

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

LIGHTWEIGHT URBAN COMPUTATION INTERCHANGE (LUCI)
SYSTEM

Lukas Treyer1, Bernhard Klein2, Reinhard König1 and Christine Meixner1

1Department of Architecture, ETH Zurich
Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland

Email: {treyer, reinhard.koenig, meixner}@arch.ethz.ch

2Future Cities Laboratory, Singapore-ETH Centre
1 CREATE Way, #06-01 CREATE Tower, Singapore 138602, Singapore

Email: klein@arch.ethz.ch

ABSTRACT

In this paper we introduce LUCI, a Lightweight Urban Calculation Interchange system, designed to

bring the advantages of a calculation and content co-ordination system to small planning and design groups by
the means of an open source middle-ware. The middle-ware focuses on problems typical to urban planning and
therefore features a geo-data repository as well as a job runtime administration, to coordinate simulation
models and its multiple views. The described system architecture is accompanied by two exemplary use cases
that have been used to test and further develop our concepts and implementations.

Figure 1. Transition Workshop at FCL in Singapore in April 2015 showing several

views of the CPlan tool backed by LUCI imitating a planning workshop.

1. INTRODUCTION

Among many new developments in urban planning, from a technical perspective it is

foremost the increasing amount of data from simulation of urban phenomena that render the
process of urban planning increasingly complex. This process often encompasses a wide
variety of tools ranging from data acquisition, urban modelling, interactive simulations and
3d visualization. Integrating these tools to close the design-evaluation cycle is still in reality
doomed by an integration through data files and manual format conversions.

 Leightweight Urban Compaction Interchange

Design-evaluation cycles require nearly real-time, complementary views on a planning
site (Baldonado et al., 2000). To not only create such views but also coordinate and
synchronize their content as well as the corresponding calculation processes, we envision a
design-simulation pipeline where highly specialized tools interact with each other to perform
complex tasks. The benefit of such a pipeline for urban planning raises with the number of
potential tools that can be coordinated with each other. This pipe-line is usually achieved
with a middleware that assembles and coordinates software components through a messaging
system. As an additional layer of abstraction a middleware has several advantages like easing
the software development, establishing data standards and easing software maintenance.
Individual components can be exchanged on the fly without a requirement for managing new
soft-ware releases. This fits the volatile urban planning requirements that vary a lot from one
project to another. Moreover, the middleware approach covers well the increasing demand of
scalable computing solutions to verify or calibrate complex urban models with big data. As
standard middleware solutions impose a rather strict design process that contrast the
diverging requirements in urban planning, we decided to implement our own middleware
solution that we call Lightweight Urban Computation Interchange (LUCI).

The aim of LUCI is to simplify the middleware approach to a stage where planners are

able to install and run it at the ease of any other desk-top application. We think this simplicity
is necessary to enable architects, planners and stakeholders to plan smart cities or a smart
neighborhoods, which in turn potentially fosters a bottom up and participation culture – an
ever-growing topic in (western) modern urban planning. In the language of GIS this means
we are looking for a way to bring the advantages of a network oriented GIS server to the
desktop. This should enable users to a) run simulations nearly in real-time for a planning
workshop on many machines distributed in a local network as shown in Figure 1 or b) to
communicate with citizens over the web or to c) collect citizens feedback or knowledge for
design tasks.

After a brief introduction about urban planning challenges, we outline recent trends in

middleware development focusing on urban planning aspects. In Section 3 we will present
the layered architecture of the LUCI middleware, its key functional features and provide
additional information about its Desktop, Web and data interface. After this technical part in
section 4 we describe two cases in which LUCI has been used and tested already. The use
cases range from a multi-screen environment in which we tried to equip an interactive
planning workshop scenario with not only complementary but coordinated views, to web
applications that communicate to LUCI with web sockets.

2. RELATED WORK

There is no best middleware solution as they are typically designed for specific

purposes, targeting problems they were supposed to solve. Urban planning tasks usually
involve several disciplines and require the processing of relatively complex models in the
background. Off-the-shelf middleware solutions (Gorton et al., 2003) therefore are of limit
use, as they do not provide support for adequate data formats or planning functions. On the
other side industrial planning suites like ESRI’s ArcGIS product family may be too restrictive
to support future planning concepts that require more flexible middleware solutions.

The two dominant integration styles in urban planning software are a) sequentially

forming a digital workflow chain or b) following publish-subscribe model in a parallel way,

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

where events are instantly propagated to all interested parties.

First research on digital workflow chains for urban planning have been conducted

already for several years. They follow a similar principle in which collaborating tools are
connected through Internet networks finally forming a seamless integrated urban planning
pipeline. For instance, data acquisition, urban modelling, simulation and visualization tools
can be linked so that a completely interactive exploration of design alternative becomes a
reality. As Janssen mentions, this integration has to happen in a user friendly and flexible
way to make this useful technology available to wider range of urban planners. He proposes a
workflow configuration engine to manage tool collaborations within urban planning pipeline.
Achieving a close design-evaluation cycle is especially important in design workshops as
value raises with the capability to test proposed design solutions within a given workshop
session. Since such proprietary tools rarely support the same data standard this middleware
category often comes with data transformers. Programmable mapping functions can be used
to manage the data translation process. The reality however shows that this task can become
very complex and time consuming as data structures often may miss specific entries, have
inconsistent columns or simply divergent conventions across sources.

Figure 2. Kepler workflow (Janssen et al., 2014).

Publish subscribe systems enable the asynchronous linking of urban models and tools

leading to richer view on the entire urban planning scenario. A good example is the Urban
Strategy framework from TNO in the Netherlands. Urban Strategy accelerates and improves
urban spatial planning by making information from linked, high-tech computer models
available interactively. The models simulate traffic, air quality, noise, external safety,
sustainability, groundwater, costs and other aspects of our physical surroundings. Urban
Strategy links a central database containing data on the built environment (derived from local
authority datasets) to independent computer models. The exchange between these models
occurs via a separate communication layer. This enables changes in the results of the models
to be immediately calculated into the other models. Changes can be made to the database
containing data on the built environment: roads can be closed, houses built, transport routes
altered, etc. The effect of these changes is calculated nearly real-time and made visible in
Urban Strategy.

 Leightweight Urban Compaction Interchange

Figure 3. Software architecture of Urban Strategy (Hofman et al., 2011).

It is important to note that smart city platforms often offered as a cloud computing

solution (see a survey of smart city platforms in Welington et al., 2013) complement our
urban planning middle-ware by providing sensor data (participatory sensing in real-time) and
give access to historic government data. In return the urban planning middleware may
provide cognitive computing models to achieve liveable cities that consider the human factor
apart from the technology.

3. MIDDLEWARE ARCHITECTURE

As shown in the related work section, there are quite a few middleware systems

focusing on urban planning, see also Al-Jaroodi et al, 2003, Borst et al., 2009, Romualdo-
Suzuki, 2013 and Janssen et al., 2014. We introduce an open geospatial middleware for urban
planning that includes a geo-data repository and an asynchronous job management engine
that allows a supervised execution of modeling, simulation and visualization tasks in a
network. What our solution focuses on is simple configurability and usability, parallel
computation of urban simulations and flexible web integration.

It is implemented combining the Message Broker model with a simple Server-Client

architecture. We use MQTT for notification and a separate TCP socket for the content ex-
change. Similar to MQTT the content exchange sockets remain open as long as the client is
connected. Content messages follow a fairly simple protocol, in which messages consists of a
JSON header followed by binary data if needed. The JSON header must contain one of the
three keywords “action”, “result”, “error”, where action and error are strings and result a
JSON object.

3.1. Terminology

The name “action” corresponds to a terminology we define in LUCI as follows.

“Actions” are small pieces of code used for the administration of data, simulation and data
conversion tasks. They are supposed to run very fast and when called from a client they run
synchronously. The client only gets an answer once the action is finished. “Services” on the
other hand is the name for asynchronous tasks supposed to run for a longer time that would

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

not be conceived as responsive by a user. “Convertors” are a class in-between running
synchronously at the moment but being de-signed to run asynchronously with only a few
modifications. “Actions”, “Services” and “Converters” are part of a plugin system, i.e.
dynamically (re-) loaded at runtime. Thus a restart of LUCI that would reset all socket
connections is not necessary. As shown in Figure 2 there is also a category for “Database”
plugins. Even though not reloadable at runtime this allows LUCI to have different database
adaptors, which in turn enables users to work with their preferred database. Apart from the
plugin structure, Figure 2 also shows the basic idea of the data structure. We map service in-
and outputs to separate tables. “Scenarios” denote the main unit in which the geo-data
repository is divided into. They are shared among the services. For more information on the
data structure refer to Section 3.4.

Figure 4. LUCI’s pluggable architecture and data structure.

3.2. Graphical User Interface(s)

Administrative controls including an interactive console are available from a Desktop

Sys-tem Tray Menu as shown in Figure 3. Nevertheless LUCI can also be configured to run
headless without any GUI. By now, the most important control available from this menu is
the interactive console. It is intended for developers to send actions to LUCI as raw JSON
strings most likely for testing reasons.

Other commands available from that menu are Starting and Stopping LUCI, open a

PDF documentation (Open Specification) and a few more, as listed in Figure 3.

Figure 5. Desktop System Tray Menu (OSX/Win7).

 Leightweight Urban Compaction Interchange

3.3. Web Interface

A major highlight of the LUCI middleware is the fact that it can be embedded in any

web system through web sockets. This opens the door for a wide variety of HTML5 web
applications. We use ActiveMQ as a MQTT broker (see section 3.9 Job Management /
MQTT). Upon starting up the broker, it also starts a jetty webserver to support MQTT over
websockets. This jetty instance also serves LUCI's webcontent. In the future the web
interface should develop into the main instance from which a user can administrate and
monitor LUCI, its service instances and scenarios. Among others we envision a flow diagram
to interactively visualize service instances and perhaps other parts of a LUCI scenario. As a
showcase of the capabilities of LUCI's capabilities offered by websockets, please refer to
section 4.2 “Teaching the Unkown”.

3.4. Data Structure

LUCI is supposed to run database-agnostic. This is achieved through mostly standard

SQL code and all the agnostic parts being part of a database specific plugin in the database
layer (see Figure 2). At the moment Postgres and H2 are supported. The data structure can be
subdivided into two main topics: the inputs and outputs of the ser-vices as well as the geo-
data repository, which in the perspective of the individual services could also be termed as
“shared data”.

The most important feature of the service related data is that we need to be able to

relate every generated output to the corresponding input data. We solve this with timestamps:
The services can operate on either only their input data or as well their input data plus shared
data. Therefore, in an additional table we store the newest available timestamp from input
table, shared geo-data and the newer out of the two in a third column, which at the same time
also is being used as the identifier of a call to a service. This call-ID then is being used to
identify the service outputs; the outputs table holds a column call-ID, which is the newest
timestamp of its inputs.

The data structure of the shared data is driven by the goal to make query code as simple

as possible and put the complexity into the insert and update code. As introduced in the
terminology section (3.1), the shared data is organized in scenarios. Among seven predefined
columns a scenario is defined by its attributes and an optional coordinate system identifier. In
other words a scenario defines a project space in which all geometry shares the same
attributes. Besides self-explanatory attributes like “geomID”, “geom”, a general purpose
“flag”, “userID”, “timestamp” a scenario holds:

• a “batchID”: LUCI among other use cases is being used for an evolutionary
optimization and evaluation process in which many different variations of the same
scenario are created. To not to mistake such variations with versions planned to be
implemented in the future, we call those variations “batches”.

• a “layer”: Similar to layers in CAD applications a layer in LUCI is exclusive. So,
geometry cannot be part of two layers.

For each scenario four tables are being created. Besides the main table holding the

current state of a scenario, there is also a history table with a nearly identical structure as the
main table. The only addition is a timestamp column to store the time at which a record from
the main table has been deleted. The two remaining tables will be used for versioning in the
future development of LUCI.

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

3.5. Remote Services

Among a few “local” services that reside in plugins/services folder a major benefit of

using LUCI results out of its network orientation. It features distributed computing, load
balancing. “Remote” services are a key element in the implementation of the parallelization
and/or distributed computation capabilities of LUCI. They are characterized by two main
attributes: Firstly, from a client’s perspective remote services are indistinguishable from local
services when being called. Secondly, any client can register as a service.

Upon registration a service describes its inputs and outputs. The inputs of any future

call to that service will be verified by LUCI using this input description. The input/output
description is very similar to the capabilities of web process services (WPS). In the future we
could even think of converting the description to WPS when exposing the available services
to the web.

Since the data is extensively being marked with timestamps, LUCI is able to send only

the updates in the scenario data and input parameters since the last execution. Therefore the
“get_scenario and“ “get_service_inputs“ actions both support the concept of time-range-
selections, which is basically a parameter of the action call consisting of one of the keywords
“from”, “before”, “until”, “after” and a timestamp as the value. To make use of this partial
data extraction, the remote service must implement some sort of data cache to which the
updates can be added.

3.6. Communication Protocol

Messages in LUCI consist of a JSON header and optional binary attachments. The first

16 bytes of all messages encode the length of each header and attachments with an 8 bytes
big endian number respectively. This is crucial since connections are not being closed, but
remain open during a session (web sockets) or until the connection gets closed by either
client or server (TCP/IP). The attachments part can contain multiple byte arrays. All of them
must be described in the JSON header by a streaminfo object; a JSON object with predefined
structure and keywords. If processing of the header fails, using the informaiton oft he first 16
bytes, all subsequent bytes can still be read, which clears the socket for the next message.

At the moment messages can be sent through TCP/IP and web sockets. Parallel

messages are not allowed, so each message must be answered before the next message can be
sent. This shifts the complexity of parallelization away from the client to LUCI and the term
call ID remains free for services. As mentioned in the terminology section (3.1), we
distinguish between actions and services. Actions are similar to remote procedure calls with
the exception of not having a call ID. Messages always call an action by using the “action“
keyword. Any message in LUCI must either contain one of the keywords “action“, “error”,
“result”, which “action” and “error” holding a string-value, and “result” a json object.

Actions themselves are plugins similar to local services, database adapters, or data

converters. LUCI comes with a standard set of actions, which can be extended or adapted to
the specific needs of a project, just as services can. In section 4.2 we show an example of
how LUCI can be adapted to special needs by implementing dedicated services and / or
adapting actions and converters.

 Leightweight Urban Compaction Interchange

3.7. Converters

Converters are plugins that call predefined functions of database adapters to store

geometry in the scenario table. Supported formats so far are:
• GeoJSON
• Shapefile
• OSM-JSON (read-only)

DXF and other formats closer related to CAD are on the task list for future development.
Converters must not only translate the information from one format to the database, but also
implement a few features specific to LUCI:

• Attribute Mapping: a JSON object being part of the stream info object that tells the
converter which attribute (e.g. ID) should be mapped to the seven predefined
attributes (e.g. geomID) described in the data structure section.

• Delete_list: a property being stored in the format itself that tells the converter which
elements should be deleted from the table, i.e. moved to the history table. E.g. in
GeoJSON the delete_list is a property of a feature that holds no geometry.

3.8. Job Management / MQTT

Jobs, in LUCI being called service instance, can be run synchronously or

asynchronously. In case it should be run asynchronously the service instance must be created
first in order to retrieve a SObjID. As discussed in the data structure section (3.4) services can
have inputs and outputs, which they define at runtime. Upon instance creation all input
parameters of a service instance are being stored to the data-base. Whenever the service is
being run, its inputs are loaded from the database. In theory the service can be re-run as many
times as desired. Still, the service can store the outputs that belong to one single call ID (see
section 3.4) only once. Since the call ID is always equal to the newest timestamp of services
inputs re-running services only makes sense, if one of its input parameters has changed.

To listen for such changes we use the Message Queue Transport Transfer (MQTT)

protocol, a publish-subscribe framework. It was developed by IBM, is open source and builds
on top of TCP/IP and web sockets. It is referred to as the protocol for the Internet of things. A
LUCI service instance can either subscribe one of its inputs to the output of another service
instance or subscribe the instance as a whole to the termination of other services, which will
cause the instance to run immediately after another service instance has finished. With this
setup service instances can be represented in a flow diagram, which is the intention of the
configuration interface mentioned in section 3.3. Using MQTT enables client applications to
run previously created service instances simultaneously with one publication to MQTT.
Furthermore, it enables them to monitor all service instance related activity.

Synchronous calls cannot be called through MQTT, but they must be called through the

run action built-in to LUCI. All service inputs and outputs are not transferred to the data-base
but directly the (remote) service and back to the client. The run action will wait until the
service completes.

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

4. USE CASES

4.1. Transition Workshop, Singapore

Equipped with an early prototype of LUCI we conducted a workshop called “Design

Space Exploration for Urban Compaction” at the SmartGeometry conference held at Chinese
University Hong Kong in 2014 (see Koenig et al., 2014). The concept of multiple coordinated
views (Baldonado et al., 2000) representing the coordinated parallel simulations was very
well received. As shown in Figure 5 for transition workshop of the Future Cities Laboratory
of the Singapore ETH Centre in April 2015 we refined those ideas and were able to present a
system with synchronized views across several machines in the network using MQTT’s
publish-subscriber mechanism.

Figure 10. Coordinated & multiple views on multiple screens (machines).

In the context of the transition workshop we assessed the applicability of the LUCI

system by using an example scenario in the district Rochor in Singapore. To prove that our
approach works in an existing urban context we assume that this district needs to be
completely re-planned. This exemplary area in Asia emphasizes the urgent need for fast and
comprehensive planning systems. Necessary data on the street network was taken from Open
Street Map, and information about neighboring built structures in 3D was available from the
Future Cities Laboratory of the Singapore ETH Centre.

We used the LUCI system in combination with an evolutionary multi-criteria

optimization method (EMO) for creating road networks with defined centrality
characteristics, such as integration or choice for defined locations (Koenig et al., 2013).
Inside the blocks of the road networks we generate building layouts with defined densities,
taking into account specific properties of the open space qualities measured by Isovist fields
(Koenig et al., 2014). The evaluation mechanisms were coupled as services with the EMO.
Figure 11 illustrates how the resulting planning system can be used to help an urban planning
proposal.

 Leightweight Urban Compaction Interchange

Figure 11. EMO-Software prototype showing the main areas of the user interface: (a) a
3D view com-bines one solution out of each archive, design solutions of the archives for
(b) buildings layouts and (c) street networks, and (d) fields for the user input of size of

population, number of generations, etc.

This kind of computational planning process we can call evidence-based planning. It

helps the designer not only to eliminate potentially problematic configurations but also to
meet the original design requirements.

4.2. Teaching the Unknown, Zurich

“Teaching the Unknown” is the title of a contribution we made to an exhibition by

Moon Kyungwon & Jeon Joonho at the “Migros Museum für Gegenwartskunst” in Zurich
from August 29th until November 8th 2015. The title of the exhibition was “News from
Nowhere: Zurich Laboratory”. The art piece consists of a touch screen table that shows a
website running on LUCI. The website shows the images that were handed in by roughly
1000 students as a part of their exercises in a Massive Open Online Course (MOOC) on
future cities held by Prof. Dr. Schmitt (Schmitt et al. 2014).

The website uses a map from Mapbox being semi-transparently laid over an image. The

location where the image was taken is marked with a marker and an additional text box
showing the description to the image. In an additional gaming mode visitors must select the
city in which a randomly chosen image was taken. The last mode shows the rank of the
player and the cities.

The students sent in 2083 images. For the game we selected 240 images from 120

cities. In LUCI each image is stored as a point with the city name, the image, the user name
and the description being an attribute of that point. In order to speed up the client-side script
(javascript), we wrote a small service that aggregates all selected images from the same city,
so that in the Javascript we must not check for images with the same location. A second
service ranks the cities based on the number of correct guesses. The player score is put
together by the average distance to the correct city markers from the markers chosen by the
player. A third service counts how many players achieved a better score, which is then used

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

to display the rank of the player in the overall player history of the exhibition.

Figure 13. Screenshot of the game statistics mode showing city and player score.

While this project was mainly used to stabilize LUCI’s data structure, one could think

of LUCI’s job management capabilities through which services could run automatically after
a students upload more images in a future MOOC.

5. CONCLUSION AND OUTLOOK

We focus on small groups of planners or researchers that want to collaborate with each

other and perhaps scale their collaboration to a larger group of participants at a later stage. As
mentioned, with such a focus the simplification of the middleware approach becomes crucial.
Simplification towards a desktop application for us means to avoid as many enterprise
frameworks as possible that would hinder potential users to quickly develop a custom action,
service or converter. We provide simple POJO-like access to LUCI that should allow users
such as planners or researchers to easily adapt LUCI to their needs in a transparent way. The
integration of an H2 database adaptor takes away the hassle of installing a PostGIS database
for people unfamiliar with GIS databases such as architects or planners.

In the future we plan to integrate LUCI with the “Tool Library”, a solution that makes

view and tool configurations in a multi-screen situation room accessible and controllable
from a web-based application. In this regard we would also like to create an editor that lets
users put together service instances in a flow diagram. Furthermore, we could think of
exposing LUCI's service descriptions to the web following the WPS standard as well as
adding support for DXF and other NURB-based geometry formats. We also would like to add
support for transformation matrices, so that the communication with regular 3D editors could
be streamlined, since not the whole geometry would need to be sent through the network, but
only its transformations. And as mentioned in the data structure section, the data structure has
been designed with versioning in mind. A future implementation of this will extend LUCI's
capabilities even more.

 Leightweight Urban Compaction Interchange

6. ACKNOWLEDGMENTS

We would like to thank Daniel Zünd, Alessandro Forino, Artem Chirkin, and Patrick

Janssen for the many inspiring discussions and helpful ideas on LUCI.

7. REFERENCES

Al-Jaroodi, J., Mohamed, N., Jiang, H., and Swanson, D., 2003. Middleware infrastructure for
parallel and distributed programming models in heterogeneous systems, Parallel and
Distributed Systems, IEEE Transactions on, vol. 14, pp. 1100-1111.

Baldonado, M. Q. W., Woodruff, A., and Kuchinsky, A., 2000. Guidelines for Using Multiple Views
in Information Visualization, in Advanced Visual Interfaces, pp. 110-119.

Borst, H., Salomons, E., Lohman, W., Zhou, H., and Miedema, H., 2009. Urban strategy: noise
mapping in instrument for interactive spatial planning, in 8th European Conference on Noise
Control, EURONOISE 2009, Edinburgh, PART 3, 31, 1-9.

Gorton, I., Liu, A., and Brebner, P., 2003. Rigorous Evaluation of COTS Middleware Technology,
IEEE Computer Society, Vol 36, Issue 3, pages: 50 - 55.

Hofman, W., Lohman, W. and Schelling, A., 2011. A Flexible IT Infrastructure for Integrated Urban
Planning, Journal of Theoretical and Applied Electronic Commerce Research, Vol 6 ISSUE 1,
pp. 16-25.

Janssen, P., Stouffs, R., Chaszar, A., Boeykens, S. and Toth, B., 2014. Custom Digital Workflows with
User-defined Data Transformations via Property Graphs, presented at the Design Computing
and Cognition DCC.

Koenig, R., Standfest, M., & Schmitt, G., 2014. Evolutionary multi-criteria opti-mization for building
layout planning: Exemplary application based on the PSSA framework. In E. M. Thompson
(Ed.), Proceedings of the 32nd eCAADe Conference - Volume 2 (pp. 567–574). Newcastle
upon Tyne; UK.

Koenig, R., Standfest, M., Treyer, L., Wei, Z. and Klein, B., 2014. Design Space Exploration for
Urban Compaction. Available: http://smartgeometry.org/index.php?option=com_content&
view=article&id=259&Itemid=201

Koenig, R., Treyer, L., & Schmitt, G., 2013. Graphical smalltalk with my optimization system for
urban planning tasks. In R. Stouffs & S. Sariyildiz (Eds.), Proceedings of the 31st eCAADe
Con-ference – Volume 2 (pp. 195–203). Delft, Netherlands.

L. Romualdo-Suzuki, A. Finkelstein, and D. Gann, 2013. A middleware framework for urban data
management, in Proceedings of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication, pp. 1359-1362.

Schmitt, G., Hebel D., Koenig R., Klein B., Brülisauer M., Tapias E., Zhong Ch., 2014. Future Cities,
Retrieved from: https://www.edx.org/course/future-cities-ethx-fc-01x-0

Welington M. da Silva, Gustavo H. R. P. Tomas, Kelvin L. Dias, Alexandre Alvaro, Ricardo A.
Afonso and Vinicius C. Garcia, 2013. Smart Cities Software Architectures: A Survey, in Proc.
Of 28th Symposium On Applied Computing.

