (1) different pose 

and (2) different lighting condition. They show that for both tasks ICA outperforms 

PCA. The method is roughly as follows: The rows of the face images constitute the 

data matrix x. Performing ICA, a transformation W is learned so that u (u = Wx) 

represent the independent face images. Nearest neighbor classification is performed 

on the coefficients of u.  

2.8.6 Sensor Signal Processing 
 

A sensor network is a very recent, widely applicable and challenging field of 

research. As size and cost of sensors decrease, sensor networks are increasingly 

becoming an attractive method to collect information in a given area. Multi-sensor 

data often presents complementary information about the region surveyed and data 

fusion provides an effective method to enable comparison, interpretation and 

analysis of such data. Image and video fusion is a sub area of the more general topic 
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of data fusion dealing with image and video data. Cvejic et. al. [2.41] have applied 

independent component analysis for improving the fusion of multimodal 

surveillance images in sensor networks. ICA is also used for robust automatic 

speech recognition [2.53]. 

2.9. Conclusions 
 

In this chapter the basic principle behind the independent component analysis 

technique is discussed. The contrast functions for different routes to independence 

are clearly depicted. Different existing algorithms for ICA are briefly illustrated and 

are critically examined with special reference to their algorithmic properties. The 

ambiguities present in these algorithms are also presented. Finally the application 

domains of this novel technique are presented. Some of the futuristic works on ICA 

technique which need further investigation are development of nonlinear ICA 

algorithms, design of low complexity ICA algorithms and use of evolutionary 

computing optimization tools for developing ICA and finally alleviation of 

permutation and scaling ambiguities existing in present ICA. 
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3.1.  Introduction  
 

All the existing ICA methods do not find a global optimum solution once the 

algorithm reaches a local optimum. It gets stuck in the valley of the contrast function 

and is unable to jump the surrounding hills. The non linear objective functions for 

ICA being multimodal, this problem becomes more prominent. Therefore, 

appropriate initial values are important in running these algorithms. In addition to 

the problem of getting trapped in a local optimum, these algorithms have the 

ambiguities like scaling and permutation. This means that the independent 

components (ICs) are estimated only up to a multiplicative scalar constant and the 

order in which the ICs are estimated are not known. In [3.1] attempts have been 

made to overcome the permutation ambiguity in the frequency domain only but the 

ambiguity remains still unresolved in the time domain.  

The performance of available neural learning algorithms relies on the selection 

of activation functions. Usually different activation functions are used for sources 

with different statistics (sub-Gaussian or super-Gaussian) which are difficult to 

estimate in blind source separation. Also most of the algorithms are under the 

condition, though not mentioned directly, that the sources are of the same statistics. 

Sub-Gaussian and super-Gaussian signals have different sign of fourth order 

cumulants (kurtosis), and this is not considered in the derivation of many of the 

neural learning algorithms.  Therefore at times it may so happen that the learning 
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algorithm fails to converge to a consistent optimum when the sources have different 

signs of kurtosis. 

ICA algorithms attempt to maximize the estimated entropy of the system. The 

preeminent ICA algorithms primarily use gradient based techniques to perform the 

entropy maximization. These gradient based techniques are often misguidedly 

deemed acceptable for several reasons. For one, because of the inherent complexity 

of many ICA algorithms, additional complexity is avoided by incorporating a 

reliable gradient based algorithm with provable (albeit often suboptimal) local 

convergence. Also, this suboptimal performance may occur less frequently than 

expected because many global optima of the performance surface exist as scaled and 

permuted versions of the unmixing matrix. However, for example, it is well-known 

and commonly overlooked that neural networks such as implemented in variations 

of Infomax (and in general) are highly nonlinear and produce multimodal 

performance surfaces that do not lend themselves well to gradient based techniques. 

Likewise other ICA techniques contain nonlinear entropy estimation functions. 

Again, gradient based optimization will inevitably lead to suboptimal solutions on 

such nonlinear performance functions, which requires multiple restarts to avoid a 

meaningless unmixing matrix. In addition, the number of local minima of the 

performance surface can dramatically increase when the unknown sources have 

multimodal distributions.  

The evolutionary computation based optimization techniques like Genetic 

Algorithms (GA) have an inherent characteristic to converge to the global optimum. 

In a preliminary study done by Yoshioka et al. [3.2] GA is applied to separate 

original images from noise corrupted images by directly minimizing Kullback 

Leibler (KL) divergence. However prior probability estimation of the sources is a 

prerequisite of the method. Tan and Wang in [3.3] used GA to solve the nonlinear 

BSS problem using higher order statistics where the sources have been estimated 

regardless of the indeterminacies of permutation and scaling. Rajas et al. in [3.4] 

applied the GA based method for signal separation from their post nonlinear 

mixtures. The guided GA is very nicely applied to optimize the blind source 
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separation  on post-nonlinear mixtures by Gorriz et. al. in [3.5]. GA has been 

directly applied to ICA problem for first time in [3.6, 3.7] for denoising the 

electrocardiogram (ECG) signals where the method estimates only one independent 

component i.e. the ECG signal. However all the applications of GA to BSS problem 

still have the permutation indeterminacy. In practical applications where we need all 

the signals or independent components to be recovered, simple application of GA 

seems to be inadequate.  

In this Chapter we propose a novel Independent Component Analysis 

algorithm using optimization based on the constrained GA (CGAICA) which 

recovers all the ICs using the popular deflation approach. Our method overcomes the 

long standing permutation ambiguity and recovers the ICs in a fixed order which is 

dependent on the statistical characteristics of the signals to be estimated. It offers 

almost comparable performance to the most popular fast ICA algorithm. The 

limitation of the technique is also discussed in this Chapter. 

3.2. Constrained GA based ICA Algorithm  

3.2.1 The Genetic Algorithm: 

 

 Concisely stated, a genetic algorithm (or GA for short) is a programming 

technique that mimics biological evolution as a problem-solving strategy. Given a 

specific problem to solve, the input to the GA is a set of potential solutions to that 

problem, encoded in some fashion, and a metric called a fitness function that allows 

each candidate to be quantitatively evaluated. These candidates may be solutions 

already known to work, with the aim of the GA being to improve them, but more 

often they are generated at random. The GA then evaluates each candidate according 

to the fitness function. In a pool of randomly generated candidates, of course, most 

will not work at all, and these will be deleted. However, purely by chance, a few 

may hold promise - they may show activity, even if only weak and imperfect 

activity, toward solving the problem. These promising candidates are kept and 

allowed to reproduce. Multiple copies are made of them, but the copies are not 

perfect; random changes are introduced during the copying process. These digital 
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offspring then go on to the next generation, forming a new pool of candidate 

solutions, and are subjected to a second round of fitness evaluation. Those candidate 

solutions which were worsened, or made no better, by the changes to their code are 

again deleted; but again, purely by chance, the random variations introduced into the 

population may have improved some individuals, making them into better, more 

complete or more efficient solutions to the problem at hand. Again these winning 

individuals are selected and copied over into the next generation with random 

changes, and the process repeats. The expectation is that the average fitness of the 

population will increase each round, and so by repeating this process for hundreds or 

thousands of rounds, very good solutions to the problem can be obtained. 

 

As astonishing and counterintuitive as it may seem to some, genetic 

algorithms have proven to be an enormously powerful and successful problem-

solving strategy, dramatically demonstrating the power of evolutionary principles. 

Genetic algorithms have been used in a wide variety of fields to evolve solutions to 

problems as difficult as or more difficult than those faced by human designers. 

Moreover, the solutions they come up with are often more efficient, more elegant, or 

more complex than anything comparable a human engineer would produce. In some 

cases, genetic algorithms have come up with solutions that baffle the programmers 

who wrote the algorithms in the first place. 

3.2.2 Methods of representation 

 

Before a genetic algorithm can be put to work on any problem, a method is 

needed to encode potential solutions to that problem in a form that a computer can 

process. One common approach is to encode solutions as binary strings: sequences 

of 1's and 0's, where the digit at each position represents the value of some aspect of 

the solution. Another, similar approach is to encode solutions as arrays of integers or 

decimal numbers, with each position again representing some particular aspect of 

the solution. This approach allows for greater precision and complexity than the 
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comparatively restricted method of using binary numbers only and very often is 

intuitively closer to the problem space [3.8]. 

 

This technique was used, for example, in the work of Steffen Schulze-Kremer, 

who wrote a genetic algorithm to predict the three-dimensional structure of a protein 

based on the sequence of amino acids that go into it [3.9]. Schulze-Kremer's GA 

used real-valued numbers to represent the so-called "torsion angles" between the 

peptide bonds that connect amino acids. (A protein is made up of a sequence of 

basic building blocks called amino acids, which are joined together like the links in a 

chain. Once all the amino acids are linked, the protein folds up into a complex three-

dimensional shape based on which amino acids attract each other and which ones 

repel each other. The shape of a protein determines its function.) Genetic algorithms 

for training neural networks often use this method of encoding also. 

 

A third approach is to represent individuals in a GA as strings of letters, where 

each letter again stands for a specific aspect of the solution. One example of this 

technique is Hiroaki Kitano's "grammatical encoding" approach, where a GA was 

put to the task of evolving a simple set of rules called a context-free grammar that 

was in turn used to generate neural networks for a variety of problems [3.9]. 

 

The virtue of all three of these methods is that they make it easy to define 

operators that cause the random changes in the selected candidates: flip a 0 to a 1 or 

vice versa, add or subtract from the value of a number by a randomly chosen 

amount, or change one letter to another. Another strategy, developed principally by 

John Koza of Stanford University and called genetic programming, represents 

programs as branching data structures called trees [3.10]. In this approach, random 

changes can be brought about by changing the operator or altering the value at a 

given node in the tree, or replacing one subtree with another as in Fig.3.1. 
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 Fig.3.1 Three simple program trees of the kind normally used in genetic 

programming. The mathematical expression that each one represents is given 

underneath. 

 

It is important to note that evolutionary algorithms do not need to represent 

candidate solutions as data strings of fixed length. Some do represent them in this 

way, but others do not; for example, Kitano's grammatical encoding mentioned 

above can be efficiently scaled to create large and complex neural networks, and 

Koza's genetic programming trees can grow arbitrarily large as necessary to solve 

whatever problem they are applied to. 

 

3.2.3 Methods of selection 

 
There are many different techniques which a genetic algorithm can use to 

select the individuals to be copied over into the next generation, but listed below are 

some of the most common methods. Some of these methods are mutually exclusive, 

but others can be and often are used in combination. 

Elitist selection:  

The most fit members of each generation are guaranteed to be selected. (Most 

GAs do not use pure elitism, but instead use a modified form where the single best, 

or a few of the best, individuals from each generation are copied into the next 

generation just in case nothing better turns up.) 

Fitness-proportionate selection:  
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More fit individuals are more likely, but not certain, to be selected. 

Roulette-wheel selection:  

A form of fitness-proportionate selection in which the chance of an 

individual's being selected is proportional to the amount by which its fitness is 

greater or less than its competitors' fitness. (Conceptually, this can be represented as 

a game of roulette - each individual gets a slice of the wheel, but more fit ones get 

larger slices than less fit ones. The wheel is then spun, and whichever individual 

"owns" the section on which it lands each time is chosen.) 

Scaling selection:  

As the average fitness of the population increases, the strength of the selective 

pressure also increases and the fitness function becomes more discriminating. This 

method can be helpful in making the best selection later on when all individuals 

have relatively high fitness and only small differences in fitness distinguish one 

from another. 

Tournament selection:  

Subgroups of individuals are chosen from the larger population, and members 

of each subgroup compete against each other. Only one individual from each 

subgroup is chosen to reproduce. 

Rank selection:  

Each individual in the population is assigned a numerical rank based on 

fitness, and selection is based on these ranking rather than absolute differences in 

fitness. The advantage of this method is that it can prevent very fit individuals from 

gaining dominance early at the expense of less fit ones, which would reduce the 

population's genetic diversity and might hinder attempts to find an acceptable 

solution. 

Generational selection:  

The offspring of the individuals selected from each generation become the 

entire next generation. No individuals are retained between generations. 

 

Steady-state selection:  
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The offspring of the individuals selected from each generation go back into the 

pre-existing gene pool, replacing some of the less fit members of the previous 

generation. Some individuals are retained between generations. 

Hierarchical selection:  

Individuals go through multiple rounds of selection each generation. Lower-

level evaluations are faster and less discriminating, while those that survive to higher 

levels are evaluated more rigorously. The advantage of this method is that it reduces 

overall computation time by using faster, less selective evaluation to weed out the 

majority of individuals that show little or no promise, and only subjecting those who 

survive this initial test to more rigorous and more computationally expensive fitness 

evaluation. 

3.2.4 Methods of change 

 

Once selection has chosen fit individuals, they must be randomly altered in 

hopes of improving their fitness for the next generation. There are two basic 

strategies to accomplish this. The first and simplest is called mutation. Just as 

mutation in living things changes one gene to another, so mutation in a genetic 

algorithm causes small alterations at single points in an individual's code. 

The second method is called crossover, and entails choosing two individuals 

to swap segments of their code, producing artificial "offspring" that are 

combinations of their parents. This process is intended to simulate the analogous 

process of recombination that occurs to chromosomes during sexual reproduction. 

Common forms of crossover include single-point crossover, in which a point of 

exchange is set at a random location in the two individuals' genomes, and one 

individual contributes all its code from before that point and the other contributes all 

its code from after that point to produce an offspring. The second form of crossover 

is uniform crossover, in which the value at any given location in the offspring's 

genome is either the value of one parent's genome at that location or the value of the 

other parent's genome at that location, chosen with 50/50 probability. 
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Fig.3.2 Crossover and mutation. 

The above diagrams in Fig.3.2 illustrate the effect of each of these genetic 

operators on individuals in a population of 8-bit strings. The upper diagram shows 

two individuals undergoing single-point crossover; the point of exchange is set 

between the fifth and sixth positions in the genome, producing a new individual that 

is a hybrid of its progenitors. The second diagram shows an individual undergoing 

mutation at position 4, changing the 0 at that position in its genome to a 1. 

 

3.3. The Proposed Constrained GA based ICA 

Algorithm 
 

The operations like encoding of parameters, initialization of population, mate 

selection, crossover, mutation and population replacement constitute a canonical 

GA. These operations of a GA are described in the following manner 

Encoding: The parameters of the independent component analysis system to 

be optimized are generally encoded into genes and chromosomes (also called 

individuals) as a string of binary digits using one‘s complement representation. The 

parameters are assumed to be bounded in the region. 

  
kk

b  for  hk ,........,1  
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where h   represents the number of parameters. The length of the gene and 

individuals can be computed as the length of the binary string kB  to be encoded 

k
 based on 

k
b  and the desired accuracy. Other encoding methods are also possible.  

 

Initial population generation: The initial population is generated randomly in 

the range of each parameter. Therefore, at the beginning of the separating procedure, 

N individuals are generated as random binary string. 

Evaluation of fitness: After the initial population generations, the fitness of 

each individual is determined. Fitness is a numeric index to measure the 

effectiveness of each individuals of the population as a solution, which is usually 

utilized to select members of the population for reproduction. For the ICA problem, 

we can define the fitness function based on cost functions discussed in Chapter 2. 

Most widely used kurtosis defined in equation (2.11) is considered as the fitness 

function for GA. 

Selection Operation: A pair of individuals is selected from the current 

population for mating using tournament selection. 

Crossover Operation: A multipoint crossover with probability   is applied to 

the newly selected (parents) individuals to generate two offspring. Specifically, the 

number of crossover points in our application is equal to the number of the 

parameters to be optimized. 

Mutation Operation: Random mutation operator is applied to the newly 

generated offspring to prevent from premature convergence. It randomly alters the 

gene from zero to one or from one to zero with a probability expressed by, , where is 

called  mutation probability. 

A random column vector w  which is represented as two chromosomes is used 

to find the linear transformation zwT
. The following steps represent the constrained 

GA based ICA algorithm. 
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Step-1: Data Centering 

The mean 
T

nmm2m1
)x...,x,x(

m
X  of the observed mixed signal data 

T

n21
)x...,x,x(X is computed and the mean is subtracted from the observed data 

set to make it zero mean. 

m
XXX

c
                                      (3.1) 

Step-2: Whitening 

The covariance matrix CovX  of the centered data 
c

X is computed. The 

eigenvalue decomposition of CovX  is performed. If D  is the eigenvalue matrix 

and E is the eigenvector matrix then 

c

2/1 X*EDZ            (3.2) 

Step -3: GA-based ICA Iteration  

 
The following iterative procedure is followed to implement GA based ICA 

algorithm. 

 1) An initial population 
1i

i
N}ˆ{


  of size N  is created from a random initial 

set of parameter. The encoding length of each parameter is 15 bits. By decoding the 

individual to get the parameter of the system, the fitness for each individual is 

evaluated. 

 2) Two mates are selected for reproduction with probabilities proportional to 

their using tournament selection. 

 3) The multipoint crossover operator with crossover probability 
c

P  is applied 

to the two mates and a pair of offspring is generated. 

4) The mutation operator with probability 
m

P  is applied to the newly 

generated offspring. 

5) The fitness value for the off spring are computed after they are decoded as 

the parameter sets of the parametric system. 

6) GA steps from 2 to 5 are repeated until an entirely new population of 

individuals is generated. 
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7) The previous population is replaced with the new population with the 

addition of an elitist selection. 

8) If the stopping criterion is satisfied, go to GA step 11. 

9) If generation number is greater than a predetermined value go to GA step 2. 

10) Reinitialize the population survival, go to GA step 2. 

11) Output the individual with the best fitness value and terminate the iterative 

procedure. 

 

Step-4: Evaluation of Second Independent Component  

 
To estimate the other ICs, step 3 of the algorithm is repeated for getting 

weight vectors
n2

w,...,w . To prevent different vectors from converging to the same 

optimum and hence the same IC, the weight vectors are decorrelated using Gram-

Schmidt like orthogonaliztion. When p vectors 
p1

w,...,w have been estimated, step 

3 is run for 
1p

w


and after every iteration step the following iteration steps are 

performed. 







p

1j
jj

T

1p1p1p
w)ww(ww              (3.3) 

1p

T

1p

1p

1p

ww

w
w






            

 (3.4) 

Above equations constrain the GA based optimization process. 

 

3.4. Simulation Experiment 
 

In the experimental studies for the verification of the validity and performance 

of the proposed constrained GA optimization based ICA algorithm, programs for 

separating the signals blindly from their observed mixtures are written. In the 

simulation environment, the two signals are mixed by a known matrix A  and the 
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mixed signals are the inputs to the CGAICA algorithm for separation. Two different 

examples are taken to verify the separation capability of the proposed algorithm. For 

a particular example, the parameters such as a number of chromosomes
c

N , number 

of bits of binary coded GA
b

N , number of generations
re

N , probability of crossover 

c
P  and probability of mutation

m
P  parameters are tuned, to get the proper separation. 

In this simulation for CGAICA we have considered the following typical 

values: 85.0P,10N,15N,2p,8N
crebc
 and 01.0P

m
 .  

The separation performance parameter, the mean square error is evaluated. For the 

first example, separation is performed by using contrast functions kurtosis.The 

minimum value of the reciprocal of fitness function J is plotted against the number 

of its evaluations. 

3.5. Results & Discussions  
 

The separation capability of CGAICA is verified through following three examples. 

 

Example 1: 

A random binary wave and a sine wave with 400 samples as shown in Fig.3.3 

are mixed by the mixing matrix 











7348.04763.0

2292.09121.0
A             

 (3.5) 

Their mixtures are represented in Fig 3.4.  
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Fig.3.3 Original Signals 
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Fig.3.4 Mixer of Random Binary & Sine wave 

 

Using CGAICA the two signals or ICs are recovered in the decreasing order of 

the value of their contrast function. For the case of kurtosis as contrast function the 

separated signals are depicted in Fig 3.5. 
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Fig.3.5 The Recovered Independent Components 

 

Random binary signal has more kurtosis value than the sine wave used. So it is 

observed that the random binary is recovered first and the sine wave comes as the 

second IC. The same random binary signal and sine wave are considered for 400 

samples each and mixed by mixing matrix A  as in (3.5). Applying CGAICA 

algorithm the signals are separated clearly shown in Fig 3.5 in the case of 400 

samples. Two sets of tuned values of the optimization parameters for CGAICA 

algorithm with kurtosis as the contrast function and the corresponding mean square 

error (MSE) for random binary signal is summarized in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 



Development of Novel Constrained Genetic Algorithm Based ICA Algorithm 

 

63 

Table 3-1 Parameters of CGAICA to recover Sine wave and Random Binary wave from its 

mixtures 

 

 

Example 2: 

In this example two speech signals (Fig. 3.6) with 50000 samples each are 

taken and instantaneously mixed by the artificial mixing matrix A  as given in (3.5) 

which is shown in Fig 3.7.  

 

No of 

Chromoso

mes cN  
4 8 8 10 20 

No of 

Generation

s reN  
5 10 20 20 20 

No of Bits 

bN  
15 15 15 15 15 

Probability 

of 

Crossover 

cP  

0.85 0.85 0.85 0.85 0.85 

Probability 

of 

Mutation

mP  

0.01 0.01 0.01 0.01 0.01 

MSE for 

Random 

Binary IC 

3.562×10
-4

 4.588×10
-5

 2.764×10
-5

 1.226×10
-6

 2.181×10
-8

 

MSE for 

Sine Wave 

IC 

8.60×10
-2 

8.61×10
-2

 8.60×10
-2

 8.58×10
-2

 8.58×10
-2
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Fig.3.6 Recorded Speech Signals 
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Fig.3.7 Speech Signals mixed with artificial mixing matrix 

 

The mixed signals are applied to CGAICA algorithm for separation using 

kurtosis as the contrast function. The estimated speech signals show a clear 

separation from the mixtures which is depicted in Fig.3.8 first followed by the 

speech signal with lower value of kurtosis. 
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Fig.3.8 Speech Signals recovered by CGAICA 

 

Example 3: 

This example considers the case of a supergaussian (speech) signal and a 

subgaussian (random noise) signal shown in Fig 3.9. The mixtures of these signals 

are depicted in Fig.3.10. The signals recovered with CGAICA are shown in 

Fig.3.11. 
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Fig.3.9 Original Speech Signal and random noise 
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Fig.3.10 Mixture of Speech Signal and random noise 
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Fig.3.11 Speech Signal and random noise recovered by CGAICA 

 

3.5.1 Comparison with Gradient Based Optimization Scheme 
 

The signal separation as done in example 1 is also performed by the most 

popular fast ICA algorithm which is a gradient based scheme to have a comparison 

with our proposed CGAICA algorithm. Table 3.2 summarizes the typical MSE 

values estimated for random binary and sine wave components for fast ICA and 
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CGAICA algorithms. We have chosen the GA with 15 bits which is most commonly 

considered for binary GAs. If we increase the number of bits for binary coding then 

MSE performance improves significantly which is very much natural for binary GAs 

as with higher number of bits they tend towards real coded GA. It is clearly 

observed that CGAICA yields almost comparable performance as that of the most 

popular fast ICA algorithm. The MSE performance of fastICA algorithm varies with 

varying initialization. 

 

 
 

 

Table 3-2 Comparison of fast ICA and CGAICA 

 

Algorithm 
MSE 

Random Binary Sine wave 

Fast ICA 2.5004×10
-9 

8.58×10
-2 

CGAICA 2.1811×10
-8 

8.58×10
-2

 

 

 

3.5.2 Convergence 

 

In GA schemes, a gene is converged when 95% of the population shares the 

same value. To know the convergence of CGAICA, the variation of the best value of 

fitness function with the number of evaluations of the fitness function is studied. In 

the case of example 1 with same mixing matrix A , CGAICA is performed. Fig 3.12 

shows the variation of the reciprocal of fitness function J  values with the number of 

J evaluations for random binary component. Similar results are obtained by taking 

approximation to negentropy as a contrast function. 
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Fig. 3.12 Convergence characteristics of CGAICA 
 

 

3.5.3 Permutation Ambiguity 

 

From all the above two examples it is observed that using CGAICA 

independent components are recovered always in a fixed order in all runs of the 

simulation experiments. The IC for which the fitness function has a global maximum 

value appears first and then appears the IC with subsequent maximum value of the 

fitness function. So the order of the ICs can be predicted if the value of their 

statistical property like kurtosis is relatively known. Hence the permutation 

indeterminacy present in all ICA techniques seems to be dissolved by use of the 

proposed technique. This can be extended without loss of generalization to cases of 

ICA with any number of independent components. 

But if the contrast function (kurtosis) values for both the components are 

almost equal then it becomes difficult to predict the order of recovered signal 

components and hence the permutation uncertainty of the independent components 

remains in such cases.  
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3.6. Conclusions 

 
The Genetic Algorithm based optimization is used in a constrained manner to 

estimate the independent components from their observed mixtures. This scheme is 

tested using several examples including the speech signals for instantaneous mixing 

cases. From the simulation results it is very clear that in the CGAICA algorithm the 

MSE of the estimated ICs decreases with increase in the number of chromosomes. 

Also for a fixed number of chromosomes the number of generations affects the 

MSE. The CGAICA algorithm yields almost comparable MSE as obtained by the 

fast ICA algorithm. The permutation ambiguity present in ICA techniques is 

resolved by use of the CGAICA algorithm if we have relative knowledge of the 

statistical characteristics of the signals to be estimated. But this doesn‘t resolve the 

uncertainty if the signals have nearly equal value of cost function. However care 

should be taken while adjusting the parameters for constrained Genetic Algorithm 

based optimization so that premature convergence to a local optimum does not 

occur. For this, the parameters should be initially varied over a large range to ensure 

the proper convergence to a global optimum.   
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Chapter 

IV 



 

DEVELOPMENT OF A NEW ICA 

ALGORITHM BASED ON CONSTRAINED 

BACTERIAL FORAGING OPTIMIZATION 

TECHNIQUE 

 

 

4.1. Introduction 

The optimization landscape of the contrast functions for ICA is very often 

multimodal. Secondly, the optimization complexity increases with increase in the 

number of independent components. In such a scenario one becomes tempted to use 

the population based search techniques as has been described in the previous 

Chapter with genetic algorithm based independent component analysis due to their 

global convergence capability. 

The Bacterial Foraging Optimization (BFO) is a recently developed derivative 

free efficient evolutionary computational optimization technique which reveals the 

global optimum of the contrast function [4.1]. In this technique the foraging 

behavior of the E.coli bacteria present in our intestine has been mimicked. This 

novel scheme has been successfully used for several applications in [4.2, 4.3]. Since 

bacteria foraging optimization has been reported to have better performance than 

GA and GA has been applied successfully to ICA [4.4] it is quite motivating to 

study the application of bacteria foraging based optimization to ICA problem. 

In the present work we propose a novel Independent Component Analysis 

algorithm using the evolutionary optimization based on the Bacterial Foraging and 

use the popular deflation approach to estimate all the independent components one 
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by one. Using this algorithm in a constrained manner overcomes the long standing 

permutation ambiguity and recovers the ICs in a fixed order which is dependent on 

the statistical characteristics of the signals to be estimated. The Bacteria Foraging 

Optimization based ICA (BFOICA) has been shown to offer comparable or 

sometimes better performance as compared to the most popular fast ICA algorithm. 

The proposed BFOICA algorithm converges faster and yields better performance 

than the CGAICA algorithm described in previous Chapter. It is also successfully 

applied to separate signals from mixtures of supergaussian and subgaussian signals. 

This Chapter is organized as follows. In Section 4.2, the bacteria foraging 

optimization based ICA algorithm is proposed. The simulation experiments have 

been carried out in Section 4.3 to show the effectiveness of the proposed ICA 

algorithm. In Section 4.4 the results of the investigation has been illustrated and 

discussed. Finally, in Section 4.5, the conclusion of the study has been outlined. 

4.2. Bacterial Foraging Optimization Based ICA 

Algorithm 

4.4.1 Bacterial Foraging Optimization 

Bacterial foraging is a new evolutionary computational method proposed by 

Passino [4.1] where foraging can be modeled as an optimization process where an 

animal seeks to maximize energy obtained per unit time spent on foraging. Search 

strategies form the basic foundation for foraging decisions. Animals search for food 

and obtain nutrients in a way that maximizes TE / where E is energy obtained, and 

T is time spent on foraging (or they maximize long-term average rate of energy 

intake). Evolution optimizes foraging strategies since animals that have poor 

foraging performance do not survive. 

Generally, a foraging strategy involves finding a "patch" of food (e.g., group 

of bushes with berries), deciding whether to enter it and search for food and when to 

leave the patch. There are predators and risks. energy required for travel. and 

physiological constraints (sensing, memory. cognitive capabilities). Foraging 
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scenarios can be modeled and optimal policies can be found using, for instance 

dynamic programming. Search and optimal foraging decision-making of animals can 

be broken into three basic types: cruise (e.g.. tuna fish, hawks), saltatory (e.g.. birds. 

fish, lizards, and insects), and ambush (e.g., snakes, lions). In cruise search the 

animal searches the perimeter of a region, and in ambush it sits and waits. In 

saltatory search an animal typically moves in some direction, stops (or slows down), 

looks around, and then changes direction. It searches throughout a whole region. 

Some animals forage as individuals and others forage as groups. While to 

perform social foraging an animal needs communication capabilities. It can gain 

advantages in that it can essentially exploit the sensing capabilities of the group, the 

group can "gang-up" on large prey, individuals can obtain protection from predators 

while in a group, and in a certain sense the group can forage with a type of collective 

intelligence. Social foragers include birds. bees. fish. ants. wildebeasts. and 

primates. Note that there is a type of "cognitive spectrum" where some foragers have 

little cognitive capability, and other higher life forms have significant capabilities 

(e.g.. compare the capabilities of a single ant with those of a human). 

In this scheme, the foraging (methods for locating, handling and ingesting 

food) behavior of E.coli, which is a common type of bacteria present in our 

intestines is mimicked. The E. coli bacterium has a plasma  embrane, cell wall, and 

capsule that contains the cytoplasm and nucleoid. The pili (singular, pilus) are used 

for a type of gene transfer to other E. coli bacteria, and flagella (singular, flagellum) 

are used for locomotion. The cell is about 1micron diameter and 2 micron in length. 

The E. coli cell only weighs about 1 picogram and is about 70% water. Salmonella 

typhimurium is a similar type of bacterium. 

The E. coli bacterium is probably the best understood microorganism. Its 

entire genome has been sequenced; it contains 4,639,221 of the A, C, G, and T 

―letters‖—adenosine, cytosine, guanine, and thymine—arranged into a total of 4,288 

genes. Mutations in E. coli occur at a rate of about 10
-7

 per gene, per generation, and 

can affect its physiological aspects (e.g., reproductive efficiency at different 

temperatures). E. coli bacteria occasionally engage in a type of ―sex‖ called 
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―conjugation‖ where small gene sequences are unidirectionally transferred from one 

bacterium to another via an extended pilus. When E. coli grows, it gets longer, and 

then divides in the middle into two ―daughters.‖ Given sufficient food and held at 

the temperature of the human gut (one place where they live) of 37 ° C, E. coli can 

synthesize and replicate everything it needs to make a copy of itself in about 20 min; 

hence growth of a population of bacteria is exponential with a relatively short time 

to double.  These bacteria undergo different stages such as chemotaxes, swarming, 

reproduction and elimination and dispersal. 

 

Chemotaxes:  

The motion patterns (called ―taxes‖) that a bacteria generates in the presence 

of chemical attractants and repellants are called chemotaxes. This process is 

achieved through swimming and tumbling via flagella. An E.coli bacterium can 

move in two different ways; it can run (swim for a period of time) or it can tumble, 

and alternate between these two modes of operation in the entire lifetime. To 

represent a tumble, a unit length random direction, say )( j , is generated; this will 

be used to define the direction of movement after a tumble. 

In particular )()(),,(),,1( jiClkjlkj ii                         (4.1)   

Where ),,( lkji  represent the i th bacterium j th chemotactic k th 

reproductive and l th elimination and dispersal step. )(iC  is the size of the step 

taken in the random direction specified by the tumble (run length unit). 

 

Swarming:  

When a group of E.coli cells is placed in the center of a semisolid agar with a 

single nutrient chemo-effecter (sensor), they move out from the center in a traveling 

ring of cells by moving up the nutrient gradient created by consumption of the 

nutrient by the group. Moreover, if high levels of succinate are used as the nutrient, 

then the cells release the attractant aspartate so that they congregate into group and 

hence, move as concentric patterns of groups with high bacterial density. The spatial 



Independent Component Analysis Based on Constrained Bacterial Foraging Optimization Technique 

 

77 

order results from outward movement of the ring and the local releases of the 

attractant; the cells provide an attraction signal to each other so they swarm together. 

 

Reproduction:  

The least healthy bacteria die and the other healthier bacteria each split into 

two bacteria, which are placed in the same location. This makes the population of 

bacteria constant. 

 

Elimination and Dispersal:  

It is possible that the local environment, where a population of bacteria live 

changes either gradually (e.g. via consumption of nutrients) or suddenly due to some 

other influence. Events can occur such that all the bacteria in a region are killed or a 

group is dispersed into a new part of the environment .They have the effect of 

possibly destroying the chemotactic progress, but they also have the effect of 

assisting in chemotaxis, since dispersal may place bacteria near good food sources. 

From a broad perspective, elimination and dispersal are parts of the population-level 

long-distance motile behavior. The detailed mathematical treatment of this new 

concept is presented in [4.1]. 

4.4.2 The Proposed BFOICA Algorithm: 

With Bacterial Foraging optimization algorithm we use kurtosis defined in 

(2.11) as the contrast (nutrient) functions to be maximized. The algorithm is made 

for minimization of the nutrient function J , so we consider 

 

FunctionContrast
J

1
                                                      (4.2) 

 

Before presenting the observed mixed signal data for optimization the two 

preprocessing steps, centering and whitening, are performed on it. 

Step-1: Preprocessing 
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The mean 
T

nmmmm
xxxX )...,,(

21
  of the observed mixed signal data 

T

n
xxxX )...,,(

21
 is computed and the mean is subtracted from the observed data 

set to make it zero mean. 

mc
XXX                                                       (4.3) 

The covariance matrix 
c

CovX  of the centered data 
c

X  is computed. The 

eigenvalue decomposition of 
c

CovX  is performed. If D  is the eigenvalue matrix 

and E  is the eigenvector matrix then 

c
XEDZ *2/1                                                                     (4.4) 

where 
T

n
zzzZ ),...,,(

21
 represents the whitened observed mixed signal 

data. The random column vector w  which is represented as the position P of the 

bacteria is used to find the linear transformation zwT
. The bacteria foraging 

technique finds the value of w at which )( zwJ T
is minimized. 

 

Step-2: Initialization 

The following parameters are initialized for the bacteria foraging optimization 

algorithm. 

i) Number of parameters p  to be optimized. 

ii) Number of bacteria S  to be used for searching the total region. 

iii) Swimming length 
s

N after which tumbling of bacteria will be undertaken 

in a chemotatic loop. 

iv) Number of iterations 
c

N  to be under taken in a chemotatic loop
sc

NN  . 

v) Maximum number of reproduction steps 
re

N to be undertaken. 

vi)Maximum number of elimination and dispersal events 
ed

N to be imposed 

over the bacteria. 

vii)Probability with which the elimination and dispersal 
ed

P  will continue. 
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viii) The location of each bacterium )1,1,1( SpP  which is specified by 

random numbers on [0,1]. 

ix) The value of )(iC which is assumed to be constant in our case for all the 

bacteria to simplify the design strategy. 

 

Step-3 Iterative algorithm for optimization 

This section models the bacterial population chemotaxis, reproduction, 

elimination and dispersal (initially, 0lkj  ). For the algorithm updating 
i  

automatically results in updation of P  

i) Elimination-dispersal loop: 1ll   

ii) Reproduction loop: 1kk   

iii) Chemotaxis loop: 1jj   

a) For ,S,.......,2,1i  calculate cost function value for each bacterium i as 

follows. 

 *Compute value of cost function )l,k,j,i(J . 

 *let ),l,k,j,i(JJ
last
  to save his value since we may find a better 

cost via a run. 

 *End of for loop. 

   b) For S,....2,1i   take the tumbling /swimming decision 

   *Tumble: Generate a random vector
p)i(  with each element      

,p,....2,1m)i(
m

 a random number on [-1,1]. 

             *Move: Let.
)i()i(

)i(
)i(C)l,k,j()l,k,1j(

T

ii




      (4.5) 

Fixed step size in the direction of tumble for bacterium i is considered. 

    *compute )l,k,1j,i(J    

    *Swim: i) Let 0m  ;(counter for swim length) 

             ii) while 
s

Nm  (have not climbed down too long ) 
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   *Let 1mm   

     *If 
last

J)l,k,1j,i(J  (if doing better),  

        let )l,k,1j,i(JJ
last

 and  

let 
)i()i(

)i(
)i(C)l,k,j()l,k,1j(

T

ii




                (4.6) 

and use this )l,k,1j(i  to compute the new )l,k,1j,i(J  . 

               *Else, let 
s

Nm  .This is the end of the while statement. 

   c) Go to the next bacterium )1i(  if Si   (i.e go to b) to process the next 

bacterium. 

iv)  If
,c

Nj   go to )iii( .In this case, continue chemotaxis since the life of 

the bacteria is not over. 

v) Reproduction:  

    a) For the given k and l, and for each ,S,....2,1i  let 

)}l,j,i(j{minJ
}N...1{j

i

health
s

 be the health of the bacterium I (a measure of how many 

nutrients it got over its life time and how successful it was at avoiding noxious 

substance).Sort bacteria in order of ascending cost 
health

J (higher cost means lower 

health). 

    b) The
2

SSr   bacteria with highest healthJ values die and other rS bacteria 

with the best value split (and the copies that are made are placed at the same location 

as their parent) 

vi) If
re

Nk   go to )ii( , in this case, we have not reached the number of 

specified reproduction steps, so we start the next generation in the chemotactic loop. 

vii) Elimination & dispersal: S,...2,1i  with probability
ed

P eliminate and 

disperse each bacterium (this keeps the number of bacteria the population constant) 

to a random location on the optimization domain.  
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The position of the bacteria 1w at which global minimum value is obtained 

yields the first independent component. 

 

 

                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             

 

 

 

 

 

Fig. 4.1 Flowchart of the Bacteria Foraging based ICA Algorithm for 

estimation of one IC. This includes the preprocessing steps centering and 

whitening. The other independent components can be estimated by repeating 

the steps again in the orthogonal space. 
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Counter, j=j+1 

k   Nre 
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Step-4: Evaluation of the Other Independent Components 

To estimate the other ICs step 3 of the algorithm is repeated for getting weight 

vectors nww ,...,2 . To prevent different vectors from converging to the same optimum 

and hence the same IC, the weight vectors are decorrelated using Gram-Schmidt like 

orthogonalization. When p vectors pww ,...,1 have been estimated, step 3 is run for 

1pw and after every iteration step the following iteration steps are performed. 

 







p

1j
jj

T

1p1p1p
w)ww(ww                                    (4.7) 

1p

T

1p

1p

1p

ww

w
w






                                                   (4.8) 

Above equations constrain the Bacteria Foraging Optimization process. The 

flowchart of the bacteria foraging based ICA algorithm is shown in Fig.1. 

 

4.3. The Simulation Experiment 
In the experimental studies for the verification of the validity and performance 

of the proposed bacteria foraging optimization based ICA algorithm, programs for 

separating the signals blindly from their observed mixtures are written in MATLAB. 

In the simulation environment, the two signals are mixed by a known matrix A  and 

the mixed signals are the inputs to the BFOICA algorithm for separation. Several 

examples are taken to verify the separation capability of the proposed algorithm. For 

a particular example, the parameters such as a number of bacteria )(S , number of 

chemotactic steps )( cN , number of elimination and dispersal events )( edN , number 

of reproduction steps )( reN , probability of elemination and dispersal )( edP and 

runlengthunit parameters are tuned, to get the proper separation. In this simulation 

for BFOICA the following typical         values: 
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8N,2p,8S
c
 , 25.0P,4N,4N,7N

ededres
 are used. The 

parameter tuning is not a rule based one in this case and is performed on a trial basis. 

The separation performance parameters, the mean square error (MSE) and 

crosstalk (CT) are evaluated using (4.8) and (4.9).  

 

N

)}t(y)t(s{

MSE

N

1t

2

ii

i






     (4.9) 

 

)

)}t(s{

)}t(y)t(s{

log(10CT
N

1t

2

i

N

1t

2

ii

i











  (4.10) 

 

The MSE and crosstalk at the first glance appears to be very ambiguous 

performance indices in case of ICA where there are uncertainties due to scaling and 

permutation. However any standard index of performance has to encounter the 

difficulties due to these uncertainties. In the present study, the scaling uncertainty 

has been taken care of by normalization process and the permutation ambiguity has 

been overcomed. Hence MSE and crosstalk can serve as good performance indices 

for comparison. In all examples, separation is carried out by using contrast functions 

kurtosis and approximations to negentropy with function as in (2.11) and (2.14).The 

minimum value of the nutrient function J is plotted against the number of its 

evaluations. Besides these indices the estimation of ICs using BFOICA has been 

pictorially depicted to have clarity of estimation in all examples considered here. 

As one more index for measurement, the demixing matrix W  given by (4.11) 

is estimated by each of the ICA algorithms. 











2221

1211

ww

ww
W

                                                                (4.11) 
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4.4. Analysis of Results 
The main thrust of the present work being the BFOICA algorithm, the 

comparison has been restricted to fast ICA (the fastest and efficient of all the 

Newtonian methods for ICA) and the CGAICA (ICA based on most popular 

evolutionary computation technique GA discussed in Chapter 3). The separation 

capability of BFOICA is verified by providing four different examples. 

 

Example 1: 

A random binary wave and a sine wave with 400 samples as shown in Fig. 4.2 

are mixed by the mixing matrix 

 











7348.04763.0

2292.09121.0
A                                              (4.12) 

Their mixtures are represented in Fig. 4.3.  

 

0 50 100 150 200 250 300 350 400
-1

0

1
Random Binary wave

0 50 100 150 200 250 300 350 400
-1

0

1
Sine wave

 

Fig. 4.2 Original Signals 
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0 50 100 150 200 250 300 350 400
-2

0

2
First Mixed Signal

0 50 100 150 200 250 300 350 400
-2

0

2
Second Mixed Signal

 

Fig. 4.3 Mixture of random binary and sine wave 
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Fig. 4.4 The recovered independent components 
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Fig. 4.5 Scatter Diagram of the Original Signals, Mixed Signals and 

Independent Components 
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Using BFOICA the two signals or ICs are recovered in the decreasing order of 

the value of their contrast function. For the case of kurtosis as contrast function the 

separated signals are depicted in Fig. 4. Scatter plot of the random binary signal and 

the sine wave, their mixtures and the separated independent components are shown 

in Fig.5. Random binary signal has more kurtosis value than the sine wave used. So 

it is observed that the random binary is recovered first and the sine wave comes as 

the second IC. Three sets of tuned values of the optimization parameters for 

BFOICA algorithm with kurtosis as the contrast function and the corresponding 

mean square error (MSE) for random binary signal is summarized in Table 4.1.The 

estimated values of W have been compared in Table 4.2. This type of examples is 

often used to demonstrate the fundamental separation ability of any ICA algorithm 

in the first step. 

 

Table 4-1 Parameters of BFOICA to recover Random binary and sine wave 

with 400 samples 

 

 

No of Bacteria bS  6 12 40 

No of Chemotactic Steps 

cN  
5 8 30 

No of Reproduction Steps 

reN  
4 3 3 

No of Elimination and 

Dispersion Events edN  
4 4 4 

Probability of Elimination 

& Dispersion edp  
     0.02 0.02 0.02 

MSE for Random Binary 

Component 
1.684×10

-5
 1.196×10

-6
 3.084×10

-10
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Table 4-2 Demixing matrix Comparison for different ICA algorithms for 

Example 1 

Algorithm 
11w  12w  21w  22w  

Fast ICA -1.3188 0.4089 1.2132 -2.3031 

CGAICA -0.2615 0.6283 0.5240 0.2412 

BFOICA 0.9045 -2.1393 0.0923 0.0391 

 

 

Example 2: 

We consider another example with a sine wave and its third harmonic and mix 

these two by the same mixing matrix A as given in (4.11). The original signals and 

their mixtures are shown in Fig. 4.6 and 4.7 respectively. Using BFOICA with 

kurtosis as the contrast function, the sine wave and its third harmonic are clearly 

separated which is shown in Fig 4.8. In this case also it is clearly observed that the 

signal with maximum kurtosis appears first. Hence there is no permutation 

ambiguity. This example has been considered to demonstrate the separation 

capability in case of mixtures of same type of signals with different frequencies. 

0 200 400 600 800 1000 1200
-1

0

1
Sine wave

0 200 400 600 800 1000 1200
-1

0

1
Third harmonic of Sine wave

 

Fig. 4.6 Original sine wave and its third harmonic. 
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-1
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1
First Mixed Signal

0 200 400 600 800 1000 1200
-1

0

1
Second Mixed Signal

 

Fig. 4.7 Mixture of sine wave and its third harmonic 
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Fig. 4.8 Recovered Independent Components 

 

Example 3: 

In this example separation of speech signals from their instantaneous mixtures 

using the ICA algorithms is dealt. Two speech signals (sampled at 16kHz) with 

120000 samples (Fig. 4.9) each are taken [4.6] and instantaneously mixed by the 

artificial random mixing matrix B  as given in equation (4.12). The mixture signal is 

depicted in Fig.4.10. 
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









7348.06763.0

2292.09121.0
B                                                        (4.13) 

 

 

The mixed signals are applied to BFOICA algorithm for separation using 

kurtosis as the contrast function. The estimated speech signals show a clear 

separation from the mixtures which is shown in Fig.4. 11. It is also observed that the 

speech signal with maximum value of kurtosis is estimated first followed by the 

speech signal with lower value of kurtosis. The value of J defined in equation (4.1) 

for first speech component is 0.1448 and that for the second speech component is 

0.3794. The separation was also observed for shorter lengths of speech data i.e. 

speech signal with less number of samples. The estimated value of W as given in 

equation (4.10) for the case considered here has been compared in Table 4.3. 
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Fig. 4.9 Two recorded speech signals 
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Fig. 4.10 Artificial mixture of two recorded speech signals 
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Fig. 4.11 Speech signals recovered by BFOICA 
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Table 4-3 Demixing matrix Comparison for different ICA algorithms 

for Speech mixture case in Example 3 

 

Algorithm 11w  12w  21w  22w  

Fast ICA -0.9797 0.3184 -0.5337 0.7462 

CGAICA 0.7283 -0.6386 0.0684 0.0684 

BFOICA -0.4343 0.4788 0.9597 0.8707 

 

 

Example 4: 

This example illustrates the capability of separation of the algorithm in the 

case of mixture of a supergaussian signal and a subgaussian signal. Speech is 

supergaussian and the random noise is subgaussian shown in Fig.4.12. Speech and 

random noise are instantaneously mixed by the mixing matrix A. The mixed signals 

are shown in Fig. 4.13 and the BFOICA separated signals are depicted in Fig 4.14. 

The scatter plots of the original signals, mixed signals and the recovered signals are 

given in Fig. 4.15. 
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Fig. 4.12 The Speech & random binary Signals 
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Fig. 4.13 The mixer of speech & random binary signals 
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Fig. 4.14 Estimated Speech and random binary Components 
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Fig. 4.15 Scatter Diagrams of the Original Signals, Mixed Signals and 

Independent Components 

 

4.4.1 Comparison of Different Optimization Schemes 

The signal separation carried out in Example 1 is also performed by fast ICA 

and CGAICA algorithms to have a comparison with our proposed BFOICA 

algorithm. Table 4.4 summarizes the typical MSE values estimated for random 

binary and sine wave components for fast ICA, CGAICA and BFOICA algorithms. 

We have chosen the GA with 15 bits which is most commonly considered for binary 

GAs. The number of chromosomes chosen for CGAICA is 20 with crossover and 

mutation probabilities 0.85 and 0.1 where as the number of bacteria chosen for 

BFOICA is 40 with 30 chemotactic steps, 3 reproductions and 4 elimination and 

dispersal events. It is clearly observed that BFOICA yields far better MSE 

performance than CGAICA and comparable or sometimes better performance than 

the most popular fast ICA algorithm. Apart from this the performance of neural 

learning algorithms relies on the selection of activation functions. Usually different 

activation functions are used for sources with different statistics (subgaussian or 

supergaussian) which are difficult to estimate in blind source separation. Also most 

of the algorithms are under the condition, though not mentioned directly, that the 

sources are of the same statistics. Subgaussian and supergaussian signals have 

different sign of fourth order cumulants (Kurtosis), and this is not considered in the 

derivation of the neural learning algorithm.  Therefore it may so happen sometimes 
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that the learning algorithm fails to converge to a consistent optimum when the 

sources have different signs of kurtosis. However from the fourth example it is clear 

that the BFOICA algorithm recovers the independent components from the mixture 

of supergaussian and subgaussian signals. 

 

Table 4-4 MSE & Crosstalk Comparison for different ICA algorithms 

 

 

Algorithm 

MSE
 

Crosstalk (dB)
 

Random Binary Sine wave Random 

Binary 

Sine 

wave 

Fast ICA 2.5004×10
-9 

8.58×10
-2 

-198.0682
 

-17.6259
 

CGAICA 2.1811×10
-8 

8.58×10
-2

 -176.4085 -17.6259 

BFOICA 3.084×10
-10 

8.58×10
-2

 -218.9962 -17.6259 

 

4.4.2 Comparison of Convergence 

To have a comparative convergence study the GA (a popular evolutionary 

algorithm) based approach is also simulated along with BFOICA and CGAICA 

based algorithms. In GA schemes, a gene is converged when 95% of the population 

shares the same value. To have a common ground of comparison with CGAICA, the 

variation of the best value of nutrient function with the number of times the nutrient 

function is evaluated, is studied. In case of example 1 with same mixing matrix A , 

CGAICA is performed. Fig. 4.16 shows the variation of the nutrient function J  

values with the number of J evaluations for random binary component. This clearly 

indicates that BFOICA algorithm has much faster convergence as compared to the 

GAICA algorithm. Similar results are also obtained by taking approximation to 

negentropy as contrast function. Needless to say that fast ICA has faster 

convergence than CGAICA or BFOICA algorithm. The analytical convergence 

properties of the proposed BFOICA are difficult to analyze due to highly complex 

nature of the underlying problem and is beyond the scope of the present work. 
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Fig. 4.16 Minimum value of the nutrient function vs number of its evaluations 

for BFOICA (for kurtosis) and CGAICA 

 

4.4.3 Permutation Ambiguity 

From all the above examples it is observed that using BFOICA independent 

components were recovered always in a fixed order in all runs of the simulation 

experiments. The IC for which the nutrient function has a global minimum value 

appeared first and then appeared the IC with subsequent minimum value of the 

nutrient function J. So the order of the ICs can be predicted the value of their 

statistical property like kurtosis is relatively known. However this is not the case 

with fast ICA or any other gradient based ICA. In deflation approach of 

conventional ICA techniques every different initialization of weight vectors leads to 

a different order of IC recovery. The permutation indeterminacy present in ICA 

techniques seems to be dissolved by use of our proposed technique. This can be 

extended without loss of generalization to cases of ICA with any number of 

independent components. This is very useful in applications where the knowledge of 
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the order of ICs or any particular IC recovery is very important. Generally to 

recognize any particular IC a post processing (like some training based approach) is 

carried out in some applications like denoising the ECG signal. Using the proposed 

technique the required post processing can be eliminated as it is well known that 

ECG signal being supergaussian has more kurtosis than noise and hence it can be 

recovered first. In this case there is no need to estimate the second IC (noise). 

 

4.5. Conclusions 
The bacteria foraging based optimization is used in a constrained manner to 

estimate the independent components from their observed mixtures. This scheme is 

tested using several examples including the speech signals for instantaneous mixing 

cases. From the simulation results it is very clear that the BFOICA algorithm has 

faster convergence and better mean square error performance than as compared to 

the CGAICA algorithm. In comparison to the fast ICA algorithm it has good mean 

square error. The permutation ambiguity present in ICA techniques is resolved by 

use of the BFOICA algorithm if relative knowledge of the statistical characteristics 

of the signals to be estimated is known. However care should be taken while 

adjusting the parameters for bacteria foraging optimization so that premature 

convergence in a local optimum does not occur. For this the parameters should be 

initially varied over a large range to ensure the proper convergence to a global 

optimum. However the computational complexity of the BFOICA is obviously 

higher as compared to the gradient based algorithms. But as the number of 

independent components increases the BFOICA algorithm performs better than the 

available gradient based methods. 
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Chapter 

V 



 

DEVELOPMENT OF NEW NONLINEAR 

ICA ALGORITHM BASED ON BACTERIAL 

FORAGING OPTIMIZATION TECHNIQUE 

 

 

5.1.  Introduction 

The ICA problem addressed extensively so far pertains to linear mixing. As 

the ICA model performs poorly in many practical situations, a natural extension is to 

develop nonlinear models to achieve improved performance. In practice, the sources 

usually undergo a nonlinear mixing process. This is due to the fact that the mixing 

process of multiple sensors contains some nonlinear transformation such as the 

saturation distortion of sensors. Hence nonlinear ICA is more realistic in many 

cases. A fundamental characteristic of the nonlinear ICA problem is that in the 

general case, solutions always exist, and they are highly non-unique. One reason for 

this is that if x and y are two independent random variables, any of their functions 

f(x) and g(y) are also independent. An even more serious problem is that in the 

nonlinear case, x and y can be mixed and still be statistically independent [5.1, 5.2]. 

In spite of many difficulties in recovering the Independent Components from 

nonlinear mixtures, several models and solutions have recently been proposed. Deco 

[5.3] studied a volume-conserving nonlinear transform for nonlinear BSS. Pajunen 

et al. [5.4] used Kohonen‘s self-organizing map (SOM) to extract sources from 

nonlinear mixtures. It is a model-free method but suffers from the exponential 

growth of network complexity and interpolation error in recovering continuous 

sources. In another publication Taleb et al. [5.5] proposed an entropy-based BSS 

algorithm in post nonlinear mixtures. Yang et al. in [5.6] have suggested an 
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information back-propagation algorithm for interchannel nonlinear mixtures in the 

sense of entropy maximization and mutual information minimization, and have 

adopted a sigmoidal nonlinear transformation of the nonlinear model based on the 

work by Burel [5.7]. Very recently, Tan et al. have applied radial basis function 

networks for nonlinear BSS [5.8]. These newly developed models are established on 

the basis of parametric models because it is very important for nonlinear BSS to 

obtain unique separating results when only the independence of sources is known a 

priori. All of these methods are developed based on gradient-based optimization to 

avoid computing some unknown quantities in an unsupervised manner. Therefore, 

these methods are susceptible to the local minima problem during the learning 

process and are thus limited in many practical applications. In this Chapter a new 

nonlinear ICA algorithm is suggested using an efficient evolutionary computing 

based on bacteria foraging optimization (BFO). Its performance is evaluated through 

simulation study and is compared with that obtained from existing nonlinear ICA. 

This Chapter is organized as follows. In Section 5.2, we present the Nonlinear 

ICA model. Section 5.3 proposes the new BFO based nonlinear ICA algorithm. The 

simulation study of the proposed method is carried out in Section 5.4 using an 

example of nonlinear mixing and its performance is evaluated. The GA based 

nonlinear model is also simulated and the results of both the methods are compared 

in Section 5.4. Finally the conclusion on the findings is included in Section 5.5. 

5.2. Nonlinear ICA Model 
The mixing process of sources can be described by different models. A post 

nonlinear mixture model has been used extremely in literature[5.9, 5.10]. In [5.9] 

learning rules for the nonlinear mixing models based on the information 

maximization criterion is proposed. In this model the mixing process is divided into 

a linear mixing part and a nonlinear transfer channel, in which the nonlinear 

functions are approximated by parametric sigmoidal or by higher order polynomials. 

The task of ICA is that of estimating the unknown source components from 

sensor signals. This is described as  
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)]t(s.A[F)t( x   (5.1) 

where 
T

n21
]x,...,x,x[)t(x   is observed 1n  sensor vector, 

T

n21
]s,...,s,s[)t(s   is an 1n  unknown source vector having statistically 

independent non-Gaussian elements )t(s
i

, A  is an nn  unknown full-rank and 

nonsingular mixing matrix and 
T

n21
]f,...,f,f[F   are the set of invertible nonlinear 

transfer functions. The nonlinear ICA problem consists of recovering the source 

vector )t(s  using only the observed data )t(x , the assumption of statistical 

independence between the entries of the input vector )t(s  and possibly some a 

priori information about the probability distribution of the inputs. If all of the 

function 
i

f  are linear then (5.1) reduces to the linear mixing model. The dimensions 

of x  and s , generally though not equal, in the present study it is assumed to be 

same. 

 

 

Fig 5.1 Nonlinear ICA model for Post Nonlinear Mixtures 

 

 Fig.5.1 shows the mixing system (known as a post nonlinear mixture) is 

divided into two different phases as proposed in [5.11]. A linear mixing is done first 
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manner, for the separating system, first we need to approximate 
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inverse of the nonlinear function in each channel, and then separate the linear 

mixture by applying W to the output of the 
i

g  nonlinear function 





n

1j
jjiji

))t(x(gw)t(y    (5.2) 

In many cases, the inverse function 
j

g  is approximated by a sigmoidal 

transfer function, but because of certain situation in which the human expert is not 

given a prior knowledge about the mixing model, a more flexible nonlinear transfer 

function based on an Mth order odd polynomial as given in (5.3) is used. 





M

1k

1k2

jjkjj
xp)x(p    (5.3) 

where ]p,...,p[p
jM1jj

  is a parameter vector to be determined. Hence the 

output sources are calculated as 

1k2

j

n

1j

M

1k
jkiji
xpwy 

 

     (5.4) 

5.3. The Proposed BFO based Nonlinear ICA 

Algorithm 
The bacterial foraging based optimization technique presented in Chapter 4 is used 

to estimate the nonlinear parameters. The demixing matrix W is computed by a 

traditional gradient based technique. The nutrient function used in BFO for 

minimization is given by  

 

)y(I

1
functionNutrient     (5.4) 

 

where I(y)  known as the mutual information and is given by 

 
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with 
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Fig 5.2 Flow chart of the proposed BFO based Nonlinear ICA Algorithm 
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5.4. The Simulation Results 
To verify the validity of the proposed BFO based Nonlinear ICA algorithm, 

simulation study is carried out. In the simulation environment, the two signals are 

mixed by a random matrix A   and then passed though following two nonlinearities 

respectively. 

 

)x5.0tanh()x(f
1

    (5.7) 

)xtanh()x(f
2

           (5.8) 

 

 The mixed signals are the inputs to the proposed algorithm for separation. The 

GA based nonlinear ICA is also applied to the same example for comparison 

purpose. 

 

In the simulation a random binary wave and a random noise are considered as 

input signals as used in case of [5.10]. The original random binary and random noise 

signals and their nonlinear mixtures are depicted in Figs 5.3 and 5.4 respectively. 

The GA and BFO based nonlinear estimation of the independent components 

obtained by simulation are shown in Figs 5.5 and 5.6 respectively. In Fig. 5.5 the 

random binary signal is recovered first and then the random noise but in Fig. 5.6 the 

order observed is reversed. Here it may be noted that the permutation ambiguity is 

present as GA or BFO is used only for parameter estimation and the gradient based 

algorithm like fast ICA is used for linear ICA. Hence the order of appearance of the 

independent components is not always the same. 
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Fig 5.3 Original Random binary and random noise Signals 

 

 

 

Fig 5.4 The nonlinear mixtures of Random Binary and Random Noise Signals 
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Fig 5.5 Signal separation using GA based Nonlinear ICA 

 

 

Fig 5.6 Signal separation using BFO based Nonlinear ICA 
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The bacteria foraging based optimization is used to estimate the independent 

components from their observed nonlinear mixtures. This scheme is tested using an 

example for instantaneous nonlinear mixing case. The BFO is reported to have faster 

convergence than its counterpart GA and this has been illustrated in Chapter 4. In 
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to separate other input signals and using various nonlinear mixtures. The study can 

be extended to separate more than two signals using the proposed nonlinear ICA.  
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6.1   Introduction  
 

Though several algorithms for ICA have been reported in literature very few 

attempts have been made for successful practical implementation of any of these 

algorithms [6.1, 6.2]. An algorithm can be implemented either by ‗fixed point 

arithmetic‘ or by ‗floating point arithmetic‘. The floating-point method demands 

more computational overhead resulting in a large number of processing elements. 

Thus the system becomes speed limited with large chip area and consuming more 

power in the process. In practice, only fixed-point arithmetic is used for application-

specific ICs because the hardware is much simpler and faster compared to the 

floating-point arithmetic.  

The complex arithmetic, the iterative computation with slow convergence rate 

and large volumes of raw and processed data have caused ICA algorithms a time 

consuming process for implementation in software. The implementation in hardware 

provides potentially faster and real-time solutions with optimal parallelism. While 

software implementation is useful for investigating the capabilities of ICA 

algorithms and is sufficient for most applications, hardware implementation is 

essential to fully benefit from the parallel architecture and to facilitate high speed 

processing. The major difference between hardware and software implementations 

lies in the fact that hardware subroutines are executed by integrated circuits (ICs) 
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instead of a series of microinstructions. Hardware implementation also solves the 

insufficient memory problem encountered by software for large data sets and high 

dimensionality. 

While implementing using fixed-point arithmetic the sample values of signal 

are stored in registers and after any processing again stored in some other registers. 

In these cases every operation introduces an error (truncation/round up) due to finite 

register length. These errors propagate and appear as a noise at the output of the 

system. Such noise alters or degrades the performance of the desired system. The 

character of this noise depends on many factors – for example, type of non-linearity, 

structure of the algorithm adopted for implementation, type of arithmetic, 

representation of negative numbers, and properties of the input signal. Hence a 

detailed analysis of error and account for implementation noise introduced by the 

fixed-point operations becomes the essential before practical implementation of a 

system [6.3, 6.4, and 6.22]. The analysis also helps to know the accuracy that can be 

expected out of the existing system and to design with the minimum cost a new 

system to meet the required accuracy specifications [6.5]. Such an analysis with any 

of the ICA algorithms is not found in literature to our knowledge. An analysis with 

fast ICA and algebraic ICA algorithms has been carried out in one of our conference 

papers [6.6]. The fixed-point architecture and its trial implementation have been 

performed in [6.7]. 

Bacterial Foraging based Independent Component Analysis (BFOICA) [6.8] 

and Constrained Genetic Algorithm based Independent Component Analysis 

(CGAICA) [6.9] are two recently developed derivative free evolutionary 

computational ICA techniques which have been discussed in details in Chapters III 

and IV respectively. Both BFO and GA being population search based optimization 

techniques, they have several commonalities. However, BFOICA is reported to have 

faster convergence as compared to CGAICA. Both these evolutionary computation 

based algorithms resolve the permutation uncertainty associated with all gradient 

based ICA techniques like fast ICA. Therefore it is quite motivating to study the 

effect of finite register length implementation of both the proposed algorithms. The 
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present work focuses on the fixed-point performance evaluation of BFOICA 

algorithm and CGAICA algorithm when implemented with different register 

lengths. The fixed-point performance of the most popular fast ICA algorithm is also 

presented in this work. 

This Chapter is organized as follows. Section 2 presents a comprehensive 

overview of the VLSI solutions to different ICA algorithms. The fixed-point models 

of three ICA algorithms are described in Section 3. In Section 4 a detailed 

architecture for the most popular fast ICA algorithm is provided. The computer 

simulations for fixed-point performance for all the algorithms specified above are 

described in Section 5. The fixed-point trial implementation of the most popular fast 

ICA algorithm is also described in section 5. Section 6 analyses the results of 

simulation experiment and synthesis results of fast ICA implementation. Finally the 

conclusions are provided in Section 7.   

6.2   VLSI Solutions to Independent Component 

Analysis  
 

 Advances in very large scale integrated (VLSI) circuit technologies allow 

designers to implement some ICA algorithms on fully analog CMOS circuits, 

analog–digital (AD) mixed-signal ICs, digital application-specific ICs (ASICs), and 

general field programmable gate arrays (FPGAs). Both analog CMOS circuits and 

mixed-signal ICs are fully customized by designers using either analog or AD mixed 

technologies, where the silicon is utilized in the most efficient manner but the 

development expense is incredibly high [6.12]. The digital nonprogrammable ASICs 

such as standard-height library and mask gate arrays are also full-custom VLSI and 

are used to implement designs at high circuit density by specifying interconnections 

during latter stages of the IC manufacturing process. In addition, the large amount of 

available standard libraries of basic logic cells makes the design expense much 

cheaper and the design process much faster. The FPGAs based on the 

reconfiguration technology are the most economic and efficient solutions to ICA 

algorithms since they allow end users to modify and configure their designs multiple 
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times. Specifically, recent rapid increase in the density of FPGAs has made it 

possible to implement large ICA designs with a completely hardware-driven 

approach.  

Many ICA algorithms are slow processes in signal/image processing 

applications due to the complicated arithmetics as well as the time-consuming 

iterative computation. VLSI being an ideal algorithm implementation carrier offers 

many features such as high processing speed, which is extremely desired in ICA 

implementations. The complex computation of ICA is one of the main barricades in 

ICA hardware implementation, especially in synthesis procedure. Therefore, 

hierarchy and modularity techniques in VLSI design are essential for most ICA 

implementations to overcome the complexity of ICA algorithms. The hierarchy, or 

the divide and conquer technique, involves dividing an ICA process into 

subprocessing modules until the complexity of the bottom level submodules 

becomes manageable. These submodules are independently developed, then 

integrated together and put into a design and development environment for 

performing tasks such as synthesis, optimization, placement, and routing. The use of 

modularity enables the parallelism of the design process and facilitates the 

development of generic modules in various designs. Presently, the concept of 

modularity has gained more attention because of a need to reduce the design cycle 

and the development cost. For example, Cho and Lee [6.13] implemented the 

InfoMax ICA on the analog CMOS circuit in 2001, and Cauwenberghs [6.14] 

implemented the same algorithm using the AD mixed-signal technology in 2003. 

Both implementations utilized modular architectures such that the designs could be 

easily expanded to larger chips and further integrated into multichip systems for a 

large number of input and output channels. 

 

Another VLSI design challenge concerning the ICA implementation is the 

iterative computation that requires large amount of processing time and RAM to 

store intermediate results. The best solution to this problem is to reduce the ICA 

algorithm at the early preprocessing stage of the VLSI design process. 
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Computationally efficient ICA algorithms would contain less iteration and converge 

rapidly to the desired accuracy. The digital domain solutions are of importance in 

many respects and necessitate the fixed-point error analysis. The following two 

solutions provide the digital implementation of ICA algorithms.   

6.2.1 ASIC Solutions  
 

The analog CMOS and AD mixed signal technologies provide user full-

custom solutions to ICA algorithms. End users are generally required to have 

sufficient knowledge and focus more on detailed analog physical problems and basic 

component designs. Therefore, the application domains are comparatively limited, 

and the development costs significant time with expenses. Fortunately, the fast-

blooming digital VLSI technologies like ASIC and FPGA allow end users to 

concentrate on the algorithm implementation itself because IC vendors provide 

enormous standard libraries. ASICs and FPGAs are therefore called user semi 

custom solutions.  

From the aspect of circuit density and efficiency, the nonprogrammable ASICs 

cover the lower end of analog CMOS and AD mixed-signal full-custom VLSI and 

the higher end of reprogrammable FPGAs. Compared to reprogrammable FPGAs, 

nonprogrammable ASICs retain the benefits of compact circuit design and low 

power consumption. Although the nonprogrammable feature increases the design 

expense and risk, ASICs that typically contain ten million logic gates or more are the 

appropriate solutions to very complex ICA designs. For example, the standard-

height library cell is a design technique for nonprogrammable ASICs, where the 

vendors develop standard-height library cells for the implementation of large 

amount of functions. When implementing an ICA algorithm, the end users only need 

to select necessary cells that are logic level components with constant height on chip 

and then specify interconnections between layers such as poly, metal1, and metal2 

according to their designs. 

To pursue potential solutions to the InfoMax-based ICA algorithms on higher 

density digital ICs, the Computational Neuro Systems Laboratory, Korea Advanced 
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Institute of Science and Technology [6.15], is designing an ASIC chip for ICA for 

use it as a front end to control noise in speech recognition. All the analog, mixed-

signal, and ASIC solutions depend on compact designs from end users at the 

beginning stage and fabrication of application-specific chips from hardware 

companies at the final stage. The chip size and I/O reflect the compactness of 

individual ICA designs, whereas the fabrication parameters and voltage reflect the 

trend of the VLSI technology development. Obviously, ―low-voltage circuit,‖ which 

directly results in squared power conservation, and ―small chip size,‖ which requires 

compact circuit design, is the current trend. 

6.2.2 FPGA Solutions  
 

Among all the VLSI technologies, FPGAs provide the most economic and 

efficient solutions to comparatively simple ICA algorithms and could provide lower 

cost substitute of nonprogrammable ASICs. Unlike nonprogrammable VLSI 

devices, FPGAs are standard and general-purpose products fabricated by hardware 

companies before end users implement specific ICA designs on them. FPGAs are 

developed based on reconfigurable technologies, in which end users are allowed to 

modify their designs for multiple times and program the interconnections in a few 

hours instead of waiting several weeks for the final fabrication and metalization. 

These savings in the development expense and the turnaround time of prototyping 

directly lead to time-to-market reduction and profit increase. Most FPGAs contain 

2000 to 2000000 logic gates and use architectures that support a balance between 

logic resources and routing resources. Typical FPGAs are composed of a two-

dimensional array of input/output blocks, interconnects, and configurable logic 

blocks (CLBs) that can be customized to implement logic functions. The 

programmable interconnects between these CLBs allow end users to implement the 

multilevel logic functions [6.16, 6.17]. FPGA vendors prefabricate rows of gates and 

programmable connections, whereas end users specify and interconnect the 

programmable CLBs to perform the desired ICA algorithms. In recent years, FPGAs 

have become the most popularly used devices for various VLSI implementations of 
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ICA algorithms. In 2001, Lim et al. [6.18] implemented two small size independent 

component neural network (ICNN) prototypes that were based on mutual 

information (between input and output) maximization and output divergence 

minimization. The implementation was on Xilinx Virtex XCV 812E, which contains 

0.25 million logic gates [6.19]. All the variables in the network were represented as 

fixed-point numbers. The input signals were stored in 1-Mb RAMs and iteratively 

read by the ICNNs until the weight-updating process converged. Two 7-neuron 

ICNN prototypes were implemented and comparison was conducted in terms of cost 

and performance to evaluate which one was more suitable for hardware 

implementation. In [6.20], Nordin et al. proposed a pipelined ICA architecture for 

potential FPGA implementation. The InfoMax algorithm programmed in MATLAB 

from Tony Bell [6.21] was first broken down into four modules, each of which was 

translated into C, and then into HDL to implement on the four-stage pipelined FPGA 

array. Since each FPGA in this pipeline does not have data dependence with others, 

all blocks could be further implemented and executed in parallel. 

6.3      Fixed-Point Models 
 

A number in fixed-point format is represented as either in 2‘s complement form or 

in sign magnitude form. In sign magnitude representation a (t+1)-bit binary fraction 

has the first bit as sign bit and other bits magnitude with binary point according to 

the convention adopted. Any algorithm performs various arithmetic operations such 

as additions, subtractions, multiplications and divisions. When any of these 

operations is carried out with a fixed number of bit‘s‘ then either truncation or 

rounding operation is performed. Hence for every operation an error signal is 

introduced at the location of that operation which appears at the output as noise. The 

fixed-point model introduces these truncation and rounding operations at each step 

of the algorithm so that one gets the fixed-point output of the system, which can be 

compared with the corresponding output with full precision value. For each fixed-

point addition and multiplication truncation and rounding operations are carried out 

respectively. Such a choice has been reported to introduce less mean square error in 
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actual implementation. In the following algorithm, [.]F denotes the fixed-point value 

of the parameter [.] and ‗t‘ denotes the finite register length or number of bits 

without the sign bit. With sign bit the actual register length becomes t+1. For 

example fixed-point addition of two numbers A and B is performed as 

[A+B]F=add(A,B,t), where add function represents both A and B in t-bits, adds them 

and then truncates the result after t-bits.  

 

The quantization effect of the finite bit product 

                                                    (6.1) 

 

is modeled by an additive error or noise ‗n‘ 

                                                                                     (6.2)       

 

Similar is the case for addition. Certain complex fixed-point operations are done by 

special functions mentioned below as and when required. The analysis is carried out 

for a mixture of two signals for the sake of simplicity which can be easily extended 

for more than two signals. 

6.3.1 The Fast ICA Algorithm  
1.Centering the data matrix X: 
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meanx  and  denote the mean of first row of X, mean of 

second row of X and number of columns of X. Mean is subtracted from the data X 

to get the centered data  
T

i2i1
)cx;cx( .  

                                                                                      (6.4a)                                                   

 

                                                        (6.4b)                                    

F
]B*A[C 

nB*AC 

 
FN1F13F1211F1

)N/)x...)x)xx((((meanx 

 
FN2F23F2221F2

)N/)x...)x)xx((((meanx 

FF1i1i1
)]meanx[x(cx 

FF2i2i2
)]meanx[x(cx 



On Effects of Finite Register Length on Different ICA Algorithms for VLSI Implementation 

 

118 

 

2. The centered data is whitened by finding out its covariance matrix and then 

by eigenvalue decomposition. Let covX is the covariance matrix of centered data. 

                                                                                            

 (6.5a)    
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Here the matrix multiplications are implemented by a function which does 

fixed point multiplication and additions required for t-bits. 
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FFFF
]]X[*]matrix_whitened[[]X_whitened[                 (6.13) 

 

FF
]X_whitened[]Z[                                                           (6.14)                                               

                                                             

                                                                                                                                            

3. Initial random vector   is chosen and norm of w is calculated as 

                                                                                                                                                                                                    

FF22F11F
]]w*w[]w*w[[]w_norm[                     (6.15)                                 

    

)]]w_norm/[w[,]]w_norm/[w([]w[
FF2FF1F

            (6.16)                                                 

The normalized fixed-point value of   is given in (6.17). 

 

4. ICA iteration process in fixed point mode is given by 

                   

 (6.17)   

                                                                                              

           (6.18) 

                                                                                                       

           (6.19) 
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In (6.18) and (6.19), fixed point multiplication is performed on element-by-

element basis. 

                                                                                                      (6.20) 

                    

    (6.21)         

                                                                                                           

                                                                                           (6.22)                                   

   

 

                                                                                                       (6.23)                                

 

for i = 1,2 and where  
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new_w
  is the new random vector for second IC. 

(6.24) 

                                                      

(6.25)                               

 

  Norm of [w]F is again found out as described in step 3.                                                                                                                 

 

 

 

FF

3

FFu
]]u[*]Z[[]Z[ 

FFuF
]N/]Z[[]A[ 

FFFFF
]]]w[*3[]A[[]w[ 

F

T

FiFiFi
]]B[*]B[[]B[ 

FFiFw
]w[*]B[[]B[ 

FFwFF
]]B[]w[[]w[ 



On Effects of Finite Register Length on Different ICA Algorithms for VLSI Implementation 

 

121 

6.3.2 The BFOICA Algorithm 
 

The preprocessing steps are modeled as described in case of fast ICA 

algorithm. The BFOICA iteration process is modeled for fixed-point representation 

as follows. The direction for bacterial search algorithm is given by Delta. The fixed-

point representation of Delta is  

 

         
FFFF

prandprandroundDelta )]1,(*.]]1))1,(([*2[[][    (6.26)    

                          

where rand and round are the random and rounding operators respectively. 

 

F
)]1,2(rand[P    and  

F
]P[w   

         
FFFF

ywnormwu ]*]]_/[[[][
1

                                                  (6.27)    

                                         

F
]w_norm[   is norm of w and represented as in (6.15). 

         
FF

4

F
]2,]u[mean[]M[                                                                  (6.28)                                                 

 

The nutrient function in fixed point is represented as 

 

FFF
]]3M[abs/1[]J[                                                     (6.29)     

                                           

Where abs is the absolute operator and M is represented in (6.28). 

In the next iteration the column vector is incremented by a constant step of           

runlengthunit (r) as follows. 

FFFF

'

F

FFFF

]]]]Delta[*]Delta[[[

/]]Delta[*r[[]w[]w[ 
  (6.30) 
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6.3.3 The CGAICA Algorithm 
 

The fixed-point models for preprocessing steps like centering and whitening 

remain same as described above for BFOICA algorithm. The decoding of parent and 

children population is carried out as follows     

FFFF

]p/n[

F

F

]]valuedecoded*]]12[

/min]rangemaxrange[[[minrange[

]valuedecodedoriginal[

F1 





                 (6.31)                             

In the above equation range min and range max are the minimum and 

maximum range for the GA optimization process.   and   represent the number of 

bits and number of parameters to be optimized in binary coded GA. 

The fitness function using fixed point arithmetic is represented as 

    
FFF

]]3M[abs[]J[                                                                 (6.32) 

     where [M]F   is represented in (6.28).                                                                                        

Since binary coded GA is used for optimization in CGAICA, number of bits in 

GA is also kept same as the finite register length for the fixed-point analysis.  

6.4  Architectural Model for Fast ICA Algorithm: 
 

1. Centering the data matrix X: 

The incoming sampled data is fed to the centering block shown in Fig.6.1. In 

this block the mean values of both data sets X1 and X2 are found out and 

subsequently each data is subtracted from the mean of the corresponding data set to 

give the centered data.    
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Fig 6.1 Architecture for Centering of the data 

            2. Whitening: 

The centered data is whitened by first finding its covariance matrix and then 

by performing eigenvalue decomposition. This is carried out as depicted in Fig 6.2. 

Each incoming centered data samples of first mixed signal x1i and centered data 

samples of second mixed signal x2i are squared and cross multiplied. The means of 

each of the terms x1i
2
, x2i

2
 and x1ix2i give the elements of the covariance matrix. The 

eigenvalue decomposition of this covariance matrix covX is carried out as proposed 

by Brent and Luk in [6.11] using equations (6.33) – (6.39) which is performed by 

the EVD block shown in Fig 6.2.  
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             E)X(covED T                  (6.39) 

 

where E is the eigenvector matrix and D is the eigen value matrix and these are 

outputs of EVD block. The D values are inputs to the INV_SQRT block and E 

values are inputs to MATMUL block which is a dedicated block for matrix 

multiplication. 
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The INV_SQRT block performs the above computations and outputs to MATMUL 

block.  

 

T2/1 EDmatrix_whitening                    (6.41) 
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Fig 6.2 Data whitening architecture 

 

        3. ICA Iteration process: 

 
Fig 6.3 shows the fixed-point ICA iteration for a single unit. The random 

vector w   is multiplied with the whitened data to get 2211 .. wxwwxwu  .After the 

computation of WXu .3  its mean is found out. This is then subtracted from ( w3 ).  

This result is normalized as described in step 5. The normalized value w_new is 

compared with the old value w_old and if the values do not match then w_new fed 

back to the input of the block through a multiplexer and also stored as w_old in a 

register for the purpose of comparison. When w_new = w_old then this value is 

given to the output as the converged vector w which gives one independent 

component. 

For finding the other independent component a new random vector w is 

assumed and it is decorrelated with the earlier w and is again put to the iteration 

process for getting an optimized converged value. 

 

Norm of w is calculated as 

 

            2211 .. wwwwnorm   

 

Then  w1n and w2n  are computed as  (6.44) 
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The normalized w is then found as             

 

nnn
www

21
  (6.47) 

 

This is illustrated in Fig 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.3 Iteration Scheme for fast ICA for one unit with Kurtosis optimization 
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 Fig 6.4 Norm Computation 

 

6.5   Experimental Set up 
 

 

For evaluating the performance of fixed-point ICAs simulation study of fast 

ICA, BFOICA and CGAICA algorithms are carried both in fixed and floating point 

arithmetic. In the simulation experiment study fixed-point as well as floating point 

programs of fast ICA, BFOICA and CGAICA algorithms are written. The fixed-

point programs are equivalent to fixed-point machines capable of simulating the 

operations of any word size. With a known value of t, the fixed-point iteration for 

BFOICA algorithm with kurtosis as the optimization function is run and the mean 

square error (MSE) is computed.  

 

                                                                                                            (6.47) 

                                                                                                                                                

 

The value of t is varied from 7 to 32 and the corresponding MSEs are 

computed. The same procedure is followed for CGAICA algorithm with kurtosis as 

optimization function. From the MSEs and output signal powers the noise to signal 

ratio (NSR) in dB for each value of t is computed for both the algorithms. 
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           (6.48)      

 

                                                                                                                              

When t=11 the performance of various fixed-point ICAs is found to be 

acceptable and is considered for implementation. However due to fractional division 

there is an unavoidable overflow of bits which is also considered. Fixed-point 

analysis at various nodes of division is carried out in details. It is observed that 

additional 4 bits are necessary to accommodate for the extra bits due to this overflow 

before the binary point in the fixed-point representation. Since we follow a sign and 

magnitude representation of numbers throughout our implementation, an extra bit is 

allocated for the sign representation. Fig 5.5 shows the bit representation format. 

 

 

         15 14                       binary point                                        0 

Fig. 6.5 Bit representation for Implementation 

 

In the above format bit 15 is the sign bit, bits 14-11 represent the integral part, 

bits 10 to 0 represent the fractional part and binary point is after bit 11. 

With 16 bit real fixed-point representation as shown in Fig 6.5, VHDL codes 

for the preprocessing steps of centering and whitening and fixed-point iteration of 

fast ICA algorithm with kurtosis as the optimization function are written. They are 

synthesized and fitted using Altera‘s Quartus II tool [6.17]. Quartus II is ALTERA‘s 

design and synthesis tool for ALTERA FPGA family. Stratix II device 

EP2S15F484C3 is used as the target FPGA for testing different performance 

parameters. The synthesis, placement and routing and timing analysis are carried out 

with settings in the Quartus II tool for speed optimization and optimization for 

balanced speed and area. In the first setting the tool makes efforts to optimize the 

speed of the implemented design without bothering for the area aspect. In the second 
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setting the tool makes equal efforts to optimize both the speed and the area in the 

design.  

6.6    Analysis of Results  
 

The simulation studies, of fixed-point models as described in the previous 

section for fast ICA, BFOICA and CGAICA algorithms with kurtosis as contrast 

function are performed [6.10]. The mean square error (MSE) decreases with increase 

in the register length for all cases as depicted in Table 6.1. The noise to signal ratio 

(NSR) parameter in dB as a function of register length has been plotted. Fig 6.6 

shows the NSR variation with the variation of bit length for BFOICA and CGAICA 

algorithms.  
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Fig 6.6 NSR variation with bit length for Fast ICA, 

BFOICA and CGAICA with kurtosis as contrast function 
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Table 6-1 Comparison of MSE of Different ICAs at Different Bit Lengths 

 

No of Bits MSE  

Fast ICA BFOICA CGAICA 

7 2.83×10
-5

 9.3×10
-3 

1.56×10
-2 

8 8.16×10
-6

 1.9×10
-3

 5.2×10
-3 

10 5.8×10
-7

 1.0997×10
-4

 2.2334×10
-4 

12 3.66×10
-8

 3.0983×10
-7 

9.43×10
-6 

14 1.45×10
-9

 1.0714×10
-7

 1.5372×10
-6

 

16 8.5×10
-11

 8.4878×10
-7 

8.4302×10
-6 

 

The plots clearly indicate that NSR decreases with increase in t in both the 

cases. At register (bit) lengths (t<16) the BFOICA consistently performs better than 

the CGAICA. Also it is observed that at higher bit lengths CGAICA yields 

comparable or even better performance. This is because increasing the number of 

bits of binary coded GA tends towards a real coded GA. The NSR is observed to be 

minimum at register length 14 for both the algorithms. The NSR fluctuation at 

certain bit lengths for both the algorithms is due to the need of variations of the 

different tuning parameters that greatly influence the computational overhead.  NSR 

performance for fixed-point fast ICA is better than both fixed-point BFOICA and 

fixed-point CGAICA algorithms. This is because BFOICA and CGAICA have more 

computational complexity in comparison to fast ICA. Hence due to more number of 

operations more quantization noise is generated at the system output due to more 

rounding and truncation operations. It is interesting to observe that at register length 

around 14 all the ICA algorithms have identical MSE values. This observation 

indicate that word length beyond 14 has minimal effect on the performance of 

different ICA algorithm studies. Fig 6.7 and Fig 6.8 show the original signals (a 

simple case of rectangular wave and noise has been considered) and the mixed 

signals respectively. 
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Fig.6.7 Original Rectangular wave and Random Noise Signals 
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Fig.6.8 Linear Mixture of rectangular wave and random noise Signals 
 

 

Figs 6.9 and 6.10 display the separation with register lengths 8 and 16 

respectively by using Fast ICA algorithm. 
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Fig.6.9 Separated Signals for Fast ICA with 8 bits 
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Fig 6.10 Separated Signals for Fast ICA with 16bits 

 

 

The separation of signals with register lengths of 8 and 16 are shown in Figs 

6.11 and 6.12 respectively for the BFOICA algorithm. 
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Fig 6.11 Separated Signals for BFOICA with 8 bits 
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Fig 6.12 Separated Signals for BFOICA with 16bits 

 

 

The signal separation by CGAICA algorithm with register lengths 8 and 16 are 

depicted in Fig 6.13 and Fig 6.14 respectively. 
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Fig 6.13 Separated Signals for CGAICA with 8bits 

 

0 50 100 150 200
-1

0

1
IC1 from Constrained GA based ICA

0 50 100 150 200
-1

0

1
IC2 from Constrained GA based ICA

 
 

Fig 6.14 Separated Signals for CGAICA with 16 bits 

 

 

 It can be well observed that separation with BFOICA is better than that with 

CGAICA with 8 bits and also same is the case for 16 bits. But under limited word 

length constraint the fast ICA separation performance is better than both BFOICA 

and CGAICA algorithms. 

As explained in previous sections an extra 5 bits is necessary to accommodate 

the sign bit and overflow due to fixed-point operations. With this 16 bit 

representation the fast ICA algorithm with kurtosis as optimization function when 

implemented with balanced speed and area optimization settings works with a 
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maximum frequency of 6.59 MHz. The same when implemented with only speed 

optimization settings works with a maximum frequency of 6.61 MHz. The resources 

utilized for both cases are summarized in Table 6.2. It is also observed that for speed 

optimization more resources are utilized than the case when there is a balanced 

optimization for speed and area. The maximum frequency can be improved 

significantly by register pipelining in the combinational blocks. 

 

 

 

Table 6-2 Synthesis Results with Different Optimization Settings in the Quartus II Synthesis 

tool 

 

Optimization 

Setting 

Frequency 

(MHz) 

Combinational 

Elements 

ALMs Registers DSP 

Blocks 

Utilized 

Balanced 6.59 8310 5149 1031 66 

Speed 6.61 9927 6352 1031 66 

 

The FPGA implementation of fast ICA algorithm gives an approximate 

knowledge of speed and logic utilization in the process. The CGAICA and BFOICA 

algorithms being more complex than fast ICA needs dedicated efforts .This problem 

has not been attempted in the present thesis. 

 

6.7   Conclusions 
 

The present Chapter studies the effect of finite register length on the 

performance of two different evolutionary computation based ICA algorithms 

BFOICA and CGAICA and also the most popular fast ICA algorithm. Extensive 

simulation studies reveal that kurtosis based CGAICA yields higher MSE compared 

to kurtosis based BFOICA. Further for the same bit length, the fixed-point BFOICA 

offers substantially low MSE compared to the CGAICA (kurtosis based) and fixed-

point fast ICA offers better performance than both evolutionary computation based 

ICA algorithms. The separation ability of fixed-point ICA depends on the number of 
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bits used. Fixed-point BFOICA performs superior to the fixed-point CGAICA. 

Performance of fixed-point fast ICA in comparison to both fixed-point BFOICA and 

CGAICA algorithms is better due to less computational complexity involved in fast 

ICA algorithm. The performance of the proposed architecture for fast ICA is 

evaluated based on trial implementations with FPGA. It is also inferred that with 

speed optimization more resources are required for implementation. Further 

investigations in the design implementation in FPGA for timing performance and 

VLSI (FPGA) implementation of the complex CGAICA and BFOICA are topics of 

further research work. 
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Chapter 

VII 



 

BLIND JAMMER SUPPRESSION IN DS-SS 

SYSTEMS USING ICA TECHNIQUES 

 

7.1. Introduction 

Spread spectrum communications, with its inherent interference attenuation 

capability, has over the years become an increasingly popular technique for use in 

diversity of systems. The systems range from antijam systems for military wireless 

communications to code division multiple access systems for commercial mobile 

communications, to systems designed to combat multipath. The properties such as 

antijamming, antiinterference, low probability of intercept, multiple user random 

access communications with selective addressing capability, high resolution ranging 

and accurate universal timing have made it so popular.  In Direct Sequence Spread 

Spectrum (DS-SS) communications, the bandwidth of the transmitted waveform is 

intentionally made wider than would be necessary to transmit the information over 

the channel, by means of a code which is independent of the data. The data at the 

receiver end is despreaded and recovered by the same code being available at the 

receiver. The ratio of transmission and data bandwidth is called the processing gain 

and provides the system with a high degree of interference suppression capability. In 

most of the cases this gain is sufficient for proper performance of the system. 

However sometimes, additional interference suppression capability is needed due to 

limited availability of the bandwidth. Therefore, signal processing techniques have 

been used in addition to the DS spread spectrum receiver to enhance the processing 

gain, providing greater interference suppression without an increase in bandwidth 

[7.1, 7.2]. Traditionally filters are designed as a preprocessing step to suppress the 

interference and increase the signal-to-noise ratio at the correlator output of the 

receiver. Belouchrani and Amin [7.3] have proposed the interference mitigation 

scheme using blind source separation to aid conventional detection in spread 
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spectrum receiver. They have used second order statistics based BSS technique to 

separate a set of independent information signals from their mixtures observed at the 

sensors. However second order temporal statistics makes the scheme vulnerable to 

signals having low temporal correlations. 

Different types of ICA techniques have been discussed in Chapters 2, 3 and 4 

which are used for blind source separation. ICA exploits higher order statistics and 

hence higher order decorrelation for jammer separation is achieved by use of ICA. 

K.Raju et. al. [7.4] used Fast ICA for jammer suppression in DS-CDMA arrays. The 

Evolutionary computation based ICA techniques CGAICA and BFOICA have been 

discussed in Chapters 3 and 4 respectively. The GA, a popular evolutionary 

computation method has been widely used for multi user detection (MUD) in 

CDMA systems which use the spread spectrum technique [7.5, 7.6, 7.7]. So it 

becomes quite motivating to apply the evolutionary computation based ICA 

techniques to the direct sequence spread spectrum scenario for jammer mitigation.  

In this Chapter, a novel scheme for jammer separation in DS-SS 

communication systems using the CGAICA and BFOICA techniques has been 

proposed. Simulation studies to assess the performance of the proposed schemes 

have been carried out. The merits and limitations of the CGAICA and BFOICA 

assisted jammer suppression in comparison to fast ICA assisted one are also 

discussed. 

This Chapter is organized as follows. In Section 7.2, we present the overview 

of direct sequence spread spectrum communication systems. Section 7.3 discusses 

different sources of interference in DS SS system. In Section 7.4, the interference 

rejection techniques in DSSS systems are outlined. The ICA based system model for 

interference rejection is described in Section 7.5. In Section 7.6 the novel 

BFOICA/CGAICA based jammer mitigation model is proposed. In Section 7.7 the 

experimental set up for validation of the model is outlined. The results of the 



Blind Jammer Suppression in DS-SS Systems using ICA Techniques 

 

143 

investigation has been illustrated and discussed in Section 7.8. Finally, in Section 

7.9, the conclusion of the study has been provided. 

7.2. Spread Spectrum Communication Systems 
Spread spectrum is a means of transmission in which the signal occupies a 

bandwidth in excess of the minimum necessary to send the information; the band 

spread is accomplished by means of a code which is independent of the data, and a 

synchronized reception with the code at the receiver is used for despreading and 

subsequent data recovery [7.8]. 

There are many reasons for spreading the spectrum, and if done properly, a 

multiplicity of benefits can accrue simultaneously. Some of these are antijamming, 

antiinterference, low probability of intercept, multiple user random access 

communications with selective addressing capability, high resolution ranging, and 

accurate universal timing. 

 

The means by which the spectrum is spread is crucial. Several of the 

techniques are ―direct-sequence‖ modulation in which a fast pseudorandomly 

generated sequence causes phase transitions in the carrier containing data, 

―frequency hopping,‖ in which the carrier is caused to shift frequency in a 

pseudorandom way, and ―time hopping,‖ wherein bursts of signal are initiated at 

pseudorandom times. Hybrid combinations of these techniques are frequently used. 

Here we focus only on the direct sequence spread spectrum (DS-SS) systems. This 

consists of superimposing upon the data bits a wide bandwidth spreading sequence. 

This spreading sequence is often generated from a linear feedback shift register 

(LFSR) and is called pseudorandom noise (PN) sequence. 

To illustrate this idea in a very simple manner, let a data signal )(td  be spread 

by multiplying it with a binary valued spreading sequence )(tc  such that the 

bandwidth of )(tc  is much greater than the bandwidth of )(td . If the transmitted 

signal )()( tctd  is received in the presence of noise )(tn  and interference )(tj   then 

the received waveform )(tr  is given by 
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             )t(j)t(n)t(d)t(c)t(r      (7.1) 

)t(r  is despread at the receiver by multiplication with a locally generated version of 

)t(c . Calling this new waveform as )t(x  , we get 

               )t(j)t(c)t(n)t(c)t(d)t(c)t(x 2   

               )t(j)t(c)t(n)t(c)t(d   since 1)t(c2    (7.2) 

 The desired signal bandwidth is reduced back down to the data bandwidth and 

the interference has had its bandwidth increased to at least the spread bandwidth 

(assuming )t(c  and )t(j  are uncorrelated), since multiplication in time corresponds 

to convolution in frequency domain. A time domain and frequency domain 

representation of this is depicted in Fig 7.1 and 7.2 respectively. The bit 

manipulation for spreading and dispreading at transmitter and receiver ends in time 

domain and frequency domain have been shown in Fig 7.3 and 7.4 respectively. 

Hence if )t(x is passed through a lowpass filter whose bandwidth is equal to that of 

)t(d , most of the energy of )t(j)t(c  will be filtered out and the system will enjoy a 

so called processing gain advantage over the interference. The jammer power and 

despread jammer power remain unchanged prior to lowpass filtering, since the 

spreading sequence )t(c is normalized so that 1)t(c2  . However, the effective 

jammer power is reduced at the output of the lowpass filter, since all jammer 

components outside of the data bandwidth are rejected. 

 

 

 

 

 

 

 

Fig 7.1 Time domain spreading 
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Fig. 7.2 Frequency domain Spreading 

 

 

Fig. 7.3 Spreading and dispreading at Transmitter and Receiver in time 

domain 
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Fig. 7.4 Spreading and dispreading at Transmitter and Receiver in frequency 

domain 

 

7.3. Sources of Interference  
As with any (digital) communication system, interference is common in spread 

spectrum systems. It can range from plain noise to smart jammers. Interference can 

be categorized into the following types: 

 interchip interference component. This is usually termed inter symbol 

interference (ISI) for non-spread digital modulation; 

 the component due to background noise n(t); 

 the other-user interference components in the cell-of-interest. This is the 

multiuser interference (MUI); 

 interference due to users in the neighboring cells - inter-cell interference 

(ICI); 
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 external interference due to coexisting systems in the same band or due to 

adversaries that intentionally disrupt transmission, usually termed as 

jammers. 

Earlier versions of spread spectrum systems were primarily designed for 

military communications to overcome a jamming situation, i.e., when an adversary 

intends to disrupt the communication. In order to disrupt the communication, the 

adversary needs to do two things: (a) detect that a communication is taking place, 

and (b) to transmit a jamming signal which is designed to confuse the receiver. 

Spread spectrum communications are therefore designed to make these tasks as 

difficult as possible. In modern CDMA systems, there is no longer a real adversary 

that wishes to disrupt communications. Jamming here takes place more due to the 

coexistence of multiple systems in the same band. This jamming is mostly 

unintentional by nature. Such jammers can either be continuous wave (CW, narrow-

band) or pulsed (wide-band).  The jamming signal can be expressed as 

 

             )tf2iexp(J)t()t(j
jp

   (7.3) 

 

where 1i , and 1)( tp with a probability p during a symbol. It defines the 

nature of jammer. The jammer is continuous wave when 1p  and pulsed at the 

symbol level otherwise. The power, frequency and the phase of the jammer signal 

j(t) are denoted by J , jf  and   respectively. The phase is assumed to be uniformly 

distributed over the interval [0, 2].  

7.4. Interference Rejection in DS-SS Systems 
The acquisition and tracking systems of a spread-spectrum receiver are 

probably the most critical components of the receiver, since if they fail to function 

properly, it is doubtful that the desired signal can be successfully detected. This 

means that the effect of interference (such as jamming) on the receiver while it is 

attempting to learn the correct phase position of the incoming code might be 
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especially harmful, since the interference might not allow the receiver to acquire the 

signal. To address this problem, a narrow-band interference suppression filter is used 

to enhance the performance of a serial search acquisition scheme for a direct-

sequence spread-spectrum receiver. Analytical expressions for the probabilities of 

error in both the search and lock modes are derived and numerical results are used to 

illustrate the sensitivity of the receiver to various system parameters. It is shown by 

Milstein [7.9] that the presence of the rejection filter can significantly improve the 

performance of the acquisition system. Milstein in [7.9] discusses in depth two 

classes of rejection schemes (both of which implement an adaptive notch filter): 1) 

those based upon least mean square (LMS) estimation techniques, and 2) those 

based upon transform domain processing structures. In these techniques the 

improvement is achieved subject to the constraint that the interference is relatively 

narrowband with respect to the DS waveform. 

Interference rejection techniques for DSSS systems are numerous [7.10]. In 

particular, much literature exists on the adaptive notch filter as it relates to rejecting 

narrow band interference on a wideband DSSS signal. Decision directed adaptive 

filtering is another well established technique for interference rejection. Other 

techniques for narrowband DSSS include adaptive analog-to-digital (A/D) 

conversion and nonlinear adaptive filtering. 

 

7.5. ICA Based System Model and Scheme for 

Mitigation 
 

We consider a DS-SS system which uses binary phase shift keying (BPSK) for 

both chip and data modulation. Fig 7.5 shows the simple transmitter model where 

the incoming symbol sequence is spreaded by a pseudo random noise like (PN) bit 

sequence so that the bandwidth of the transmitted signal increases by a factor of the 

processing gain. The receiver is depicted in Fig 7.6. The transmitted signal which 

passes through the AWGN channel also gets corrupted by jammer signal and is 

received at the receiving antenna. The received signal is despreaded and 
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demodulated before getting integrated over the bit duration. This comprises a 

matched filtering operation for the DS/BPSK signal.  After dispreading, the jammer 

energy is spread over the PN code bandwidth and the integrator acts as a 

narrowband filter. The full system model with transmitter, channel and receiver is 

shown in Fig 7.7. 

 

 
Fig. 7.5 DS-SS BPSK Transmitter 

 

 

 

 
Fig.7.6 DS-SS BPSK Receiver 

 

 

 
 

 

 
Fig. 7.7 Simple DS-SS System Model 
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Fig. 7.8 Fast ICA based DS-SS System Model 

 

 

The base band spread spectrum signal )t(s  is of the form: 

 







k

kk
)kTt(mb)t(s         (7.4) 

 

where 



L

1l
c

k

lk
)T)1l(t(pc)t(m  with 1T   as the data rate, and 1

c
T   as the chip 

rate. 
c

T/TL   is the number of chips per bit called the processing gain of the SS 

system. }b{
k

 and }c{ k

l
 represent the kth bit data sequence and corresponding chip 

sequence, and )t(p  is the chip pulse. 

The jammer signal can be continuous wave or bit pulsed as described above. 

Continuous wave jammer signal is represented as  

 

p
J)t(j  )wtcos(                   (7.5) 

 

where 
p

J  is the jammer power and w is the jammer frequency and   is the 

phase of jammer. The jammer can also be a random jammer with a specified 

power
p

J . Another type of jammer can be chip pulsed jamming which is a wideband 

jammer. 
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The received signal is a mixer of the desired transmitted signal )(ts , jammer 

signal )t(j  and additive noise )t(n  in the channel. At the two receiving antenna 

sensors the signals )t(r
1

 and )t(r
2

can be modeled as  

 

)t(n)]t(j)t(s[*A)]t(r)t(r[ TT

21
     (7.6)  

 

where A is unknown mixing matrix which depends on the channel and []
T
 

denotes the transpose operator. 

 

In ICA technique for separating two signals at least two observed mixed 

signals are necessary. This can be achieved by having antenna diversity at the SS 

receiver [7.11]. Assuming the waveforms )t(s  and )t(j  to be statistically 

independent fast ICA algorithm is performed on the received signals )t(r
1

and )t(r
2

 .  

The ICA separates the jammer and the desired signal as depicted in Fig. 7.8. The 

ICA output signals are input to a selection block which finds the desired signal by 

rejecting the jammer signal. This selected desired signal is processed by the 

conventional receiver for detection. The demodulation process recovers the desired 

signal by dispreading and spreading the noise and any other interference signal 

which is easily filtered subsequently. 

7.6. The Proposed BFOICA Based System Model 
 

Though ICA is a blind technique but the permutation uncertainty inherent to 

ICA methods necessitates a selection block which uses a training signal at the 

receiver end to identify the desired spread spectrum signal. The additional selection 

block shown in Fig. 7.8 makes the implementation of signal processing at receiver 

complex due to the involvement of the signal classification problem [7.12]. To avoid 

this extra processing, the proposed BFOICA algorithm is used as a replacement for 

the fast ICA. Since in BFOICA the independent components (ICs) are recovered in a 

particular order, we can know the IC pertaining to the spread spectrum signal. This 
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eliminates the necessity of the extra processing block for selection. The received 

signal in our scheme is incident on the BFOICA/CGAICA block which gives out the 

desired signal directly to the conventional spread spectrum receiver for detection as 

depicted in Fig. 7.9. 

 
Fig. 7.9 Proposed BFOICA based DS-SS System Model 

 

 

 

7.7. Experimental Setup 
 

Experimental study is carried out in this section to demonstrate the 

performance of the proposed model and to compare the resultd with those obtained 

by other methods. In the simulation experiment study, an input symbol sequence of 

10000 samples is considered. Programs for the transmitter, receiver and fast ICA 

algorithm are written to carry out computer simulations for the simple DS-SS system 

and ICA based DS-SS system as shown in Fig 7.7 and 7.8 respectively.  Programs 

for CGAICA and BFOICA are also written and CGAICA/BFOICA based DS-SS 

system is modeled as in Fig 7.9. To the transmitted output signal, two types of 

weighted continuous wave jammers are added. The first type of jammer considered 

is a sinusoidal jammer whereas the second one is a random jammer. The transmitted 

signal is allowed to pass through an AWGN channel. A model of two antennas is 

considered to obtain the receive diversity as required for the ICA algorithm. Jammer 

power is changed so as to vary the signal-to-jammer ratio (SJR) in the range of -

60dB to 50dB in steps of 10dB. Corresponding to each value of SJR, bit error rate 
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(BER) at the receiver output is computed. The variation of BER with SJR at a 

particular signal-to-noise ratio (SNR) is studied. The experiment is conducted at 

SNR values 0dB, 5dB and 10dB. The variation of BER with SJR is studied for the 

simple DS-SS system and DS-SS system with ICA assistance. The experiment is 

carried out for different PN sequence lengths. The BER is plotted against SJR for 

PN sequence lengths of 8, 16 and 32 bits at different SNRs. The above procedure is 

repeated for both types of jammers used. 

 

 

7.8. Analysis of Results 
 

[a] Case –I 

 

The jammer considered here is a sinusoidal one. The simulation studies, on 

both simple DS-SS and DS-SS with fast ICA and BFOICA are performed as 

described in the previous section. Fig 7.10, 7.11 and 7.12 depict the plot of BER 

against SJR with PN sequence lengths 8, 16 and 32 bits respectively. In case of 

simple DS-SS system the BER is observed to decrease with increasing SJR. At 

higher values of SJR, BER remains almost constant at a very low value. As the 

length of PN sequence increases, the BER value remains constant low value. When 

both fast ICA and BFOICA are used for jammer mitigation the low  value of BER is 

observed at lesser SJR values for the entire range of the SJR variation. This means at 

higher jammer powers also the ICA assisted receiver offers better BER values 

irrespective of the PN sequence length. BFOICA based technique yields almost 

comparable BER performance as that offered by the fast ICA. 
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Fig 7.10 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 8 bits PN Sequence at SNR=0dB(Sinusoidal jammer) 
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Fig.7.11 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 16 bits PN Sequence at SNR=0dB(Sinusoidal jammer) 
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Fig.7.12 Plot of SJR vs BER without and with Fast ICA, BFOICA & CGAICA 

for DS-SS System with 32 bits PN Sequence at SNR=0dB(Sinusoidal jammer) 
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Fig 7.13 Plot of SJR vs BER without and with Fast ICA, BFOICA & CGAICA 

for DS-SS System with 8 bits PN Sequence at SNR=5 dB(Sinusoidal jammer) 
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Fig 7.14 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 16 bits PN Sequence at SNR=5 dB(Sinusoidal jammer) 
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Fig.7.15 Plot of SJR vs BER without and with Fast ICA  BFOICA & CGAICA 

for DS-SS System with 32 bits PN Sequence at SNR=5 dB (Sinusoidal jammer) 
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The main advantage of this ICA assisted technique is that the separation is 

unaffected by errors in the propagation model or any array calibration. All the above 

results are obtained at SNR 0dB. The results of the same experiments at SNR 5 dB 

are depicted in Fig. 7.13, 7.14 and 7.15 respectively.  In this case the ICA assisted 

schemes are observed to have less BER as compared to case with 0 dB SNR. The 

same experiments when conducted at 10dB SNR  result in constant low value of 

BER irrespective of jammer power. 

 

[b]   Case-II 

In case of a random jammer, the jammer power and hence SJR when widely 

varied the BER is observed to decrease with increasing SJR values. This happens for 

all considered PN sequence lengths and at different SNRs (0dB and 5 dB) as 

observed for the previous case of sinusoidal jammers. The SJR against BER plots 

for PN sequence lengths 8, 16 and 32 for SNR 0dB and 5dB are depicted in Fig.s 

7.16 -7.22 respectively. 
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Fig 7.16 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 8 bits PN Sequence at SNR=0dB(Random Jammer) 
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Fig 7.17 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 16 bits PN Sequence at SNR=0dB(Random Jammer) 
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Fig 7.18 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 32 bits PN Sequence at SNR=0dB(Random Jammer) 
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Fig 7.19 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 8 bits PN Sequence at SNR=5dB(Random Jammer) 
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Fig 7.20 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 16 bits PN Sequence at SNR=5dB(Random Jammer) 
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Fig 7.21 Plot of SJR vs BER without and with Fast ICA BFOICA & CGAICA 

for DS-SS System with 32 bits PN Sequence at SNR=5dB(Random Jammer) 

 

However there are certain issues pertaining to the fast ICA (also other gradient 

based ICA) assisted DS-SS technique. Fast ICA is reported to have inherent 

ambiguities like permutation and scaling. Due to the permutation uncertainty the 

independent components recovered do not appear in a known or particular order. So 

at the output of the fast ICA block it is difficult to recognize the spread spectrum 

signal and jammer signal. To recognize this and get the desired spread spectrum 

signal for further processing by the receiver, a training sequence is employed and 

another post processing block after fast ICA separation block is used which 

performs selection of the desired spread spectrum signal. However this is a signal 

classification problem and makes the technique semi blind. Apart from this it adds to 

the computational complexity of the system. 

Generally in typical DS-SS applications like CDMA, the pilot training 

sequence is available at the receiver end. To recognize the signal from the signal and 

jammer (appearing at the output of ICA block), the pilot training signal is correlated 

with those signals. But this correlation based methods often becomes difficult when 
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the jammer signal is random in nature. This is because in such cases the signal 

correlation and jammer correlation with the training signal are comparable. In such 

case signal classification becomes more complex. 

 In the proposed CGAICA and BFOICA, however, there is no permutation 

ambiguity and we know the order in which the desired signal appears is known. In 

the present study the desired SS signal comes as the second independent component 

always. So there is no need to employ the signal selection block and use the training 

sequence. The proposed CGAICA and BFOICA assisted techniques are observed to 

be more advantageous in case of random jammer signal where correlation based 

identification techniques are difficult. So BFOICA assisted DS-SS system is a  blind 

technique for jammer suppression. But the disadvantage of this technique is that it is 

computationally more complex than the fast ICA algorithm. The computational 

complexity of BFOICA depends on the parameters of bacterial foraging 

optimization process. However, by employing this new scheme the post processing 

complexity involved with fast ICA based separation can be avoided. 

 

7.9. Conclusions 
 

The present Chapter studies the jammer mitigation in Direct Sequence Spread 

Spectrum communications system by using fast ICA technique and proposes new 

schemes based on BFOICA and CGAICA. Both fast ICA and BFOICA assisted DS-

SS models yield better BER performance even when the high jammer power is high. 

However selection of desired spread spectrum signal in case of fast ICA based 

scheme adds to the computational complexity. The proposed BFOICA assisted 

jammer suppression in DS-SS communication systems has almost comparable 

performance as the fast ICA based jammer suppression. The additional signal 

selection block needed in case of fast ICA and other gradient based ICA techniques 

for jammer mitigation in DS-SS systems, is avoided by the proposed scheme. 
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Chapter 

VIII 



 

CONCLUSIONS AND SCOPE FOR FUTURE 

RESEARCH 

 

 

8.1. General Conclusions 

The research studies presented in this thesis, developed a novel constrained 

genetic algorithm based ICA algorithm and a new ICA algorithm based on bacterial 

foraging optimization and have evaluated their performance. The same BFO 

technique is applied to develop the post nonlinear ICA algorithm. A detailed study 

has been conducted for the fixed-point VLSI implementation of the ICA algorithms 

developed here and the most popular fast ICA algorithm. A trial FPGA 

implementation of fast ICA algorithm has also been presented. The ICA algorithms 

developed in the thesis have been applied to suppress the jammer interference 

blindly in direct sequence spread spectrum receiver to demonstrate their superiority. 

The investigations conducted in this research work yield the following 

important conclusions. 

1. The computationally intelligent techniques like GA and BFO are successfully 

applied to linear and nonlinear ICA. Such techniques always converge to a 

global optimum in the problem space of the contrast function used. However 

these optimization techniques are computationally complex as compared to the 

gradient based techniques. But with the availability of high end processors this 

issue seems to have very less importance. 

2. The gradient based ICA methods have inherent permutation ambiguity. In 

CGAICA and BFOICA techniques the recovered independent components 

always appear in a fixed order depending on the relative values of the objective 
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function (e.g. kurtosis). Hence if the kurtosis values of the signals are relatively 

known then the permutation ambiguity is resolved. But these methods suffer 

from the limitation that if all these components have equal or very nearly equal 

value of the contrast function then the order of appearance of the independent 

components is difficult to predict.  

3. BFO technique along with the gradient based linear ICA method is capable of 

recovering signal components from their nonlinear mixtures. In this case 

however the permutation ambiguity is still prevailing as BFO is used only for 

nonlinear parameter estimation but fast ICA (or any other gradient technique) 

recovers the components from their linear mixtures. The BFO based extraction 

of components from their nonlinear mixtures possesses faster convergence as 

compared to GA based nonlinear ICA. 

4. VLSI (ASIC/FPGA) implementation of any ICA algorithm is carried out using 

fixed-point arithmetic for optimal use of resources. The register length greatly 

affects the separation performance of ICA algorithms. The fixed-point BFOICA 

performs better then the fixed-point CGAICA particularly at lower bit 

precisions. The fixed-point fast ICA exhibits superior performance than fixed-

point CGAICA and BFOICA. A trial implementation of fast ICA algorithm 

shows that with speed optimization and without any register pipelining in FPGA 

the achievable speed is 6.61MHz. It is also observed that by trying to get 

optimized speed, the resource utilization increases. 

5. BFOICA and CGAICA techniques are proposed for mitigating the jammer 

interference from the desired signal in a DS-SS receiver. BFOICA and CGAICA 

assisted jammer suppression technique avoids the extra signal identification 

overhead present in fast ICA assisted jammer mitigation. Proposed BFOICA and 

CGAICA based schemes for jammer suppression yield the same BER as fast 

ICA assisted model even at high jammer powers irrespective of signal to noise 

ratio in an AWGN channel. This is consistently observed irrespective of the 

nature of jammer. 
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8.2. Scope for Future Research 

The proposed research can be extended in following dimensions. 

1. Evolutionary ICA techniques can be extended for cases of convolutive 

signal/speech mixtures. Other variants of evolutionary computation 

technique and their hybrids can be used for optimization in ICA algorithm. 

2. The BFO based nonlinear ICA can be studied in greater details for nonlinear 

convolutive mixtures of signals. In nonlinear ICA we have used BFO and 

fast ICA algorithm. Nonlinear ICA can be attempted to be solved only by 

BFO without using fast ICA (or any gradient based technique). The same 

experiment can be extended for any evolutionary technique may be for a 

better convergence. The identifiabililty of models for nonlinear ICA needs 

further research.  

3. The complexity analysis for implementation of the computationally 

intelligent ICA techniques can be an extensive research activity. One can 

also carry out VLSI implementation of different ICA algorithms using the 

concepts of systolic arrays. 

4. Interference suppression and multi user detection in DS-CDMA systems can 

also be carried out using various ICA techniques. ICA can also be applied to 

MIMO OFDM systems. Application of noisy nonlinear ICA to wireless 

sensor networks is another domain of research. 

5. The generalized analysis of nonlinear ICA algorithm can be carried out for 

better understanding of the separation of signals.
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