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ABSTRACT 

 
In this paper we introduce LUCI, a Lightweight Urban Calculation Interchange system, designed to 

bring the advantages of a calculation and content co-ordination system to small planning and design groups by 
the means of an open source middle-ware. The middle-ware focuses on problems typical to urban planning and 
therefore features a geo-data repository as well as a job runtime administration, to coordinate simulation 
models and its multiple views. The described system architecture is accompanied by two exemplary use cases 
that have been used to test and further develop our concepts and implementations. 

 

 
Figure 1. Transition Workshop at FCL in Singapore in April 2015 showing several 

views of the CPlan tool backed by LUCI imitating a planning workshop. 

 
 

1. INTRODUCTION  
 
Among many new developments in urban planning, from a technical perspective it is 

foremost the increasing amount of data from simulation of urban phenomena that render the 
process of urban planning increasingly complex. This process often encompasses a wide 
variety of tools ranging from data acquisition, urban modelling, interactive simulations and 
3d visualization. Integrating these tools to close the design-evaluation cycle is still in reality 
doomed by an integration through data files and manual format conversions. 
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Design-evaluation cycles require nearly real-time, complementary views on a planning 
site (Baldonado et al., 2000). To not only create such views but also coordinate and 
synchronize their content as well as the corresponding calculation processes, we envision a 
design-simulation pipeline where highly specialized tools interact with each other to perform 
complex tasks. The benefit of such a pipeline for urban planning raises with the number of 
potential tools that can be coordinated with each other. This pipe-line is usually achieved 
with a middleware that assembles and coordinates software components through a messaging 
system. As an additional layer of abstraction a middleware has several advantages like easing 
the software development, establishing data standards and easing software maintenance. 
Individual components can be exchanged on the fly without a requirement for managing new 
soft-ware releases. This fits the volatile urban planning requirements that vary a lot from one 
project to another. Moreover, the middleware approach covers well the increasing demand of 
scalable computing solutions to verify or calibrate complex urban models with big data. As 
standard middleware solutions impose a rather strict design process that contrast the 
diverging requirements in urban planning, we decided to implement our own middleware 
solution that we call Lightweight Urban Computation Interchange (LUCI).  

 
The aim of LUCI is to simplify the middleware approach to a stage where planners are 

able to install and run it at the ease of any other desk-top application. We think this simplicity 
is necessary to enable architects, planners and stakeholders to plan smart cities or a smart 
neighborhoods, which in turn potentially fosters a bottom up and participation culture – an 
ever-growing topic in (western) modern urban planning. In the language of GIS this means 
we are looking for a way to bring the advantages of a network oriented GIS server to the 
desktop. This should enable users to a) run simulations nearly in real-time for a planning 
workshop on many machines distributed in a local network as shown in Figure 1 or b) to 
communicate with citizens over the web or to c) collect citizens feedback or knowledge for 
design tasks.  

 
After a brief introduction about urban planning challenges, we outline recent trends in 

middleware development focusing on urban planning aspects. In Section 3 we will present 
the layered architecture of the LUCI middleware, its key functional features and provide 
additional information about its Desktop, Web and data interface. After this technical part in 
section 4 we describe two cases in which LUCI has been used and tested already. The use 
cases range from a multi-screen environment in which we tried to equip an interactive 
planning workshop scenario with not only complementary but coordinated views, to web 
applications that communicate to LUCI with web sockets. 

 
 

2. RELATED WORK 
 
There is no best middleware solution as they are typically designed for specific 

purposes, targeting problems they were supposed to solve. Urban planning tasks usually 
involve several disciplines and require the processing of relatively complex models in the 
background. Off-the-shelf middleware solutions (Gorton et al., 2003) therefore are of limit 
use, as they do not provide support for adequate data formats or planning functions. On the 
other side industrial planning suites like ESRI’s ArcGIS product family may be too restrictive 
to support future planning concepts that require more flexible middleware solutions. 

 
The two dominant integration styles in urban planning software are a) sequentially 

forming a digital workflow chain or b) following publish-subscribe model in a parallel way, 
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where events are instantly propagated to all interested parties. 
 
First research on digital workflow chains for urban planning have been conducted 

already for several years. They follow a similar principle in which collaborating tools are 
connected through Internet networks finally forming a seamless integrated urban planning 
pipeline. For instance, data acquisition, urban modelling, simulation and visualization tools 
can be linked so that a completely interactive exploration of design alternative becomes a 
reality. As Janssen mentions, this integration has to happen in a user friendly and flexible 
way to make this useful technology available to wider range of urban planners. He proposes a 
workflow configuration engine to manage tool collaborations within urban planning pipeline. 
Achieving a close design-evaluation cycle is especially important in design workshops as 
value raises with the capability to test proposed design solutions within a given workshop 
session. Since such proprietary tools rarely support the same data standard this middleware 
category often comes with data transformers. Programmable mapping functions can be used 
to manage the data translation process. The reality however shows that this task can become 
very complex and time consuming as data structures often may miss specific entries, have 
inconsistent columns or simply divergent conventions across sources. 

 

 
Figure 2. Kepler workflow (Janssen et al., 2014). 

 
Publish subscribe systems enable the asynchronous linking of urban models and tools 

leading to richer view on the entire urban planning scenario.  A good example is the Urban 
Strategy framework from TNO in the Netherlands.  Urban Strategy accelerates and improves 
urban spatial planning by making information from linked, high-tech computer models 
available interactively. The models simulate traffic, air quality, noise, external safety, 
sustainability, groundwater, costs and other aspects of our physical surroundings.  Urban 
Strategy links a central database containing data on the built environment (derived from local 
authority datasets) to independent computer models. The exchange between these models 
occurs via a separate communication layer. This enables changes in the results of the models 
to be immediately calculated into the other models. Changes can be made to the database 
containing data on the built environment: roads can be closed, houses built, transport routes 
altered, etc. The effect of these changes is calculated nearly real-time and made visible in 
Urban Strategy. 
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Figure 3. Software architecture of Urban Strategy (Hofman et al., 2011). 

 
It is important to note that smart city platforms often offered as a cloud computing 

solution (see a survey of smart city platforms in Welington et al., 2013) complement our 
urban planning middle-ware by providing sensor data (participatory sensing in real-time) and 
give access to historic government data. In return the urban planning middleware may 
provide cognitive computing models to achieve liveable cities that consider the human factor 
apart from the technology. 

 
 

3. MIDDLEWARE ARCHITECTURE 
 
As shown in the related work section, there are quite a few middleware systems 

focusing on urban planning, see also Al-Jaroodi et al, 2003, Borst et al., 2009, Romualdo-
Suzuki, 2013 and Janssen et al., 2014. We introduce an open geospatial middleware for urban 
planning that includes a geo-data repository and an asynchronous job management engine 
that allows a supervised execution of modeling, simulation and visualization tasks in a 
network. What our solution focuses on is simple configurability and usability, parallel 
computation of urban simulations and flexible web integration.  

 
It is implemented combining the Message Broker model with a simple Server-Client 

architecture. We use MQTT for notification and a separate TCP socket for the content ex-
change. Similar to MQTT the content exchange sockets remain open as long as the client is 
connected. Content messages follow a fairly simple protocol, in which messages consists of a 
JSON header followed by binary data if needed. The JSON header must contain one of the 
three keywords “action”, “result”, “error”, where action and error are strings and result a 
JSON object. 
 
3.1. Terminology 

 
The name “action” corresponds to a terminology we define in LUCI as follows. 

“Actions” are small pieces of code used for the administration of data, simulation and data 
conversion tasks. They are supposed to run very fast and when called from a client they run 
synchronously. The client only gets an answer once the action is finished. “Services” on the 
other hand is the name for asynchronous tasks supposed to run for a longer time that would 
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not be conceived as responsive by a user. “Convertors” are a class in-between running 
synchronously at the moment but being de-signed to run asynchronously with only a few 
modifications. “Actions”, “Services” and “Converters” are part of a plugin system, i.e. 
dynamically (re-) loaded at runtime. Thus a restart of LUCI that would reset all socket 
connections is not necessary. As shown in Figure 2 there is also a category for “Database” 
plugins. Even though not reloadable at runtime this allows LUCI to have different database 
adaptors, which in turn enables users to work with their preferred database. Apart from the 
plugin structure, Figure 2 also shows the basic idea of the data structure. We map service in- 
and outputs to separate tables. “Scenarios” denote the main unit in which the geo-data 
repository is divided into. They are shared among the services. For more information on the 
data structure refer to Section 3.4. 

 

  
Figure 4. LUCI’s pluggable architecture and data structure. 

 
3.2. Graphical User Interface(s) 

 
Administrative controls including an interactive console are available from a Desktop 

Sys-tem Tray Menu as shown in Figure 3. Nevertheless LUCI can also be configured to run 
headless without any GUI. By now, the most important control available from this menu is 
the interactive console. It is intended for developers to send actions to LUCI as raw JSON 
strings most likely for testing reasons. 

 
Other commands available from that menu are Starting and Stopping LUCI, open a 

PDF documentation (Open Specification) and a few more, as listed in Figure 3. 
 

  
Figure 5. Desktop System Tray Menu (OSX/Win7). 
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3.3. Web Interface 
 
A major highlight of the LUCI middleware is the fact that it can be embedded in any 

web system through web sockets. This opens the door for a wide variety of HTML5 web 
applications. We use ActiveMQ as a MQTT broker (see section 3.9 Job Management / 
MQTT). Upon starting up the broker, it also starts a jetty webserver to support MQTT over 
websockets. This jetty instance also serves LUCI's webcontent. In the future the web 
interface should develop into the main instance from which a user can administrate and 
monitor LUCI, its service instances and scenarios. Among others we envision a flow diagram 
to interactively visualize service instances and perhaps other parts of a LUCI scenario. As a 
showcase of the capabilities of LUCI's capabilities offered by websockets, please refer to 
section 4.2 “Teaching the Unkown”. 

 
3.4. Data Structure 

 
LUCI is supposed to run database-agnostic. This is achieved through mostly standard 

SQL code and all the agnostic parts being part of a database specific plugin in the database 
layer (see Figure 2). At the moment Postgres and H2 are supported. The data structure can be 
subdivided into two main topics: the inputs and outputs of the ser-vices as well as the geo-
data repository, which in the perspective of the individual services could also be termed as 
“shared data”.  

 
The most important feature of the service related data is that we need to be able to 

relate every generated output to the corresponding input data. We solve this with timestamps: 
The services can operate on either only their input data or as well their input data plus shared 
data. Therefore, in an additional table we store the newest available timestamp from input 
table, shared geo-data and the newer out of the two in a third column, which at the same time 
also is being used as the identifier of a call to a service. This call-ID then is being used to 
identify the service outputs; the outputs table holds a column call-ID, which is the newest 
timestamp of its inputs. 

 
The data structure of the shared data is driven by the goal to make query code as simple 

as possible and put the complexity into the insert and update code. As introduced in the 
terminology section (3.1), the shared data is organized in scenarios. Among seven predefined 
columns a scenario is defined by its attributes and an optional coordinate system identifier. In 
other words a scenario defines a project space in which all geometry shares the same 
attributes. Besides self-explanatory attributes like “geomID”, “geom”, a general purpose 
“flag”, “userID”, “timestamp” a scenario holds: 

• a “batchID”: LUCI among other use cases is being used for an evolutionary 
optimization and evaluation process in which many different variations of the same 
scenario are created. To not to mistake such variations with versions planned to be 
implemented in the future, we call those variations “batches”.  

• a “layer”: Similar to layers in CAD applications a layer in LUCI is exclusive. So, 
geometry cannot be part of two layers. 

 
For each scenario four tables are being created. Besides the main table holding the 

current state of a scenario, there is also a history table with a nearly identical structure as the 
main table. The only addition is a timestamp column to store the time at which a record from 
the main table has been deleted. The two remaining tables will be used for versioning in the 
future development of LUCI. 
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3.5. Remote Services 
 
Among a few “local” services that reside in plugins/services folder a major benefit of 

using LUCI results out of its network orientation. It features distributed computing, load 
balancing. “Remote” services are a key element in the implementation of the parallelization 
and/or distributed computation capabilities of LUCI. They are characterized by two main 
attributes: Firstly, from a client’s perspective remote services are indistinguishable from local 
services when being called. Secondly, any client can register as a service. 

 
Upon registration a service describes its inputs and outputs. The inputs of any future 

call to that service will be verified by LUCI using this input description. The input/output 
description is very similar to the capabilities of web process services (WPS). In the future we 
could even think of converting the description to WPS when exposing the available services 
to the web. 

 
Since the data is extensively being marked with timestamps, LUCI is able to send only 

the updates in the scenario data and input parameters since the last execution. Therefore the 
“get_scenario and“ “get_service_inputs“ actions both support the concept of time-range-
selections, which is basically a parameter of the action call consisting of one of the keywords 
“from”, “before”, “until”, “after” and a timestamp as the value. To make use of this partial 
data extraction, the remote service must implement some sort of data cache to which the 
updates can be added. 

 
3.6. Communication Protocol 

 
Messages in LUCI consist of a JSON header and optional binary attachments. The first 

16 bytes of all messages encode the length of each header and attachments with an 8 bytes 
big endian number respectively. This is crucial since connections are not being closed, but 
remain open during a session (web sockets) or until the connection gets closed by either 
client or server (TCP/IP). The attachments part can contain multiple byte arrays. All of them 
must be described in the JSON header by a streaminfo object; a JSON object with predefined 
structure and keywords. If processing of the header fails, using the informaiton oft he first 16 
bytes, all subsequent bytes can still be read, which clears the socket for the next message. 

 
At the moment messages can be sent through TCP/IP and web sockets. Parallel 

messages are not allowed, so each message must be answered before the next message can be 
sent. This shifts the complexity of parallelization away from the client to LUCI and the term 
call ID remains free for services. As mentioned in the terminology section (3.1), we 
distinguish between actions and services. Actions are similar to remote procedure calls with 
the exception of not having a call ID. Messages always call an action by using the “action“ 
keyword. Any message in LUCI must either contain one of the keywords “action“, “error”, 
“result”, which “action” and “error” holding a string-value, and “result” a json object.  

 
Actions themselves are plugins similar to local services, database adapters, or data 

converters. LUCI comes with a standard set of actions, which can be extended or adapted to 
the specific needs of a project, just as services can. In section 4.2 we show an example of 
how LUCI can be adapted to special needs by implementing dedicated services and / or 
adapting actions and converters. 
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3.7. Converters 
 
Converters are plugins that call predefined functions of database adapters to store 

geometry in the scenario table. Supported formats so far are: 
• GeoJSON 
• Shapefile 
• OSM-JSON (read-only) 

DXF and other formats closer related to CAD are on the task list for future development. 
Converters must not only translate the information from one format to the database, but also 
implement a few features specific to LUCI: 

• Attribute Mapping: a JSON object being part of the stream info object that tells the 
converter which attribute (e.g. ID) should be mapped to the seven predefined 
attributes (e.g. geomID) described in the data structure section.  

• Delete_list: a property being stored in the format itself that tells the converter which 
elements should be deleted from the table, i.e. moved to the history table. E.g. in 
GeoJSON the delete_list is a property of a feature that holds no geometry. 

 
3.8. Job Management / MQTT 

 
Jobs, in LUCI being called service instance, can be run synchronously or 

asynchronously. In case it should be run asynchronously the service instance must be created 
first in order to retrieve a SObjID. As discussed in the data structure section (3.4) services can 
have inputs and outputs, which they define at runtime. Upon instance creation all input 
parameters of a service instance are being stored to the data-base. Whenever the service is 
being run, its inputs are loaded from the database. In theory the service can be re-run as many 
times as desired. Still, the service can store the outputs that belong to one single call ID (see 
section 3.4) only once. Since the call ID is always equal to the newest timestamp of services 
inputs re-running services only makes sense, if one of its input parameters has changed. 

 
To listen for such changes we use the Message Queue Transport Transfer (MQTT) 

protocol, a publish-subscribe framework. It was developed by IBM, is open source and builds 
on top of TCP/IP and web sockets. It is referred to as the protocol for the Internet of things. A 
LUCI service instance can either subscribe one of its inputs to the output of another service 
instance or subscribe the instance as a whole to the termination of other services, which will 
cause the instance to run immediately after another service instance has finished. With this 
setup service instances can be represented in a flow diagram, which is the intention of the 
configuration interface mentioned in section 3.3. Using MQTT enables client applications to 
run previously created service instances simultaneously with one publication to MQTT. 
Furthermore, it enables them to monitor all service instance related activity. 

 
Synchronous calls cannot be called through MQTT, but they must be called through the 

run action built-in to LUCI. All service inputs and outputs are not transferred to the data-base 
but directly the (remote) service and back to the client. The run action will wait until the 
service completes. 
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4. USE CASES 
 

4.1. Transition Workshop, Singapore 
 
Equipped with an early prototype of LUCI we conducted a workshop called “Design 

Space Exploration for Urban Compaction” at the SmartGeometry conference held at Chinese 
University Hong Kong in 2014 (see Koenig et al., 2014). The concept of multiple coordinated 
views (Baldonado et al., 2000) representing the coordinated parallel simulations was very 
well received. As shown in Figure 5 for transition workshop of the Future Cities Laboratory 
of the Singapore ETH Centre in April 2015 we refined those ideas and were able to present a 
system with synchronized views across several machines in the network using MQTT’s 
publish-subscriber mechanism.  

 

  
Figure 10. Coordinated & multiple views on multiple screens (machines). 

 
In the context of the transition workshop we assessed the applicability of the LUCI 

system by using an example scenario in the district Rochor in Singapore. To prove that our 
approach works in an existing urban context we assume that this district needs to be 
completely re-planned. This exemplary area in Asia emphasizes the urgent need for fast and 
comprehensive planning systems. Necessary data on the street network was taken from Open 
Street Map, and information about neighboring built structures in 3D was available from the 
Future Cities Laboratory of the Singapore ETH Centre.  

 
We used the LUCI system in combination with an evolutionary multi-criteria 

optimization method (EMO) for creating road networks with defined centrality 
characteristics, such as integration or choice for defined locations (Koenig et al., 2013). 
Inside the blocks of the road networks we generate building layouts with defined densities, 
taking into account specific properties of the open space qualities measured by Isovist fields 
(Koenig et al., 2014). The evaluation mechanisms were coupled as services with the EMO. 
Figure 11 illustrates how the resulting planning system can be used to help an urban planning 
proposal.  
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Figure 11. EMO-Software prototype showing the main areas of the user interface: (a) a 
3D view com-bines one solution out of each archive, design solutions of the archives for 
(b) buildings layouts and (c) street networks, and (d) fields for the user input of size of 

population, number of generations, etc. 
 
This kind of computational planning process we can call evidence-based planning. It 

helps the designer not only to eliminate potentially problematic configurations but also to 
meet the original design requirements. 

 
4.2. Teaching the Unknown, Zurich 

 
“Teaching the Unknown” is the title of a contribution we made to an exhibition by 

Moon Kyungwon & Jeon Joonho at the “Migros Museum für Gegenwartskunst” in Zurich 
from August 29th until November 8th 2015. The title of the exhibition was “News from 
Nowhere: Zurich Laboratory”. The art piece consists of a touch screen table that shows a 
website running on LUCI. The website shows the images that were handed in by roughly 
1000 students as a part of their exercises in a Massive Open Online Course (MOOC) on 
future cities held by Prof. Dr. Schmitt (Schmitt et al. 2014). 

 
The website uses a map from Mapbox being semi-transparently laid over an image. The 

location where the image was taken is marked with a marker and an additional text box 
showing the description to the image. In an additional gaming mode visitors must select the 
city in which a randomly chosen image was taken. The last mode shows the rank of the 
player and the cities. 

 
The students sent in 2083 images. For the game we selected 240 images from 120 

cities. In LUCI each image is stored as a point with the city name, the image, the user name 
and the description being an attribute of that point. In order to speed up the client-side script 
(javascript), we wrote a small service that aggregates all selected images from the same city, 
so that in the Javascript we must not check for images with the same location. A second 
service ranks the cities based on the number of correct guesses. The player score is put 
together by the average distance to the correct city markers from the markers chosen by the 
player. A third service counts how many players achieved a better score, which is then used 
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to display the rank of the player in the overall player history of the exhibition. 
 

 
Figure 13. Screenshot of the game statistics mode showing city and player score. 

 
While this project was mainly used to stabilize LUCI’s data structure, one could think 

of LUCI’s job management capabilities through which services could run automatically after 
a students upload more images in a future MOOC. 

 
 

5. CONCLUSION AND OUTLOOK 
 
We focus on small groups of planners or researchers that want to collaborate with each 

other and perhaps scale their collaboration to a larger group of participants at a later stage. As 
mentioned, with such a focus the simplification of the middleware approach becomes crucial. 
Simplification towards a desktop application for us means to avoid as many enterprise 
frameworks as possible that would hinder potential users to quickly develop a custom action, 
service or converter. We provide simple POJO-like access to LUCI that should allow users 
such as planners or researchers to easily adapt LUCI to their needs in a transparent way. The 
integration of an H2 database adaptor takes away the hassle of installing a PostGIS database 
for people unfamiliar with GIS databases such as architects or planners. 

 
In the future we plan to integrate LUCI with the “Tool Library”, a solution that makes 

view and tool configurations in a multi-screen situation room accessible and controllable 
from a web-based application. In this regard we would also like to create an editor that lets 
users put together service instances in a flow diagram. Furthermore, we could think of 
exposing LUCI's service descriptions to the web following the WPS standard as well as 
adding support for DXF and other NURB-based geometry formats. We also would like to add 
support for transformation matrices, so that the communication with regular 3D editors could 
be streamlined, since not the whole geometry would need to be sent through the network, but 
only its transformations. And as mentioned in the data structure section, the data structure has 
been designed with versioning in mind. A future implementation of this will extend LUCI's 
capabilities even more. 
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