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Abstract

Bridge vibration due to traffic loading has been a subject of extensive research in the last

decades. The focus of such research has been to develop solution algorithms and investigate

responses or behaviors of interest. However, proving the quality and reliability of the model

output in structural engineering has become a topic of increasing importance. Therefore,

this study is an attempt to extend concepts of uncertainty and sensitivity analyses to assess

the dynamic response of a coupled model in bridge engineering considering time-dependent

vehicular loading. A setting for the sensitivity analysis is proposed, which enables per-

forming the sensitivity analysis considering random stochastic processes. The classical and

proposed sensitivity settings are used to identify the relevant input parameters and models

that have the most influence on the variance of the dynamic response. The sensitivity anal-

ysis exercises the model itself and extracts results without the need for measurements or

reference solutions; however, it does not offer a means of ranking the coupled models studied.

Therefore, concepts of total uncertainty are employed to rank the coupled models studied

according to their fitness in describing the dynamic problem. The proposed procedures are

applied in two examples to assess the output of coupled subsystems and coupled partial

models in bridge engineering considering the passage of a heavy vehicle at various speeds.
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Zusammenfassung

Brückenschwingungen infolge von Verkehrslasten sind seit mehreren Jahrzehnten Gegen-

stand intensiver Forschung. Im Fokus stand hierbei im Besonderen die Entwicklung von

Lösungsalgorithmen zur Ermittlung des dynamischen Bauwerkverhaltens. Begleitet ist diese

Entwicklung von der Frage nach der Qualität und Zuverlässigkeit dieser Modelle für den

Gebrauch im konstruktiven Ingenieurbau. In diesem Zusammenhang werden in der vor-

liegenden Arbeit Konzepte der Unsicherheits- und Sensitivitätsanalyse erweitert, um das

dynamische Bauwerkverhalten unter Berücksichtigung transienter Fahrzeuglasten bei gekop-

pelten Modellen des Brückenbaus zu bewerten. Bestehende Sensitivitätsanalysen werden

ergänzt, um diese auch unter Berücksichtigung von stochastischen Prozessen durchführen

zu können. Die klassische und die erweiterte Methode werden angewandt, um relevante

Eingangsparameter sowie Partialmodelle mit wesentlichem Einfluss auf die Varianz der dy-

namischen Strukturantwort zu identifizieren. Die mit Hilfe der Sensitivitätsanalyse ermit-

telbaren Kennzahlen können ohne Bezug zu einer Referenzlösung in die Modellbewertung

einfließen, allerdings ist es nicht möglich, die Modelle hinsichtlich der realitätsnahen Abbil-

dung des dynamischen Problems zu bewerten. Um dies zu ermöglichen, wurden Konzepte

der Gesamtunsicherheit verwendet. Die vorgestellten Methoden wurden auf zwei Beispiele

angewandt, um die Ergebnisse von gekoppelten Subsystemen und gekoppelten Partialmod-

ellen des Brückenbaus zu evaluieren. Hierbei handelt es sich um die Überfahrt von schweren

Fahrzeugen mit verschiedenen Geschwindigkeiten.
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Chapter 1

Introduction

1.1 Motivation

Numerical models in structural engineering demands increasingly procedures for model as-

sessment as the models vary in their complexity and the uncertainty accompanying their

output. A question concerned with the significance and appropriateness of a model within

a set of possible models for the engineering problem arises and attracts further examina-

tion and testing. The engineering problem of interest here is the bridge-vehicle interaction.

There has been an increasing attention to develop procedures to solve bridge-vehicle interac-

tion problems, which is encouraged by the advent computational power of digital computers

and the increasing number and weights of vehicles traveling on bridges. Hence, researchers

and modelers had been concerned with deriving solutions of the dynamic problem of bridge-

vehicle interaction, for which different models for the vehicle, bridge and solution algorithms

have been derived and employed. In examining some of the studies concerned with bridge-

vehicle interaction, one can detect attempts, which may be seen as steps of model assessment,

such as studies that used measurement data to validate the derived solutions, which is a

trivial model validation step. Probabilistic studies had also been employed to assess the

effects of random input parameters and road unevenness on the dynamic response using

direct comparisons between the obtained output without commenting on its uncertainty,

which can indicate model quality. Therefore, it can be said from the above that the limits

1
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of these studies can be pushed further to perform a more detailed analysis in order to assess

the model output and its quality.

As mentioned before, there have been initial steps to evaluate the model output, however,

they are not clearly established or defined, which justifies the extension, adaptation and

derivation of procedures to specifically assess the output quality. Especially, in cases where

measurement or reference data are not available, thus, the output quality of the models is

examined using the models themselves.

1.2 State of the Art

The study is concerned with the assessment of coupled models of bridges considering vehic-

ular loading. The assessment methods need an objective response, therefore the attention

is given to the assessment of engineering model as well as the analysis of its output. Hence,

the following sections present a brief review on the modeling and the solution procedures

of bridge-vehicle interaction, a classification of coupled models in bridges, and a review on

general assessment concepts in numerical modeling.

1.2.1 Bridge-Vehicle Interaction

The analysis of bridge-vehicle interaction is a special branch of structural dynamics. The

interaction forces of a vehicle traveling over a bridge can lead to additional dynamic effects

on it. These dynamic effects are governed by the way the bridge and the vehicle interact

with each other, which is determined by the inherent frequencies of both subsystems and the

driving frequency. The types of bridges studied when observing the traffic are highway or

railway bridges. In reviewing the existing research on bridge-vehicle interaction, it is difficult

to distinguish between the interaction solutions derived for highway and railway bridges since

the general solution algorithms are similar. However, the nature of the excitation of vehicles

on highway and railway bridges is different. The characteristics of vehicle movements on

highway bridges are of a random nature, whereas a moving train is regarded as a sequence

of identical vehicles moving according to a repetitive pattern. These differences would be
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included when building the equations of motion for the systems, however, they would not

affect the solution algorithm.

Research on the dynamic response of bridges dates back to the mid-nineteenth century.

Willis(1849) and Stockes (1849) investigated the failure of Chaster Rail Bridge in England

in 1847. Their investigation was based on modeling a mass moving at a constant speed

over the bridge [1]. This investigation was the beginning of a special discipline in bridge and

dynamic analysis. Since then, many studies have followed in which variant levels of modeling

and different solution algorithms for the dynamic analysis have been used. In addition, there

has been a considerable increase in studies on bridge-vehicle interaction solutions in the last

two decades. This can be attributed not only to the enhanced computational capacity of

digital computers, but also because of the flourishing and demanding transport service in

Europe and East Asia. It is difficult to review all the work related to this area of research

because the interests behind those studies have been different over the years. The dynamic

response of bridges was of the highest priority in the early stages of this area of study, e.g.

Frýba [2], Kim and Nowak [3], as well as others. Then attention was given to safety, ride

comfort, and the optimum design of suspension systems, e.g. Xu and Guo [4], Green et al. [5].

This was followed by studies on the vibrational effects of bridge-vehicle interaction on the

surrounding environment and the service components of a bridge, e.g. Kim et al. [6]. The

following focuses on the different descriptions of the vehicle models and the main solution

algorithms of the bridge-vehicle interaction problem.

The vehicle can be modeled in different ways: as a moving load (weight), in which the

bridge-vehicle interaction and inertia effects are ignored; as a moving mass, in which the

inertia effects are considered; or as a suspended mass, in which the inertia and dynamic

characteristics of the vehicle are included in the interaction. A significant amount of research

has been done on the vibration of bridges in relation to different models of vehicles. It is only

appropriate to cite a few of the more recent studies in this field. The moving weight model

is the simplest model that has been used by many researchers in studying the vibration

of bridges caused by moving vehicles, e.g., Weaver et al. [7], Wang [8], Zheng et al. [9],

and Rao [10]. Using the moving weight model, the essential dynamic characteristics of the

bridge caused by a moving vehicle is obtained in reasonable modeling and computational

efforts, which is advantageous in formulating the relations describing the dynamic effects of
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a moving vehicle on a bridge as done by Pesterev et al. [11]. When the mass of the vehicle

is comparable to the mass of the bridge, its inertial effects are important and included using

the mass model of the vehicle, e.g. Stanǐsič [12]. Moreover, Akin and Mofid [13] have used

the moving mass model to calculate the dynamic response of beams with various boundary

conditions. The mass model can then be enhanced by considering the suspension system

and the tires of the vehicle. Multiple axle or tractor-trailer trucks can be represented by

a number of discrete masses supported by a set of springs and dashpot, e.g. Humar and

Kashif [14], Green and Cebon [15], Fafard et al. [16] and in some cases frictional devices

can be included in the vehicle model, e.g. Chatterjee et al. [17] and Tan et al. [18].

Several algorithms have been derived to solve the interaction problem, which can be applied

to any of the vehicle models described in the previous studies. F. Yang et al. [19] and

Yang et al. [1] reviewed the different methods with their corresponding mathematical and

computational descriptions. The solution of the dynamic response of the bridge and/or the

vehicle starts by writing the equations of motion for both subsystems. These equations are

either written in an integrated (coupled) form or left separate prior to the solution. The

integrated (coupled) equations for the bridge-vehicle interaction are built by substituting

for the dynamic interaction forces, e.g. Cheung et al. [20]. The coupled set of equations

are often solved using direct time integration methods. For the latter, the two sets of

differential equations of the vehicle and the bridge are left uncoupled contingent on satisfying

the compatibility constraints at the contact points. The solution of the differential equations

can be also determined by using direct integration methods in an iterative or non-iterative

procedure, e.g. F. Yang et al. [19] and Liu et al. [21], respectively. However, there are other

methods for solving the dynamic problem. For example, the bridge-vehicle interaction can

be solved by using the dynamic condensation method to eliminate all degrees of freedom

associated with the vehicle to the element level of the beam. This solution is quite efficient

if the bridge response is of interest, Garg and Dukkipati [22], Yang and Lin [23], Wu and

Yang [24]. Another method is to solve the equations of motion in the frequency domain,

e.g. Green and Cebon [15], Zhu et al. [25].

Another concern related to the bridge-vehicle interaction is the inclusion of road unevenness

in the dynamic analysis since it can significantly affect the bridge response. Road uneven-

ness is often obtained by measuring the existing roadways, which is a laborious procedure.
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Therefore, Dodds and Robson [26] suggested simplified means to describe the unevenness

of road surfaces. They came up with a treatment of road unevenness as a realization of a

stationary Gaussian homogeneous random process described by its power spectral density

function (PSD) in the space domain. The work of Dodds and Robson [26] has served as

the basis for the ISO 8608 standards [27], which classifies the roadway profiles into classes

according to their degree of roughness. The realization of road profiles is often obtained

as a series of cosine terms with random phase angles. Methods similar to those mentioned

above have been widely adopted by researchers in studying the bridge-vehicle interaction in

relation to road unevenness, e.g. Inbanathan and Wieland [28], Coussy et al. [29], Hwang

and Nowak [30], and Henchi et al. [31]. Moreover, road unevenness can be treated as one

component in describing the initial road conditions. Potholes and bumps can be included in

the road profile as local irregularities to examine their influence on the dynamic response.

Moreover, with regard to reinforced concrete beam bridges in particular, long-term deflec-

tions, which could have an influence on bridge response due to vehicles traveling on it, can

be considered in the dynamic analysis.

The superstructure of highway beam or girder bridges are often supported by elastomeric

bearings, which affect the dynamic responses when considering bridge-vehicle interaction.

Most researchers study the elastomeric bearing as an element of its own, the investigation

of which can be based on either theoretical or experimental concepts, e.g. Chang [32] and

Warn et al. [33], respectively. Few researchers study the behavior of elastomeric bearings

when integrated in the bridge structure and investigate the dynamic behavior of elasti-

cally supported beams subjected to moving vehicles. Kawatani et al. [34] performed a

three-dimensional analysis, which examines the dynamic response of bridges due to moving

vehicles when steel bearings are replaced with elastomeric bearings. The authors noticed

that the use and modeling of elastomeric bearings for the bridge system studied did not

significantly change the system’s resonant frequencies. Moreover, the inclusion of bearings

in the dynamic analysis resulted in larger displacements, especially the horizontal displace-

ments in the direction of the bridge’s main axis. Kim et al. [6] performed a vibrational

analysis of a two-girder steel bridge supported by elastomeric bearings. The authors con-

cluded that the traffic-induced accelerations and dynamic reaction forces of the bridge when

considering the elastomeric bearings were greater than those of the bridge with pin bearings.



Chapter 1. Introduction 6

Further, Yau et al. [34] showed that the insertion of elastic bearings at the supports of the

single-span beam to isolate earthquake forces may adversely amplify the dynamic response

of the beam to moving loads; it was determined that this observation depends on the speed

of the vehicle. In the aforementioned studies, the elastomeric bearings were modeled as

independent linear springs in vertical, horizontal, and lateral directions depending on the

dimensionality of the bridge model. Hence the interaction between the deformations and

forces in the different directions of the elastomeric bearing were not considered. Vogt and

Freundt [35] proposed an element to model the bearing, which is able to map the interaction

between the vertical, horizontal, and rotational forces. The authors concluded that using a

combination of independent springs to represent the elastomeric bearings is sufficient when

the global response of the bridge is of interest.

Most of the investigations carried out in this discipline were based on deterministic values

of the system’s input parameters, even though they intrinsically contain randomness, such

as the parameters of the vehicle; suspension stiffness and damping, may vary with respect

to the nominal value due to production tolerances and/or wear, aging, etc., as mentioned by

Gao et al. [36]. In addition, the random vibration of a vehicle due to road unevenness was

often examined for passenger comfort checks, road deterioration studies, or for designing an

optimum suspension system for the vehicle, which was studied numerous times by Cebon [37].

Extending the analysis to investigate the dynamic response of a bridge structure while a

vehicle is passing, in which not only the randomness of road unevenness is considered,

but the randomness of a vehicle’s input parameters as well, is a current area of research.

A number of researchers have studied this problem. Hwang and Nowak [30] presented a

procedure to calculate statistical parameters for the dynamic loading of bridges. These

parameters were based on surveys and tests and included vehicle mass, suspension system,

tires and road roughness, which were simulated by stochastic processes. Kirkegaard and

Nielsen [38, 39] studied the randomness of vehicle input parameters and the randomness

of road unevenness in two separate studies. One conducted for vehicle input parameters

and the other for the effects of random road profiles on the dynamic response of highway

bridges. Further, González et al. [40] investigated the critical speed for trucks moving on

bridges with a smooth road surface. The authors investigated a dashpot truck on a relatively

smooth surface and performed a full probabilistic study considering random input variables
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of the vehicle and random road profiles to validate the results obtained from the moving

weights model. Moreover, solutions for the statistical characteristics of a bridge’s response

to the passage of a vehicle over a random rough surface have been of interest in a number of

research works, such as Lin et al. [41], Lombaert and Conte [42], and Wu and Law [43]. More

recently, N. Liu et. al. [44] considered both the randomness of the vehicle input parameters

and road unevenness, and calculated the statistical characteristics of the bridge response by

using the random variable functional moment method.

In general, one of the main methods used in the dynamic analysis of structures with random

parameters is the Monte Carlo simulation (MCS). Shinozuka and Deodatis [45] advocated

the use of MCS to solve both the random vibration and system stochasticity problems.

They maintain that the MCS gives accurate results for any problem, linear or nonlinear,

stationary or non-stationary, as long as its analytical or numerical solution is known.

The dynamic response of the bridge is usually studied and quantified by a magnification

factor for engineering design purposes. This factor is applied to the static loading to take

into account the additional effects due to the transient nature of the loading. Paultre et.

al. [46] give an extended review on the theoretical and experimental studies on this factor,

which is also known as a dynamic amplification factor, dynamic impact factor, or dynamic

incremental factor, depending on the definition used. The authors discuss the wide spectrum

of variation in the values of this factor with respect to different bridge systems, vehicle models

and response measures used in the dynamic analysis.

1.2.2 Couplings in Bridge Engineering

The coupling in this study is classified according to a coupling of subsystems and a cou-

pling of partial models. This is done merely for convenience in presenting the output of

the assessment procedures. A bridge superstructure, a bridge substructure, and a vehicle

are considered subsystems; the bridge-vehicle interaction solution algorithm is considered a

coupling between the superstructure and the vehicle, whereas a bearing is a coupling element

between the superstructure and the substructure. Thus, the modeling of bridge-vehicle in-

teraction and elastomeric bearings is categorized as a coupling of subsystems. On the other
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hand, the creep model of concrete or the dynamic loading of a heavy vehicle, among others,

can be denoted as a partial model. Therefore, the consideration of long-term deflections

as an excitation for a vehicle traveling over a bridge can be categorized as a coupling of

partial models, which are the dynamic loading model and the material model of creep. As

mentioned above, this classification is for convenience only and not meant to imply that

these definitions are fundamentally fixed.

1.2.3 Concepts of Assessment

“While the world and the model are each internally entailed, nothing entails the world with

the model.”

Robert Rosen

The statement above simply states that the portion of the world captured by the model is

an arbitrary “enclosure” of an otherwise open and interconnected system, Saltelli et al. [47].

Therefore, engineers “Modelers” accept the fact that several models may be compatible with

a specific set of data. Moreover, these models indicate different levels of complexity in their

structure and the parameters included in their description. The complexity of the models

can be tested against Occam’s razor principle. This principle generally recommends the

simplest explanation when facing two theories with the same predictions. These notions

have raised the level of awareness with regard to the study of model assessment, which has

been an attractive area of research in recent years. Model quality and assessment studies

have become popular as the practice of building numerical models for engineering problems

has had to deal with the challenge of having to prove the quality of a model with or without

measurement data.

One kind of trivial quality assessment is to compare the model output with analytical or

benchmark solutions, which controls the model’s output to the limits of the reference so-

lution. Therefore, another reference solution is required outside of these limits. Such a

procedure is not practical because engineering applications tend to be diverse, complicated

and have varying temporal and spatial domains of application, Babuska and Oden [48]. An-

other concept uses model error estimators to quantify the error resulting from simplification
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of a model, Oden and Prudhomme [49]. The size of this error term may justify the use of

complex models over simpler ones and vice versa. Therefore, these error terms can be viewed

as a model assessment. However, such estimators do not assess the model as an abstraction

of a system or a phenomenon, therefore, further investigations would be needed.

It is worth mentioning that the models assessed are data dependent. The data in this context

includes information on the physical environment of the event to be depicted by the model,

e.g., geometric information and physical parameters. The form in which the data occurs

may be deterministic or statistical. The model and the data are thus always related. In

other words, the use of the model will take the nature of the data into account. Further,

when different models are used to represent the same system or phenomenon, the model

should cover the underlying systems or phenomenon and additional over-parameterizations

must be avoided. To address the issue of over-parametrization, uncertainty and sensitivity

analyses can be employed.

Uncertainty is the acknowledgment of the existence of more possibilities, therefore, it is

inevitably involved in assessing the plausible models created for a system or phenomenon.

In order to investigate uncertainties, one requires a clear understanding of their different

types. Zio and Apostolakis [50] reviewed the different taxonomies of uncertainty. They

state that it is useful to classify uncertainties as being aleatory or epistemic. This does

not imply that other terminologies are fundamentally different types of uncertainties. An

aleatory uncertainty is a type of uncertainty, which is a result of a random or stochastic

variability of a phenomenon and is contained in the formulation of the model, it can be known

also as stochastic uncertainty. Epistemic uncertainty represents our knowledge regarding

the numerical values of the parameters and the validity of the model’s assumptions, and

is also known as state-of-knowledge uncertainty. Furthermore, parameter uncertainties are

represented by epistemic probability distribution functions. A separation between the model

and parameter uncertainties is viable in assessment practice.

Sensitivity analysis is the study of how uncertainties in the output of a model are apportioned

to different sources of input parameter uncertainties. The reasons for running a sensitivity

analysis can be to prioritize the research by identifying and ranking the input parameters

and their underlying systems or phenomena, to simplify a model by fixing input parameters
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that do not influence the output uncertainty, or to identify the interactions between inputs

and how they affect the output uncertainty. Therefore, different settings guided by the

rationale for the sensitivity analysis can be proposed and used in obtaining the adequate

results. There are various methods for performing a sensitivity analysis, such as scatter

plots, derivatives, regression coefficients, or variance-based measures. Helton et al. [51] and

Saltelli et al. [47] give an overview for the different methods.

One cannot discuss model assessment and quality without mentioning model ranking and

selection, which has drawn attention to adjustment factor formulation and Bayesian model

class selection. The adjustment factor formulation needs a reference model to be identified

and its prediction to be modified through an adjustment factor that accounts for the uncer-

tainty in the models, e.g. Zio and Apostolakis [50], while the Bayesian model class selection

amounts to constructing a suitable set of plausible models and evaluating their parsimony.

Akaike [52] proposes an estimate called the minimum information theoretic criterion (AIC),

which is defined as the mean log-likelihood. It provided a mathematical formulation of the

principle of parsimony in the field of model construction. Furthermore, Schwarz [53] pro-

poses the selection of one model from a set of models with different dimensions by finding

the Bayes solution for them. The Bayesian approach to model selection has been further

developed in the last two decades, which has led to deriving more quantitative expressions

of the principle of model parsimony, e.g. Gull [54], Mackay [55], Sivia [56], and Beck and

Yuen [57].

1.3 Objective of Study

The current area of research for bridge-vehicle interaction is often not concerned with the

aforementioned concepts of model assessment. Since state-of-the-art of the bridge-vehicle

interaction is focused on developing and validating solutions for the dynamic problem to be

used for design or prediction purposes later on, hence a detailed explanation of the dynamic

responses and patterns obtained requires further examination. Moreover, a viable question

concerns how the model itself can be exploited to assess its quality before moving on to

validation using benchmarks or measurement data is raised.
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The main objective of this study is to find expressions and measures that can help to study

and assess the output of models, which considers bridge-vehicle interaction and support

the choice to derive such models knowing their inherent output uncertainty. The dynamic

responses of highway beam bridges (pinned or elastically supported) subjected to the passage

of a heavy vehicle and considering the conditions of roadways are the scenarios under study.

The variances of the dynamic responses are used as an indicator for their quality.

1.4 Contribution of the Thesis

It is also worth mentioning that the tested models ensure convergence and robustness, there-

fore these will not be tested in this study.

This study contributes to the current research area of the dynamic problem as follows:

• Concepts of sensitivity analysis are used to detect the influential inputs on the dynamic

output. This detection is quantified by using measures of sensitivity indices. A setting

for the sensitivity analysis is proposed to enable the examination of random stochastic

processes of road profiles. The classical and proposed settings are used to quantify the

subsystem’s contribution to the variance of the output of the coupled subsystems

• Meta-models are developed to map the input-output relationship since the computa-

tional cost influences the numerical analysis. The hybrid meta-model of polynomial

regression and moving least squares is developed to capture efficiently the input-output

relationship, which has different patterns and localities depending on the inputs

• Concepts of total uncertainty are used to rank the models studied according to their

fitness in describing the engineering problem. Total uncertainty represents the sum of

the input uncertainty and the model uncertainty. A mathematical expression for the

model uncertainty is derived by using the adjustment factor approach formulations.

The model uncertainty can be estimated as the difference between the average of a

single model and the average of an adjusted response
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• A further extension of the sensitivity analysis is used to identify the influence that

the partial models have on the dynamic response by introducing an input parameter

representing the choice of a model within a global one.

• For the engineering problem investigated, the dynamic estimates of the displacements,

strains, and normalized accelerations of the bridge system are thoroughly examined in

order to explain some of the patterns observed for the responses, which serves as means

of a better understanding of the dynamic problem and the output of a probabilistic

study

1.5 Outline

The text of the dissertation has six main parts, which are presented in Chapters 2-7. The

assessment procedures based on the sensitivity and uncertainty analyses are found in Chap-

ter Two; their algorithms and detailed aspects of their implementation are described and

explained. Chapter Three addresses the dynamic problem and its modeling possibilities.

Since experimental data are not used in this study, a validation example using numerical

and analytical solutions for the dynamic problem has been used and presented in Chapter

Three. The modeling and assessment procedures presented are used in the application ex-

amples in Chapters Four, Five and Six. The first example in Chapters Four and Five focuses

on the coupling of subsystems in bridges, i.e., bridge-vehicle interaction. In Chapter Four a

general dynamic analysis is performed and a thorough examination of the dynamic responses

is presented. In Chapter Five, sensitivity and uncertainty analyses are used to identify the

influential input parameters on the dynamic response, and the different descriptions of the

models of coupled subsystems are ranked using their total uncertainty. Chapter Six tackles

the assessment of the dynamic response for coupled partial models, i.e. the dynamic loading

model of a vehicle and the material model of creep. Finally, Chapter Seven deals with the

conclusions derived from the results obtained from the examples of the dynamic problem.

Further recommendations and the possible extension of the study are also discussed in the

same chapter.



Chapter 2

Assessment Methods

2.1 Introduction

Computer-based models can be used to approximate real life processes. These models are

usually based on mathematical equations, which are dependent on several variables. There-

fore, the predictive capability of models is limited by the assumptions used to build the

mathematical equations and the uncertainty in the value of the input variables, among

others.

There is a demand for procedures that can serve as guidelines for drawing conclusions and

assessing the quality of prognosis of engineering models. Assessments based on methods

of uncertainty and sensitivity analyses are significant since they are generic in application.

Such procedures are employed to rank input parameters and modules in order to identify the

main contributors to the uncertainties of model or coupled model predictions (prognoses),

as well as to identify priorities for further investigation and use.

2.1.1 Uncertainty Analysis

The input parameters of models are not always known with sufficient certainty. Input un-

certainties are caused by natural variations and/or uncertainties in the measurements. The

uncertainty of the input parameters is often expressed in terms of the assumed probability

13



Chapter 2. Assessment Methods 14

distributions. Further, the engineering models using these input parameters are assumed to

be deterministic, which means the same output is retrieved for the same input data for any

number of runs. Therefore, the uncertainty of the model prognosis stems from the propa-

gation of the uncertainty of the input parameters through the model. It can be deduced

from the above that the analysis is performed to assess the uncertainty in the model output

that originates from the uncertainty of the input parameters. Uncertainties stemming from

a lack of knowledge or abstractions and assumptions in building the model are yet to be

included [58–60].

2.1.2 Sensitivity Analysis

Saltelli states that “sensitivity analysis (SA) is the study of how the variation in the output

of a model (numerical or otherwise) can be apportioned, qualitatively or quantitatively, to

different sources of variation, and how the given model depends upon the information fed

into it” [61].

Sensitivity analysis aims at determining how sensitive the model output is to changes in the

model input. The simplest formulation of the sensitivity analysis is the partial derivative of

the output function with respect to input parameters. This sensitivity measure is computed

numerically by varying the input parameters around their nominal values. Such measures

that capture the local impact of input parameters on the model output are called local

sensitivity indices. For complex engineering models where interactions may exist, a global

sensitivity analysis is needed; sampling-based methods are developed and used for such an

analysis [60, 61]. Further, the term input of a model in the sensitivity analysis stands for

any quantity that can be changed in the model prior to its execution, thus, an input may

be an input parameter or a module.

2.2 Monte Carlo Simulation

Monte Carlo (MC) methods are algorithms for solving various kinds of computational prob-

lems by using random numbers. It includes techniques of statistical sampling, which are
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used to estimate solutions, e.g., mean values or variances for a model prognosis. It is a

straight-forward approach for solving uncertainty analysis problems, which has been uti-

lized for dealing with the problem of random input parameters and processes [62]. A Monte

Carlo simulation is based on performing multiple model evaluations with probabilistically

selected inputs. The results of these evaluations can be used to determine the uncertainty

of the model output.

The sampling procedure used in this study is Latin Hypercube Sampling (LHS), which is

designed to accurately recreate the input distribution through sampling in fewer iterations

compared with the simple random sampling. LHS is a so-called “stratified sampling” tech-

nique, whereby random variable distributions are divided into equal probability intervals. It

is equivalent to a uniform sampling from the quantiles of the distribution [63, 64].

The sampling starts by generating a normally distributed sample with a mean value of zero

and a standard deviation of one, and then using its cumulative distribution function (CDF)

to create the sample being sought, which is described by its distribution and probabilistic

characteristics.

The main steps for obtaining the output used in the uncertainty and sensitivity analyses

are:

1. For a defined model f with input parameters xi, i = 1, . . . , k and the output y. The

ranges and distributions are selected for each input parameter. These k distributions

characterize the input uncertainties. The choice of these distributions is of significance

as it may affect the results obtained from the sensitivity analysis.

2. Samples, X = X1, X2, . . . , Xk, which correspond to the distributions defined in the

previous step are generated. These samples are presented in a matrix, with k input

parameters and N samples and is expressed as

X =


x11 x12 . . . x1k

x21 x22 . . . x2k

...
...

. . .
...

xN1 xN2 . . . xNk


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3. The model is evaluated N times, once for each row of the sample matrix, creating a

mapping in the input-output space. The output produced computes the following:

Y = f(X1,X2, . . . ,Xk)

4. The uncertainty of the output can then be calculated as the variance, the standard

deviation, or the coefficient of variation.

5. The mapping between Y and X is used for performing a sensitivity analysis using

variance-based procedures to qualitatively and quantitatively study the importance

and contribution of the inputs to the uncertainty of the output.

2.3 Probability Distribution

In this section, an elementary theory for probability distributions and essential moments are

described [65]. The distributions used in this study are also briefly explained.

When studying an uncertain input parameter x, the cumulative distribution function Φ(x)

(CDF) gives the probability P that the variable X will be less than or equal to x, which is

expressed as:

Φ(x) = P (X ≤ x)

The CDF is always non-decreasing with Φ(x) = 0 at x = −∞ and Φ(x) = 1 at x =∞.

The uncertainty of the input parameters is described with the probability density function

(PDF). The PDF is described as the first derivative of the CDF, as shown below:

φ(x) =
d

dx
Φ(x)

The PDF is zero or positive since the first derivative of a non-decreasing curve is always

non-negative.
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The expected value of random variable X is denoted either as µ or E(X), the mean or

average, and expressed as:

E(X) =

∫ ∞
−∞

xφ(x)

The variance of a random variable X is denoted as σ2 or V (X):

V (X) =

∫ ∞
−∞

(x− µ)2φ(x)dx

The positive square root of the variance is the standard deviation σ.

The above are the formulations from the continuous probability theory. In the case of

discrete probability distribution, the mean and the variance are computed using the sums

instead of the integration, as shown below:

E(X) =
∞∑
i=1

xifi(x) ,

V (X) =
∞∑
i=1

(xi − µ)2fi(x)

where fi(x) is the probability associated with the possible value xi.

Normal (Gaussian) distribution

The normal distribution is probably the most frequent distribution used in probability the-

ory. Its popularity comes from the fact that many natural phenomena are believed to follow

a statistically normal distribution. The PDF of this distribution is presented in Figure 2.1

and is expressed as follows:

φ(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

Log-normal distribution

In a like manner, many natural phenomena also occur according to the log-normal distri-

bution. This distribution is often used to model quantities or variables, which cannot be
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negative. The log-normal PDF is plotted in Figure 2.1 and is evaluated as

φ(x) =
1

xσ
√

2π
e−

1
2( log(x)−µσ )

2

Extreme value distribution

Extreme value theory has been applied in various fields, from the environmental sciences

to financial econometrics. The salient feature of the extreme value analysis is to assess the

extremal behavior of random variables.

The PDF of the extreme value distribution type I, which is also known as Gumbel, is depicted

in Figure 2.1 and it expressed as:

φ(x) =
e(α−x)/β−e(α−x)/β

β
,

where µ = α− γβ, σ = βπ/
√

6, and γ is Euler-Mscheroni constant.
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Figure 2.1: Probability distribution function: ( ) Normal, ( ) Log-Normal,
( ) Extreme Value Type I

The uncertainties of the input parameters of the engineering problem examined are assumed

to follow normal and log-normal distributions. The output of interest is the maximum

response of the dynamic problem and thus follows an extreme value distribution type I,

which is verified by its likelihood estimates.
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2.4 Model Assessment

2.4.1 Variance-Based Methods for Sensitivity Analysis

As mentioned before, sensitivity analysis is the study of how uncertainties in the output

of a model are apportioned to the uncertainties of the inputs. Variance-based methods

have been chosen for this study since they are independent from the model investigated,

the interactions between input parameters or modules can be considered, and the effects of

groups or sets of input parameters may be examined. Moreover, such sensitivity analysis

provides the importance ranking of the input parameters, and quantifies their contribution

to the output uncertainty [61].

Only a number of input parameters are chosen for the sensitivity analysis performed. Infor-

mation fed into the model, e.g., physical or mathematical constants, internal model variables

(e.g., number of discretized elements or time step) are disregarded. In other words, such

inputs are not allowed to vary, therefore, they do not contribute to the variation of the

output. The risk that the assigned time step used in the dynamic analysis could be large

enough to have a dramatic influence on the output exists and should be kept to minimum

for a reliable analysis. This is why it is important to be as objective and careful as possible

in the setting and choice of the input parameters for the analysis.

In general, the more variables considered in the analysis, the greater the variance of the

model prediction. This could lead to a situation, in which the prediction varies so greatly

that it would not be of practical use. However, this is not an absolute fact since in some

cases the increasing number of input parameters does not lead to increased variance in

model prediction. As key parameters (key players) dominate in the sensitivity analysis and

create almost all the uncertainty of the output. Hence, if the key factors have been carefully

chosen, adding further variables to the analysis contribute to its totality without increasing

the variance of the output.

The main idea of variance-based methods is to estimate the amount of variance that would

disappear if the true value of the input parameter Xi is known. This can be described by

the conditional variance of Y fixing Xi at its true value V (Y |Xi), and is obtained by varying
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over all parameters, except Xi. Since the true value of Xi in complex engineering problems

is unknown, the average of the conditional variance for all possible values of Xi is used, i.e.

E(V (Y |Xi)). Having the unconditional variance of the output V (Y ) and the expectation of

the conditional variance E(V (Y |Xi)), the following relation holds:

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)), (2.1)

Equation (2.1) is often known as the law of total variance and can be proved as the following:

The variance V (Y ) can be defined as [66]:

V (Y ) = E(Y 2)− (E(Y ))2 (2.2)

Hence, the conditional variance V (Y |X) can be written as:

V (Y |X) = E(Y 2|X)− (E(Y |X))2 (2.3)

Knowing that E (E(Y |X)) = E(Y ) thus E(V (Y |X)) can be derived as:

E(V (Y |X)) = E
(
E(Y 2|X)

)
− E

(
(E(Y |X))2) , (2.4)

= E(Y 2)− E
(
(E(Y |X))2)

The variance of the expected value V (E(Y |X)) can be written following Equation (2.2) as:

V (E(Y |X)) = E
(
(E(Y |X))2)− (E (E(Y |X)))2 , (2.5)

= E
(
(E(Y |X))2)− (E(Y ))2

Taking the sum of E(V (Y |X)) expressed in Equation (2.4) and V (E(Y |X)) expressed

in Equation (2.5) results in V (Y ) as in Equation (2.1).

E(Y 2)− E
(
(E(Y |X))2)+ E

(
(E(Y |X))2)− (E(Y ))2 = E(Y 2)− (E(Y ))2 = V (Y ) (2.6)

From Equation (2.1) the variance of the conditional expectation V (E(Y |Xi)) is determined.

This term is often referred to as the main effect, as it estimates the main effect contribution
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of the Xi to the variance of the output. Normalizing the main effect by the unconditional

variance V (Y ) results in:

Si =
V (E(Y |Xi))

V (Y )
(2.7)

The ratio Si is known as a first order sensitivity index [67], which is also known as the

importance measure [68]. It is expected that the larger V (E(Y |Xi)) is, the more influential

the input parameter Xi is. The value of Si is less than 1. In addition, the sum of all first

order indices corresponding to multiple input parameters is an indicator of the additivity

of the model. The model is considered additive when the sum equals one (no interactions

between the input parameters), and non-additive when the sum is less than one. Hence,

the difference 1 −
∑
Si is an indicator of the presence of interactions between the input

parameters. For example, the interaction between two parameters Xi and Xj on the output

Y in terms of conditional variance is expressed as:

Vij = V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj)), (2.8)

where V (E(Y |Xi, Xj)) describes the joint effect of the pair (Xi, Xj) on Y . This is known

as a second order effect. Higher order effects can be computed in a like manner. The total

effect index ST i is used to represent the total contribution of the input parameter Xi to the

output, i.e. the first order effects, in addition to all higher order effects. A total effect index

is defined as:

ST i = 1− V (E(Y |X˜i))
V (Y )

, (2.9)

where V (E(Y |X˜i)) is the variance of the expected value of Y when conditioning over all

except for Xi and V (Y ) is the unconditional variance of Y . The difference ST i − Si is a

measure of how much Xi interacts with other input parameters.

2.4.1.1 Settings for the Sensitivity Analysis

For the engineering problem at hand, different sensitivity tests can be applied depending on

the goal of the analysis. Since the assessment of numerical models is the objective of this

study, sensitivity analysis is used to give a better understanding of the contribution of input

parameters or groups of input parameters and, consequently, of their underlying phenomena
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or module to the uncertainty of the model response. The power of such an analysis can

be attributed to the fact that the model itself is exercised, therefore, measurements or

reference models are not needed. Furthermore, its implementation and simulation can be

done regardless of the model type. As long as the input-output mapping is available, the

analysis can be performed. The following settings are used for the engineering problem

covered in this study:

• The first setting performs the classical sensitivity analysis for all chosen input parame-

ters directly on the run samples of the model for all the input parameters selected [61].

The aim is to detect and rank the contribution of the input parameters in relation to

the variance of the output.

• The second setting is proposed counter to the known “factor fixing” setting in variance-

based methods. In “factor fixing” setting, a non-influential parameter is fixed at

any value of its range of variance as this does not compromise the model prediction.

The proposed setting averages the prediction over the influential processes, conducts

the sensitivity analysis on the average prediction and investigates the corresponding

results. This setting is used to include the influence of random stochastic processes

on the dynamic response. The setting is facilitated through the introduction of sub-

sampling. For a single sample of input parameters, i.e., vehicle input parameters, a

set of random processes is sub-sampled. For the (jth) sample of input parameters, (n)

number of processes are sub-sampled. Then an average value of the run response is

attributed to the (jth) sample, as shown below:

[
Xj

1 Xj
2 · · · Xj

m

]
→



f j1 (t)

f j2 (t)

...

f jn(t)


2.4.1.2 Estimation of Sensitivity Indices

A sampling based numerical procedure is employed to compute first order and total effect

indices for a model of k input parameters [47]. This procedure is thought to be benignant
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and best suited to estimate sensitivity indices that are based only on model evaluations. An

explanation of the general sampling procedure has been given in Section 2.2. The following

are more detailed steps in building the required input samples:

• Two matrices for k random input parameters are generated and called the base sam-

ples. The number of the generated samples N in each matrix can range from hundreds

to thousands depending on the model studied and the level of reliability required for

the results. These matrices are depicted as:

XA =


xA11 xA12 . . . xA1i . . . xA1k

xA21 xA22 . . . xA2i . . . xA2k
...

...
. . . . . .

...
...

xAN1 xAN2 . . . xANi . . . xANk



XB =


xB11 xB12 . . . xB1i . . . xB1k

xB21 xB22 . . . xB2i . . . xB2k
...

...
. . . . . .

...
...

xBN1 xBN2 . . . xBNi . . . xBNk


• The matrix XCi is built from the base matrices, where all columns are retrieved from

XA except for the ith column, which is retrieved from XB, as shown below:

XCi =


xA11 xA12 . . . xB1i . . . xA1k

xA21 xA22 . . . xB2i . . . xA2k
...

...
. . . . . .

...
...

xAN1 xAN2 . . . xBNi . . . xANk


• The model output for all the input values of sample matrices XA, XB and XCi are

run to obtain the output vectors YA, YB, YCi .

The evaluation of the sensitivity follows one of the early studies of Sobol [67], in which the

sensitivity indices are estimated as correlation coefficients; the first order index for input
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factor xi is computed as:

Si =
YT
AYCi −N(Y AY Ci)

YT
AYA −N(Y A)2

(2.10)

Furthermore, the total effect index is estimated as:

ST i = 1− YT
BYCi −N(Y BY Ci)

YT
BYB −N(Y B)2

, (2.11)

where Y ... is the mean value of the output.

The estimations in Equations (2.10) and (2.11) have a different second term in the numerator

when compared with the estimations of the sensitivity indices documented in Saltelli et

al. [47]. A simplification is introduced to the estimates presented by [47] assuming Y A = Y Ci

and Y B = Y Ci . This assumption is justified by running a very large number of samples for

the sensitivity analysis. However, Equations (2.10) and (2.11) are more reliable in their

estimates with a smaller number of samples run.

In the cases where the sensitivity analysis is performed for groups of related input parame-

ters, the formulation of the XCi matrix is slightly adapted. Multiple columns corresponding

to the group of the related input parameters are treated as a block and moved together when

creating XCi . The procedure to estimate the sensitivity indices is not affected and these

indices indicate the effect of the group of the realted inputs on the variance of the output.

XCi =


xA11 xA12 . . . xB1(i−1) xB1i xB1(i+1) . . . xA1k

xA21 xA22 . . . xB2(i−1) xB2i xB2(i+1) . . . xA2k
...

...
. . .

...
...

...
. . .

...

xAN1 xAN2 . . . xBN(i−1) xBNi xBN(i+1) . . . xANk


︸ ︷︷ ︸

input parameters handled as one group

The main drawback of variance-based methods is the need for a large number of samples

in order to get reliable results when sampling methods are used to estimate Si and ST i.

The high computational cost of every simulation, as well as the large number of random

parameters and processes may prove to be more problematic than expected for complex

engineering problems. Therefore, meta-modeling is used for the input-output mapping.
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2.4.2 Aid tool: Meta-Modeling

The meta-models presented are classified into two types depending on the nature of their

input-output mapping. Polynomial regression models are treated as global approximation

models, whereas moving least squares and the proposed hybrid algorithm are considered to

be local approximation models. The sensitivity analysis is performed on the meta-models,

therefore, attention has been given to the derivation of such models. The following is a

description of the meta-models used in the analysis.

2.4.2.1 Polynomial Response Surface

Polynomial response surface modeling is one of the popular approximation models in engi-

neering applications due to its simplicity and ease of implementation. Most of the engineering

problems are complex in nature, therefore, they require multidimensional polynomial base

functions, such linear, quadratic, and mixed terms, e.g.,

pT (x) =
[
1 x1 x2 x3 . . . x

2
1 x

2
2 x

2
3 . . . x1x2 x1x3 . . .

]
. (2.12)

One mapping between the input and output can be written as follows:

yi = β0 + β1xi1 + β2xi2 + . . .+ βntxint + εi , (2.13)

= β0 +
nt∑
j=1

βjxij + εi , i = 1, 2 . . . , ns

where y is the observed response, β0, βj, . . ., and βnt represent the unknown polynomial

or regression coefficients, ε is a random error term, ns is the number of observations or

supporting points, and nt is the number of polynomial base functions.

It is more convenient to use a matrix notation to express the mathematical relations, such

as:

y = Xβ + ε, (2.14)
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where y is the (ns × 1) vector of observations, X represents the (ns × nt) input variables

and their combinations, β is a (nt × 1) vector of regression coefficients, and ε is a (ns × 1)

vector of random errors.

The method of least squares can be used to estimate the regression coefficients, β̂, which

minimizes the foloowing:

L =
ns∑
i=1

ε2i = εTε = (y −Xβ)T (y −Xβ) (2.15)

Therefore, β̂ is the solution for β in the following equation:

∂L

∂β
= 0 ⇀ β̂ =

(
XTX

)−1
XTy (2.16)

The estimation of the polynomial coefficients β̂ involves evaluating the model output ns

times, where ns ≥ nt.

Once the polynomial coefficients are estimated, the response can be predicted for any set of

input variables or parameters as follows:

ŷpoly = Xβ̂, (2.17)

where ŷpoly represents the approximated response. The polynomial response surface provides

an explicit and compact functional relationship between the input and the output, which is

advantageous since the meta-model is built once and used repeatedly.

2.4.2.2 Moving Least Squares

The moving least squares is employed because of its ability to catch localities or nonlinearities

in the input-output relation. The local character of this approximation method is obtained

by introducing radial weighting functions that depend on the position of the evaluated

response. The prediction is strongly influenced by the neighboring response values and less

influenced by those further away. Moving least squares models can be seen as an extension

of the polynomial response surface models since the former assumes equal weightings for
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the support points, whereas the latter introduces position-dependent weights, which enables

it to capture localities in the output. The flexibility of such an approximation model is

obtained at a higher computational expense. Furthermore, an explicit formulation of the

meta-model cannot be attained, i.e., a new moving least squares model is built for every

new set of inputs. A more detailed description of the moving least squares models and their

properties can be found in [69, 70].

As mentioned before, moving least squares is an extension of the polynomial response surface

model since weighted least squares solutions are obtained for the regression coefficients,

β̂MLS, which minimizes the following:

LMLS =
ns∑
i=1

ε2iwi(x) = εTW(x)ε = (y −XβMLS)T W(x) (y −XβMLS) (2.18)

And similarly, β̂MLS is the solution for βMLS in the following equation:

∂LMLS

∂βMLS

= 0 ⇀ β̂MLS =
[
XTW(x)X

]−1
XTW(x)y, (2.19)

where wi is a local weighting function for each supporting point xi, which depends on the

position of the approximation point x.

The approximated values of the output can be determined by the following:

ŷMLS = pT
[
XTW(x)X

]−1
XTW(x)y (2.20)

The Gaussian weighting function is used for the algorithm, which is an exponential function

described as

wG(s) = e−s
2/α2

, (2.21)

with α as a shape factor and s = ‖x− xi‖ /D, where s is the normalized distance between

the approximation point and the supporting point considered and D is the influence radius.
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2.4.2.3 Hybrid Algorithm

The main motivation in deriving a meta-model is to overcome the computational cost of

running the numerical model directly. Nevertheless, building a meta-model requires per-

forming a sufficient number of numerical computations to capture the input-output relation.

For multi-dimensional mapping of input-output where localities depend on the model di-

mensions, different approximation models can be used for the different dimensions in order

to capture the nature of the relation and to avoid overfitting. Therefore, a hybrid model

of polynomial regression and moving least squares has been proposed for the input-output

mapping in order to capture the global output with its localities without overfitting. This

approximation model is based on using the moving least squares in the dimension where the

polynomial response surface fails to capture, and can be expressed as:

ŷhprd = ŷpoly + ŷMLS(R) , (2.22)

R =
[
y1 − ŷpoly1 , . . . , yi − ŷpolyi , . . . , ys − ŷpolys

]T

Similar approaches to building meta-models can be found using variant algorithms to ap-

proximate the output, which are then used for different purposes [71, 72].

It is worth mentioning that a greater number of base terms leads to a more accurate approx-

imation of the input-output relationship for any of the meta-models proposed. Nevertheless,

the greater the number of terms also leads to a more flexible model, which could overfit the

noise originating from computing the underlying response. In other words, the meta-model

could be built with excessive base terms that would lead to poor generalizations, which

should be avoided.

2.4.2.4 Coefficient of Determination

The sensitivity indices are estimated directly on the approximated model, therefore, a mea-

sure for testing the adequacy of the meta-model is required. The coefficient of determination
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is often used for these purposes and is defined as:

R2 = 1−
∑ns

i=1 (yi − ŷi)2∑ns
i=1 (yi − ȳ)2 , (2.23)

where yi is the model output (support points) evaluated, ŷi is the approximated model

output, ȳ is the mean value of the model output evaluated, and ns is the number of support

samples.

The values of the coefficient of determination (R2) for the moving least squares and the

hybrid meta-models depend on the influence radius (D) used in the meta-model, thus, the

R2 values cannot be reliable. Hence, a more reliable measure is the estimation of R2 using

cross-validation. This measure is denoted as the predictive coefficient of determination

(R2
cross) [73].

Cross-validation involves splitting the input randomly into q subsets, removing one of these

subsets and fitting the approximation model to the q − 1 remaining subsets [74]. The

approximation ŷ for all inputs is obtained by combining the output of the q subsets, and

Equation (2.23) is used for finding R2
cross. This procedure is convenient in this study since

a cross-validation is already carried out to obtain the optimum influence radius D for the

moving least squares and the hybrid models.

Test Function

The test function, Equation (2.24), retrieved from [71] is used to illustrate the different

meta-models. Noise has been introduced into the function, Equation (2.25), in order to

examine the approximation models [71]. The test function ys(x) and its noisy version yn(x)

are created for ε = 1 and nv = 2 and plotted in Figure 2.2 and Figure 2.3, respectively. This

test function appears quasi sinusoidal on [−1, 1].

ys(x) =
nv∑
i=1

[
3

10
+ sin

(
16

15
xi − ε

)
+ sin2

(
16

15
xi − ε

)]
(2.24)

yn(x) = ys(x) +
nv∑
i=1

[
2

100
sin

(
40

(
16

15
xi − ε

))]
(2.25)
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In order to examine the performance of the meta-models, 100 uniformly distributed samples

with µ = 0 and σ = 1 are generated and used as support points for which the values of the

test function with noise are computed following Equation (2.25). A different 40 samples are

then created to be the test points, for which the meta-models are used to approximate their

values using the support points. Further, the value for the shape factor α in Equation (2.21)

is taken as 0.38. A general comparison of the different meta-models is shown in Figure 2.4,

which shows that the polynomial regression surface is not capturing the localities of the

function, whereas the behavior of the moving least squares and hybrid models are much

better.

Figure 2.2: Two-dimensional view of
the test function

Figure 2.3: Two-dimensional view of
the test function with noise

The quality of the meta-models is then examined. For the moving least squares and hybrid
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(a) Polynomial response surface
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(b) Moving least squares approximation
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Figure 2.4: One-dimensional view of the approximation models: ( • ) Support points,
( ) Approximation model
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models, cross-validation is needed to find the optimum influence radius D and the predictive

coefficient of determination R2
cross. Each of the subsets in the cross-validation has 10 samples.

The optimum influence radius D is chosen as the one which gives the highest corresponding

predictive coefficient of determination R2
cross. Table 2.1 shows different influence radii with

their corresponding R2
cross. The optimum influence radius is found to be D = 0.8.

Table 2.1: Optimum Influence Radius D

MLS Hybrid
D R2

cross R2
cross

0.6 0.91 0.90
0.8 0.94 0.92
1.0 0.93 0.91
1.2 0.91 0.89

The calculated qualities of the meta-models of the test function are presented in Table 2.2.

The moving least squares and hybrid meta-models are the ones with the highest R2
cross for

the test function data. This is to be expected as the test function shows strong localities.

Table 2.2: Approximation Model Quality: Coefficient of Determination

R2 R2
cross

Polynomial 0.55 0.39

MLS 0.99 0.94

Hybrid 0.99 0.92

2.4.2.5 Standardization of the Input

The inputs for building the meta-models could be of different scales. Thus, standardizations

of their values are needed as a prior step to building the meta-models and performing the

sensitivity analysis. The standardized value xsi of the input parameter xi is computed as

xsi =
xi −min(x)

max(x)−min(x)
, (2.26)

where min(. . .) and max(. . .) are the minimum and maximum of the samples of the input

parameter examined.
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2.4.3 Total Uncertainty

Uncertainty is the acknowledgment of existence of more possibilities. A true model does not

exist, rather the model that fits the purpose of its development holds true. This is where

uncertainty is inevitably involved in assessing plausible models created for a specific purpose.

The general notion has been that more complex models simulate reality better, however,

the higher uncertainties associated with their output cannot be ignored. An approach is

presented and tested at a later time to weigh the model complexity against its uncertainty.

This may help in assessing the model utility for practical applications.

Before describing the approach, it is important to define the terms used to categorize the

uncertainties of a model output. The first category is called ‘Model Input Uncertainty,’ due

to the inherent variability and randomness of the input parameters. This can be studied

by propagating the variations in the input parameters through the model and examining its

output variation, which is addressed in the previously described uncertainty and sensitivity

analyses. The second category is ‘Model Framework Uncertainty,’ which is related to the

implications of modeling simplification, incomplete scientific data and lack of knowledge of

what is affecting the modeled system. This type of uncertainty is to be taken into account

in the approach presented.

The adjustment factor approach [50] is used to propagate the model uncertainty into the

prediction of the model. The prediction of a system response is represented as

y = y∗ + E∗a, (2.27)

where y∗ is the prediction of the response by the best model, E∗a is an additive adjustment

factor, and y is an adjusted prediction. An additive adjustment factor E∗a is presumed to be

a normal random variable.
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Assuming that the predictions and probabilities of a set of models are known, [75] computed

the means and the variances of both E∗a and y as:

E (E∗a) =
Nm∑
i=1

P (Mi)(y
Mi − y∗) (2.28)

V (E∗a) =
Nm∑
i=1

P (Mi)(y
Mi − E(y))2 (2.29)

E (y) = y∗ + E (E∗a) (2.30)

V (y) = V (E∗a) (2.31)

where E(. . .) is the mean of a variable, V (. . .) is the variance of a variable, yMi is the

prediction of model Mi, P (Mi) is the probability of Mi, and Nm is the number of models

considered. The mean and variance of E∗a are the averaged mean and the averaged variance

of the difference between the prediction of the best model and those of other plausible models

using model probabilities as weights. The mean of y is the sum of the prediction of the best

model and the mean of E∗a as described in Equation (2.30). The variance of y is the same

as that of E∗a, as expressed in Equation (2.31).

The total uncertainty of a single plausible model is of interest. Thus, the input uncertainty

is introduced to the model response, and the average prediction over the variation of the

input parameters
(
Y Mi

)
is computed and used in the further derivation.

Since the model probabilities add up to one, the following relations hold [76]:

E (Y ) =
N∑
i=1

P (Mi)(Y
Mi) (2.32)

V (Y ) =
N∑
i=1

P (Mi)(Y
Mi − E(Y ))2 (2.33)

Thus, the single contribution of a plausible model to the total variance of the prediction can

be retrieved from Equation (2.33), [76].
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The variance of a single plausible model Mi can be derived as follows:

VMi
(Y ) = E

[
(Y Mi − E(Y ))2

]
(2.34a)

= E
[
(Y Mi)2 − 2Y MiE(Y ) + (E(Y ))2

]
(2.34b)

= E
[
(Y Mi)2

]
+ E

[
−2Y MiE(Y ) + (E(Y ))2

]
(2.34c)

= E
[
(Y Mi)2 − (E(Y Mi))2 + (E(Y Mi))2

]
+ E

[
−2Y MiE(Y ) + (E(Y ))2

]
(2.34d)

= V (Y Mi) + (E(Y Mi))2 + E
[
−2Y MiE(Y ) + (E(Y ))2

]
(2.34e)

= V (Y Mi) + (E(Y Mi))2 − 2E(Y Mi)E(Y ) + (E(Y ))2 (2.34f)

= V (Y Mi) +
[
E(Y Mi)− E(Y )

]2
(2.34g)

The variance of the single model is composed of two parts, as shown in Equation (2.34g). The

first part V (Y Mi) originates from the propagation of input uncertainty through the models;

the second part
[
E(Y Mi)− E(Y )

]2
can be viewed as the additive framework uncertainty.

The second part of the uncertainty is the difference between the average response of the

single model and the average response of an adjusted model.

If E(Y ) is known, then the application of the relations above is straightforward. However,

this is not the case in complex engineering problems, especially when physical measure-

ments are lacking. Therefore, the best model Y ref is assumed to be a representative of

the prediction Y . An additive error term εref is assumed and introduced to account for its

shortcomings and imperfections. Following Equation (2.34g), the total variance of the single

model is represented as:

VMi
(Y ) = V (Y Mi) + V (εMi

∆ ) + V (εref ), (2.35)

where

V (εMi
∆ ) =

[
E(Y Mi)− E(Y ref )

]2
, (2.36)

and V (εref ) is the uncertainty stemming from the assumption that the reference prediction

is the best model.

The value of V (εref ) is unknown, however it is assumed to take on different values, and its

influence on the total uncertainty of a model prediction is examined. The model Mi with the
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lowest VMi
(Y ) is assumed to be the model that is most fit since its quality of prediction is

balanced against its uncertainty. The influence of tested values of V (εref ) affects as expected

the qualitative evaluations of the VMi
(Y ), therefore, it does not affect the ranking of the

single models, which is the objective for using this procedure.

It is important to mention that the assumed distribution for the additive adjustment or

error term imposes a bias in the estimates for the single model, therefore, the variation of

the model prediction is computed and employed in model ranking.

2.5 Summary

The main assessment method is based on sensitivity and uncertainty analyses. In addition

to the classical approaches for performing a variance-based sensitivity analysis, a new setting

is proposed that computes the averages over influential processes that have eminent effects

on the response.

Variance-based approaches require a large number of samples to produce reliable estimates,

therefore, to keep the performance of such approaches to a practical level, meta-models

are derived. The main goal of these meta-models is to create input-output relationships,

which are computationally inexpensive and sufficiently representative of the response output.

A hybrid algorithm of polynomial and moving least squares models has been developed

to capture localities and to avoid overfitting. The adequacy requirements of the meta-

model are met by using an acceptance threshold for the value of the predictive coefficient of

determination R2
cross.

Finally, an estimate of the model uncertainty is derived based on the assumption that the

uncertainty is additive and can be described as a normal variable. Furthermore, the input

parameter uncertainty can also be considered. The variance of the response is used as an

estimate for the model uncertainty. The models with the lower total uncertainty are assumed

to be the most fit for the response studied.
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Chapter 3

Coupled Subsystems in Bridges

The vibration of bridges caused by moving vehicles has been a subject of continuous research

since the nineteenth century, as discussed in Chapter 1. In the last two decades, the dynamic

problem of bridge-vehicle interaction has received even more attention from engineers and

researchers, due to the considerable increase in traffic and upgrade projects for existing

bridges [38]. The main focus of this chapter deals with the modeling of the vehicle, bridge

and bearings, and the solution methods for the bridge-vehicle interaction. A verification

example is presented to control the solutions of the numerical models.

3.1 Bridge-Vehicle Interaction

Researchers have utilized different methods for determining bridge-vehicle interaction. Yang

et al. [1] and F. Yang et al. [19] have reviewed these methods to solve the dynamic problem

with their corresponding mathematical and computational descriptions. When analyzing

bridge-vehicle interaction, two sets of differential equations of motion can be written for the

vehicle and the bridge. These equations are solved ensuring compatibility and equilibrium

conditions at the contact points. The methods to perform the analysis can be of two types,

those based on solving the uncoupled set of equations of motion, i.e., the equations of the

vehicle and the bridge are solved separately, in iterative or non-iterative algorithms [19, 21,

30], and those based on solving the coupled set of equations, i.e., there is a unique matrix

39
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for the bridge-vehicle system obtained by eliminating the contact forces appearing in the

equations of motion for the vehicle and bridge [20, 77, 78].

In this sections, the systems of the vehicle and bridge examined are described. Furthermore,

the solution method used for the bridge-vehicle interaction is discussed, in which the equa-

tions of motion of the bridge and the vehicle are solved separately in the time domain. An

FE model to solve the interaction problem by employing contact elements is described. In

addition, a validation example using the numerical and analytical solutions for the dynamic

problem is presented.

3.1.1 Vehicle Models

Researchers have used different suspended mass models to represent heavy vehicle systems

varying from single to multiple degrees of freedom depending on the level of modeling [30,

37, 79, 80]. The heavy vehicle models built and used are a two-degree-of-freedom model,

also known as a “1/4 car model,” and an eight-degree-of-freedom model considering the

configuration of a five-axle vehicle. Both models are built in the pitch mode; the effect of

rolling of the vehicle is not considered in the dynamic analysis. According to [37], the pitch

plane models are usually sufficiently accurate for the global response, therefore, roll degrees

of freedom can be ignored. Furthermore, the models do not consider nonlinearities in the

suspension system or tire behavior nor do they consider the complexities in the sprung mass

motion. The suspension system and tires are assumed to behave linearly, and modeled as

linear springs with viscous damping. Further, the sprung masses are assumed rigid.
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The equations of motion for the vehicle can be written in the following general form:

MvÜv + CvU̇v + KvUv = Pv, (3.1)

where Mv is the mass matrix of the vehicle, Cv is the damping matrix of the vehicle, Kv is

the stiffness matrix of the vehicle, Pv is the dynamic force vector of the vehicle, and Uv is

the generalized coordinate vector describing the dynamics of the vehicle model (degrees of

freedom).

The generalized coordinates of the two-degree-of-freedom vehicle model are the sprung

mass vertical displacement ys and the unsprung mass vertical displacement yu. The sprung

mass is the mass supported by the suspension system and the unsprung mass is the mass

connected to the suspension, which is supported by the tires (Figure 3.2).

Uv =
{
yu ys

}T
(3.2)
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Figure 3.2: Schematic for the quarter car model

When the equations of motion for the vertical displacements of the sprung and the un-

sprung masses of the vehicle are formulated, the following system of matrices describing the

dynamics of the vehicle model are written as:

Mv =

 mu 0

0 ms

 Kv =

 kt + ks −ks
−ks ks

 Cv =

 ct + cs −cs
−cs cs

 , (3.3)

where ms is the sprung mass, mu is the unsprung mass, ks is the stiffness of the suspension

system, cs is the damping of the suspension system, kt is the stiffness of the tire, and ct is the

damping of the tire. The interaction force F int
i at the contact point i, which is time-variant
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and depends on the interaction between the vehicle and the bridge, can be expressed as:

F int
i = kt [yu(t)− yb(xi, t)− ri(t)] , (3.4)

where yb(xi, t) and ri(t) are the displacements of the bridge and road unevenness respectively,

at ith contact point at instant t.

The vibrational modes of this model are the bouncing mode of the sprung mass (main body

of the vehicle) and the axle hop mode.

The eight-degree-of-freedom vehicle model represents the configuration of a typical

heavy truck traveling on the road network of Europe [80]. The vehicle consists of a two-axle

tractor and a three-axle semi-trailer linked by a hinge. The tractor and the semi-trailer

are assumed to be rigid components and are characterized by their masses and moments of

inertia. The vehicle model is excited at five points, which are the contact points between the

tires and the roadway. It is also assumed that the three axles of the semi-trailer share the

rear static load equally since load-sharing mechanisms are common in multi-axle heavy vehi-

cle suspensions [37]. The generalized coordinates used to describe the vehicle dynamics are

tractor vertical displacement yT , tractor pitch angle θT , semi-trailer vertical displacement

yS, semi-trailer pitch angle θS, tractor front unsprung mass vertical displacement y1, trac-

tor rear unsprung mass vertical displacement y2, and semi-trailer unsprung masses vertical

displacements y31, y32, and y33, as shown below:

Uv =
{
yT θS θS y1 y2 y31 y32 y33

}T
(3.5)

Due to the articulation of the truck and the semi-trailer, a kinematic constraint can be

written for the semi-trailer vertical displacement yS, [79] as expressed below:

yS = yT + b5θT + b4θS (3.6)

After fulfilling this constraint equation, the vehicle model has eight independent degrees of

freedom. The equations of motion are based on the derivation provided by [79] for the ride
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Figure 3.3: Schematic for the five-axle vehicle model

behavior of a three-axle tractor and semi-trailer truck. Such a formulation has also been used

in other studies [80, 81]. Mass, damping, and stiffness matrices are found in Appendix 7.

The interaction force F int
i can be expressed as:

F int
i = kti [yi(t)− yb(xi, t)− ri(t)] , i = 1, 2, 31, 32, 33 (3.7)

where yb(xi, t) and ri(t) are the displacements of the bridge and road unevenness respectively,

underneath the ith axle at instant t.

The vibration of such a heavy vehicle has two distinctive frequency ranges; the first range

is 1.5 Hz to 4 Hz, representing the sprung mass bounce involving some pitching, and the

second range is 8 Hz to 15 Hz, representing the unsprung mass bounce involving suspension

pitch modes [37].

3.1.2 Bridge Model

The equations of motion of the bridge considering time varying forces can be expressed in

the following matrix notation:

MbÜb + CbU̇b + KbUb = Pb , (3.8)
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with Mb, Cb, Kb are the mass, damping and stiffness matrices of the bridge, Üb, U̇b, Ub are

the accelerations, velocities and displacements of the bridge, and Pb is the vector of forces

acting on each bridge node at time t, which has two components, as shown below:

Pb = Fg + Fint , (3.9)

where Fg is the force acting on the bridge due to the weight of the vehicle, which is inde-

pendent of the interaction, and Fint is the time-variant force acting on the bridge, which

depends on the interaction between the bridge and the vehicle. The damping of the bridge is

assumed to be viscous, which means that it is proportional to the nodal velocities. Rayleigh

damping is often used to model viscous damping and is described as:

Cb = αMb + βKb , (3.10)

where α and β are proportionality constants which satisfy

α

2ω
+
βω

2
= ξ ,

with ξ as the damping ratio. Since there are two unknowns, a constant damping ratio is

assumed over a frequency range ω1 and ω2. This gives two simultaneous equations expressed

as follows:

ξ =
α

2ω1

+
βω1

2
(3.11)

ξ =
α

2ω2

+
βω2

2

These equations are solved for α and β.

3.1.3 Solution of Bridge-Vehicle Interaction

The solution of the bridge-vehicle interaction is often obtained by solving the equations of

motion of the bridge and the vehicle systems separately using a direct numerical integration

method. The compatibility conditions and equilibrium equations at the contact between
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the vehicle tires and the bridge are satisfied by iterative algorithms. The general idea of the

solution procedure consists of assuming the initial displacements at the contact points and

solving the vehicle equations to obtain the interaction forces, substituted into the bridge

equations and improved displacements are computed. In case of iterative procedures the

same steps are repeated until a certain tolerance is met.

During the passage of a vehicle across a bridge, the dynamic tire forces of a vehicle can lead

to additional dynamic effects on the bridge. These effects are mainly due to the excitation

of the vehicle by the dynamic deflection of the bridge and by the initial road unevenness.

Models that consider bridge-vehicle interaction are often derived to consider these sources

of excitation. The equations of motion for the vehicle and the bridge are written as Equa-

tion (3.1) and Equation (3.8), respectively. Assuming perfect contact, the solution of these

equations is governed by satisfying the compatibility equation and imposing the equality of

displacement at the contact point, as expressed below:

yw(xi, t) = yb(xi, t) + ri(t) , (3.12)

where yw(xi, t) is the displacement of the tire of the vehicle at ith contact point at instant t.

In addition, the force equilibrium conditions at the contact point i must be satisfied, which

can be shown as:

P i
b = F g

i + F int
i , (3.13)

where F g
i is the static weight of the ith axle and F int

i is the interaction force at the ith

axle. The ith contact point usually does not coincide with the a DOF of the bridge model.

Therefore, the forces F g
i and F int

i are converted to equivalent nodal forces associated with

the bridge’s DOF.

The analysis starts by assuming the initial displacements of the bridge for the time step

t. The displacement of the vehicle’s tire at the contact point is computed following the

compatibility condition in Equation (3.12). The vehicle Equations (3.1) are solved using

a numerical integration method for its displacements (Uv). The determined displacements

of the vehicle are replaced into Equation (3.4) or Equation (3.7), depending on the vehicle
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model, to calculate the interaction forces (F int
i ). Satisfying the equilibrium conditions at the

contact point as in Equation (3.13) and converting the forces to the associated DOFs of the

bridge results in the equivalent bridge forces (Pb). These forces (Pb) are then used to solve

the bridge Equations (3.8) using a numerical integration method to compute the improved

displacements of the bridge (Ub). This procedure is repeated till a tolerance assigned to the

difference between the outputs is met for the analyzed time step. Then the same iterative

analysis is repeated to t+ ∆t till the desired period of time is reached.

An alternative, which is described as non-iterative algorithm is proposed by [21] for the above

solution procedure. It is non-iterative conditioning over a sufficiently small time step. With

such a time step, the force acting on the vehicle at the current time step is estimated from

the previous step. According to [21], the choice of the time step should be small enough to

capture the highest desired frequency of the bridge, the vehicle passage, and the excitation

from road unevenness. Moreover a factor of 1
10

is introduced into the ∆t selected to secure

reasonable integration accuracy and is expressed as:

∆t ≤ 1

10
×min

{
Tf =

1

fmax

, Ts =
L

v
, Tr = vκmax

r

}
, (3.14)

where fmax is the upper frequency of interest for the bridge, and κmax
r is the largest wavenum-

ber of the road unevenness corresponding to the minimum wavelength. The numerical in-

tegration procedure used to solve the system of differential equations is the Newmark-β

method, which is described for the kth time step as:

u̇k+1 = u̇k +
∆t

2
(ük + ük+1) (3.15)

uk+1 = uk + ∆t u̇k +
1− 2β

2
∆t2ük + β∆t2ük+1,

where β is taken as 1/4.

In general, many DOFs are involved in the FE model of the bridge system, but only the first

modes of vibration make the significant contribution to the dynamic response. Therefore,

the modal superposition method can be used to solve the equations of motion of the bridge,

which reduces the computational effort considerably, which is regarded as advantageous [82].

The total dynamic response y(x, t) is obtained by the superposition of the response obtained
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for each modal coordinate as follows:

y(x, t) =
∞∑
n=1

φn(x)zn(t), (3.16)

where φn(x) is the mode shape of the nth mode and zn(t) is the modal contribution of the

nth mode at instant t. Equation (3.16) can be expressed in matrix notation as:

Y = ΦZ (3.17)

The mode shapes are normalized such that:

ΦT Mb Φ = I , ΦT Kb Φ = ω2
n ΦT Mb Φ (3.18)

Introducing Equation (3.17) and its first and second derivative into Equation (3.8) leads to

the following:

MbΦZ̈b + CbΦŻb + KbΦZb = Pb (3.19)

Equation (3.19) is premultiplied by the transpose of the nth mode shape ΦT
n , and it becomes

as:

ΦT
nMbΦZ̈b + ΦT

nCbΦŻb + ΦT
nKbΦZb = ΦT

nPb (3.20)

Following the mode shape orthogonality properties, in which all terms except the nth will

vanish, thus the result is as:

ΦT
nMbΦnZ̈

n
b + ΦT

nCbΦnŻ
n
b + ΦT

nKbΦnZ
n
b = ΦT

nPb (3.21)

From Equation (3.21), the following can be attributed as the normal-coordinate generalized
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mass, generalized damping, generalized stiffness, and generalized load for mode n, respec-

tively and expressed as:

Mn
b = ΦT

nMbΦn (3.22)

Cn
b = ΦT

nCbΦn

Kn
b = ΦT

nKbΦn

P n
b = ΦT

nPb

If Equation (3.21) is divided by the Mn
b , this modal equation of motion may be expressed

as:

Z̈n
b + 2ξnωnŻ

n
b + ω2

nZ
n
b =

P n
b

Mn
b

, (3.23)

where ξn is the modal viscous damping ratio, as shown below:

ξn =
Cn
b

2ωnMn
b

(3.24)

with n = 1, 2, 3, . . . Nmode, where Nmode is the number of the considered modes. Each

of Equation (3.23) is an independent single DOF equation of motion that is solved in the

time domain using time integration method, e.g. Newmark-β. The total response is then

obtained by solving Nmode uncoupled modal equations and superposing their output follow-

ing Equation (3.17)

FE Model of BVI

An FE model of the vehicle and the bridge and their interaction are constructed based on

the built-in code of FE package ANSYS. Contact elements moving with the vehicle have

been used to couple the systems of the vehicle and the bridge. The solution of the contact

problem is based on the Augmented Lagrange Multiplier. The use of contact algorithm allows

penetrations between the vehicle and the bridge models, which may affect the numerical

results obtained from the dynamic analysis. Therefore, the contact stiffness is chosen to

induce penetrations, which are negligible compared with the dynamic displacements due to
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the passage of a heavy vehicle over the bridge. Mass and spring-damper elements are utilized

to model the vehicle, and beam elements are used to model the bridge.

The road unevenness is accounted for in the FE model by conditioning over the contact

points using constraint equations. These constraint equations are updated at every time

step to consider the corresponding road unevenness. The modeling process needs the FE

model to run the analysis, as well as an external code to control the generation of sam-

ples, the execution of the dynamic analysis, and the analysis of the output. The software

packages Matlab [83] and ANSYS [84] have been coupled successfully to perform the afore-

mentioned tasks. Matlab provides the controlling environment and ANSYS provides the

analysis environment.

3.1.4 Road Unevenness

As the vehicle traverses over the bridge, it is excited by the roadway conditions at the contact

points. These conditions can be characterized by global road roughness (unevenness) and

local roughness (bumps or pot holes). Only the global road unevenness is considered in

the dynamic analysis, which is often described as a random Gaussian process. Therefore,

this subsection includes a general introduction to random Gaussian processes with their

stochastic characteristics, a description of roadway profiles as a random process, as well as

an illustration of models for the realizations of roadway profiles.

In general, for a Gaussian stochastic process f0(t) with an autocorrelation function Rf0f0(τ)

and a two-sided power spectral density function Sf0f0(ω), the following relations hold [45]:

E [f0(t)] = 0 (3.25)

E [f0(t+ τ)f0(t)] = Rf0f0(τ) (3.26)

Sf0f0(ω) =
1

2π

∫ ∞
−∞

Rf0f0(τ)e−iωτdτ (3.27)

Rf0f0(τ) =

∫ ∞
−∞

Sf0f0(ω)e−iωτdω (3.28)

where ω is the temporal frequency.
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Road unevenness is often obtained by measuring existing roadways, which is a laborious

procedure. Therefore, [26] suggested a simplified way of describing the road surfaces. The

authors handle the treatment of road unevenness as a realization of a stationary Gaussian

homogeneous random process described by its power spectral density function in the space

domain Sf0f0(κ) with κ as the wavenumber. However, the dynamic analysis is performed

in the time domain, hence, a description of the road unevenness in the time domain is

needed. Therefore, the temporal power spectral density function Sf0f0(ω) is to be computed.

Assuming a constant speed for the vehicle v, the relationship between Sf0f0(ω) and Sf0f0(κ)

can be derived as follows:

• Since the vehicle is traveling at a constant speed of v, any instant of the travel time τ

can be expressed in terms of the distance traveled x as:

τ =
x

v
(3.29)

• A cycle of wavelength λ = 2π/κ is covered in period T as:

T =
λ

v
, (3.30)

therefore, the temporal frequency can be written as:

ω =
2π

T
= v

2π

λ
= vκ (3.31)

• Substituting the above Equations (3.29), (3.30), and (3.31) in Equation (3.27) results

in the following:

Sf0f0 (ω = vκ) =
1

2π

∫ ∞
−∞

Rf0f0

(
τ =

x

v

)
e−i(ω=vκ)(τ=x

v ) 1

v
dx (3.32)

=
1

v
· 1

2π

∫ ∞
−∞

Rf0f0 (x) e−iκxdx (3.33)

=
1

v
Sf0f0(κ) (3.34)

With this relationship, the temporal spectral density function Sf0f0(ω) can be obtained

from the spatial spectral density function Sf0f0(κ). When performing the analysis in the
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time domain, one can deduce that the excitation of the vehicle due to road unevenness can

be described as non-stationary when the vehicle speed is time dependent [85]. Even when

the speed is constant and the vehicle excitation is stationary, the dynamic responses of the

bridge are non-stationary due to the movement of the vehicle [41]. This observation is of

importance in deriving the stochastic characteristics when the dynamic problem is solved in

the frequency domain.

In most engineering applications, the one-sided spectral density function SFF (κ) is derived

from measurements for which the following relation holds:

SFF (κ) = 2Sff (κ) (3.35)

There are two main models for generating realizations of random processes that are based

on the work of Rice and Shinozuka [45, 86]. One consists of a series of sines and cosines

with random amplitudes and the other consists of a series of cosine terms with random

phase angles. The latter is often adopted for the realization of road profiles, as shown

in Equation (3.36) below:

f(t) =

Nd−1∑
k=0

[Ckcos(ωkt+ Φk)] , (3.36)

ωk = ωl + k∆ω ,

k = 0, 1, 2, . . . , Nd − 1 ,

where Φks are independent random phase angles uniformly distributed in the range [0, 2π]

and Cks are defined as
√
SFF (ωk)∆ω. SFF is the one-sided power spectral density function

(PSD) used to describe the road unevenness. Further, the road surfaces realized reflect the

prescribed probabilistic characteristics of the random process accurately as the number Nd

gets larger.

Equation (3.36) shows that the PSD is discretized into temporal frequency bands of a width

of ∆ω, and the corresponding discretized frequencies are used in the realization of the

stochastic process (Figure 3.4). However, the entire frequency domain of the PSD cannot be

used in the realization due to mathematical and physical reasons [45]. Cut-off frequencies
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Figure 3.4: Discretized one-sided power spectral density function

are needed for the realizations of road surfaces. The discretizing frequency band is defined

as:

∆ω = (ωu − ωl)/Nd , (3.37)

with ωu and ωl (rad/s) as the upper and lower cut-off frequencies. The long wavelength irreg-

ularities correspond to low frequency components in the time domain and short wavelength

irregularities correspond to high frequency components [87]. The different wavelengths and

their corresponding temporal frequencies excite different vibrational modes of the heavy ve-

hicle; the bouncing mode of the sprung mass is more of a low frequency mode while the axle

hop and pitching modes are of higher frequencies [37]. Furthermore, when the wavelengths of

the irregularities are too small compared with the dimensions of the contact patch between

the tire and the roadway, the tire absorbs these irregularities due to its flexibility. This

phenomenon is referred to as tire envelopment, which reduces the excitations of the axle of

the vehicle. Therefore, filtering or smoothing algorithms are recommended [88] depending

on the dimension of the contact patch. Often a moving averaging filter is used for such pur-

poses [89]. However, the effects of tire envelopment of short wavelengths irregularities can

be neglected for normal highway speeds, whereas for low speeds tire envelopment becomes

important and more detailed models for the contact patches may be significant [37, 90].

3.1.5 Numerical Verification

The response of a bridge due to the passage of a heavy vehicle is investigated for the numer-

ical verification. The vehicle is a 40-ton truck modeled as a two-degree-of-freedom vehicle



Chapter 3. Coupled Subsystems 53

model [37]. The sprung mass of the vehicle ms = 36000 kg is supported by the suspension

system modeled as a spring-damper element with a spring stiffness of ks = 18 MN/m and

a damping constant of cs = 1.4 MNs/m. The unsprung mass of the vehicle mu = 4000

kg is supported by the tires modeled as a spring-damper element with a spring stiffness of

kt = 72MN/m and a damping constant of ct = 1.4 MNs/m. The vehicle has two modes,

a bouncing mode of the sprung mass with a natural frequency of 3.18 Hz and an axle hop

mode with a natural frequency of 23.9 Hz. The bridge model is a single-span simply sup-

ported beam model for the Pirton Lane Highway bridge in Gloucester (United Kingdom)

[37]. The bridge’s length L = 40m, an estimated mass per unit length of m = 12000 kg/m

and a bending stiffness of EI = 1.26 × 105 MNm2. The bridge’s first natural frequency is

f1 = 3.20 Hz with a modal damping ratio of ζ1 = 0.02.
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Figure 3.5: Schematic of the verification example

The numerical solutions presented in Section 3.1.3 are used to obtain the vertical displace-

ment at mid-span during the passage of the 40-ton truck at a speed of v = 90 km/h, which

is depicted in Figure 3.6. The numerical solutions are compared with an analytical solution

that is derived in frequency domain, in which the dynamic interaction force is computed

from the total compliance of the vehicle and the bridge [42]. The aim of this example is to

verify the numerical solutions and establish a reference case for the analysis of more complex

applications.

• Solution I is the FEM solution

• Solution II is the loosely coupled non-iterative solution [21]

• Solution III is the closed form solution [42]

The displacement vector of the two-degree-of-freedom vehicle model is Yv = {yu, ys}T ,

where Yu is the displacement of the unsprung mass and ys is the displacement of sprung
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mass. The mass, damping, and stiffness matrices of the vehicle are computed according to

Equation (3.3).

A comparison of the different solutions of the bridge-vehicle interaction is depicted in Fig-

ure 3.6, which shows that a good agreement exists between the different solutions. Further-

more, upper fiber flexural strains and accelerations have been compared for Solution I and

Solution II in Figures 3.7 and 3.8. A good agreement between the responses has also been

observed. Solution I and Solution II are more suitable for sophisticated bridge and vehicle

models. Solution II is only appropriate assuming linear systems, whereas, Solution I is more

general and applies to linear and nonlinear systems. However, in terms of computation,

Solution I is more expensive compared to Solutions II and III.

The computational cost is a decisive factor in this study since what is being proposed and

applied is a probabilistic study, which means that a long computational time would render

the study to be rather difficult and impractical. Hence, Solution II has been adopted as the

solution for the dynamic problem. Furthermore, Solution III is used to control the solutions

of the two numerical solutions (Solution I and Solution II) and to check the minimum number

of road profile samples analyzed when running the Monte Carlo simulation. Solution I has

been used to control the results of the numerical solution for variant responses and more

complex subsystems.
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Figure 3.6: Time history of mid-span displacements: ( ) Solution I,
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Figure 3.7: Time history of mid-span strains: ( ) Solution I, ( ) Solution II
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Figure 3.8: Time history of mid-span accelerations: ( ) Solution I, ( ) Solution II

3.2 Superstructure-Substructure Coupling: Elastomeric

Bearings

It has already been mentioned that highway beam bridges are the examined systems in

this study. The superstructure of these bridges is often supported by elastomeric bearings.

Bearings, in general, can be viewed as a coupling element between the superstructure and

the substructure of the bridge; they accommodate the movements and transfer the forces

between the two subsystems. There are different types of bearings depending on their ma-

terial and the mechanism used to accommodate movements. Elastomeric bearings are one
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type of bearings characterized as deformation bearings due to the fact that they accommo-

date the relative movements between the superstructure and the substructure through the

deformation of the elastomer. While they are effective in supporting the superstructure of

the bridge, they may also prevent bridge vibrations that are induced by moving vehicles

from transmitting downward, which results in accumulated or amplified responses [34].

The material used for the elastomer is a rubber elastic material, which is created from

vulcanized natural or synthetic caoutchouc. The elasticity of the elastomer is time and

temperature dependent. However, for short-term loading, e.g., shocks or vibrations, the

material may react elastically. Furthermore, the dynamic characteristics of the elastomer is

frequency dependent. This behavior is of significance when the elastomeric bearings are used

as isolators in earthquake-prone areas [91]. Elastomeric bearings are, in general, vertically

stiff and horizontally flexible, which may affect the period of vibration of the bridge, thereby

influencing the inertia forces that develop in the superstructure when running a dynamic

analysis.

Most researchers study the elastomeric bearing as an element of its own [32, 33]. Only a

few researchers have focused on the behavior of elastomeric bearings when integrated in the

bridge structure. Several of them investigated the use of elastomeric bearings as an isolation

element for traffic induced vibrations [6, 92], or as an isolation element for earthquake-

proofed bridges [1]. In contrast, others have studied the effects of traffic vibrations on the

degradation of elastomeric bearings [93].

A three-dimensional analysis for the dynamic response of bridges due to moving vehicles

has been performed by [92] in order to examine the influence on the dynamic response when

steel bearings are replaced with elastomeric bearings. The authors noticed that the use and

modeling of elastomeric bearings for the bridge system studied did not change the system’s

resonant frequencies significantly. Moreover, the inclusion of bearings in the dynamic analy-

sis resulted in larger displacements, especially the horizontal displacements in the direction

of the bridge’s main axis. The vibration of a two-girder steel bridge supported by elastomeric

bearings was run by [6]. The authors concluded that the traffic-induced accelerations and

the dynamic reaction forces when considering the elastomeric bearings were greater than

those of the bridge with pin bearings. Furthermore, in [34] it was illustrated that inserting
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elastomeric bearings at the supports of the single-span beam to isolate earthquake forces

may adversely amplify the dynamic response of the beam to moving loads. It was observed

that this conclusion depended on the vehicle’s speed. In the aforementioned studies, the

elastomeric bearings were modeled as independent linear springs in the vertical, horizontal,

and lateral directions depending on the dimensionality of the bridge model.

The objective of modeling the bearings is to investigate the dynamic behavior of elastically

supported bridges. A simple model for the elastomeric bearings is used; they are repre-

sented by a linear spring with constant stiffness properties considering only their vertical

and rotational degrees of freedom.

The vertical (compression) stiffness of an elastomeric bearing according to EN1337-3 [94] is

defined as:

Kbr
V =

A

T
(

1
5GS2 + 1

Eb

) , (3.38)

where A is the total plan area of the bearing, T is the total thickness of elastomer in shear,

G is the shear modulus of the bearing, Eb is the bulk modulus, and S is a shape factor. This

factor S is defined as the ratio of the loaded area to the total force-free surface area:

S =
A1

lpte
, (3.39)

where A1 is the effective plan area of the bearing, lp is the force-free perimeter of the bearing,

and te is the effective thickness of an individual elastomer layer in compression. In case of

rectangular bearings without holes, A1 = a′b′, lp = 2(a′ + b′) with a′ as the effective width

(i.e., the width of the reinforcing plates), and b′ as the effective length (i.e., the length of the

reinforcing plates). The rotational stiffness of a rectangular elastomeric bearing is computed

according to EN1337-3 [94] as follows:

Kbr
R = G

a′5b′

nt3iKs

, (3.40)

where ti is the thickness of an individual layer of elastomer, n is the number of the elastomer

layers, and Ks is a restoring moment factor given in EN1337-3 [94].
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Figure 3.9: Cross section of an elastomeric bearing

The treatment of the bearings as spring elements has been integrated in the bridge structure

and modeled in the FE model. The mode shapes that take the bearings into account have

been extracted for Solution II of the dynamic problem, and the same solution algorithm for

the dynamic analysis is used.

3.3 Summary

The vehicle and bridge models examined in this study have been discussed. The vehicle

models are suspended mass models and their degrees of freedom depend on the level of

modeling. Two-degree-of-freedom and eight-degree-of-freedom vehicle models are used in

the dynamic analysis.

The numerical solutions for the bridge-vehicle interaction have been presented. The com-

putational cost of one run of the dynamic solution is a decisive factor with regard to a

probabilistic analysis. Thus, a long computation time would be impractical for the study.

Therefore, the numerical solution based on solving the modal equations of motion using a

time integration algorithm (Solution II) is adopted for the solution of the dynamic problem.

However, the FEM solution (Solution I) and the analytical solution (Solution III) of the

interaction are used to verify and control the dynamic solutions and their stochastic char-

acteristics. A verification example is illustrated for a single-span bridge system, in which

the three solutions show very good agreement for the dynamic responses. Moreover, the

elastomeric bearings are treated as spring elements supporting the bridge structure.
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It is important to set the premises of the dynamic solution since it is built on the assumption

that the modeled subsystems of the vehicle, bridge, and bearings, do not show nonlinearities

in their behavior. Furthermore, the vehicle models do not consider the complexities in the

movement of the vehicle body, thus, the representative suspended masses are assumed to be

rigid. It is assumed that there is perfect contact between the vehicle and the bridge while

the vehicle is traveling at a constant speed. Moreover, the analysis is run in the pitch mode,

and rolling effects are excluded.
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Chapter 4

General Analysis of the Coupled

Subsystems

4.1 Introduction

The modeling of the bridge-vehicle interaction has previously been discussed in Chapter 3.

A general dynamic analysis aiming for a better and a more thorough examinations of the

responses is performed. The constituents of the dynamic responses and their responsive

behavior to different sources of excitation are investigated. Further, critical frequency ratios

are derived to enable drawing generalized conclusions for the dynamic responses.

4.2 Bridge-Vehicle Interaction

The main influence of the bridge-vehicle interaction on the dynamic response is evident

for short to medium bridges [15, 95, 96]. Therefore, most of the analyses of the dynamic

responses are examined for this category of bridges. However, the response of a continuous

system has been presented in order to obtain a more comprehensive investigation. The

target vehicle is a heavy truck of approximately 40 tons of mass.

61
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4.2.1 Bridge Systems

The systems are existing highway bridges. Their first natural bending frequency is close to

the body bouncing frequency of heavy vehicles, thus, the interaction is expected to have a

significant influence on the bridge response.

The first bridge is the single-span Pirton Lane highway beam bridge in Gloucester (United

Kingdom) [37], Figure 4.1a. The main description of the bridge and its physical properties

can be found in Section 3.1.5. The eigenfrequencies of the single-span bridge are shown in

Table 4.1.

Table 4.1: Eigenfrequencies of the single-span bridge

Bridge mode Natural freq. [Hz]

1st 3.18

2nd 12.73

3rd 28.65

The second bridge is the three-span Deibüel continuous beam bridge (Switzerland) [96],

Figure 4.1c. It is a prestressed concrete box girder bridge with spans that are 37 m, 41 m,

and 32 m. The structural system presented in [96] is slightly modified assuming a constant

cross-sectional area and inertia over the spans. This has an effect on the values of the

natural frequencies of the bridge, however, these differences are small. The bridge has an

estimated mass per unit length of m = 14225 kg/m and a bending stiffness of EI = 0.95

× 105 MNm2. The bridge’s first natural bending circular frequency is ω1 = 2π × 2.70 rad/s

with a presumed modal damping ratio of ζ1 = 0.02.

Table 4.2: Eigenfrequencies of the multi-span continuous bridge

Bridge mode Natural freq. [Hz]

1st 2.70

2nd 3.98

3rd 5.41

4rd 10.82

5rd 13.68

As mentioned previously in Section 3.2, elastomeric bearings are modeled as linear springs.

The spring constants are computed as 2×109 N/m for the vertical movement and 1×106 Nm/rad
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for the in-plane rotational movement. Schematics of the bridge systems with elastic supports

are depicted in Figures 4.1b and 4.1d.
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Figure 4.1: Schematic for the bridge systems: single-span and multi-span continuous
systems

4.2.2 Vehicle Models

The common models for vehicles are suspended mass models for which the level of modeling

defines the degrees of freedom considered. There are different models for heavy vehicles

found in the literature, some of which have been discussed in Section 3.1.1.

4.2.2.1 Vehicle Model: 2DOF

The vehicle is modeled as a two-degree-of-freedom model (2DOF model). The dynamic

characteristics and matrices of this model are presented in Section 3.1.1. This type of

model considers the bouncing of the body mass and the axle hop vibrational modes, which

are essential for the dynamic response of the bridge. The bouncing mode is particularly

important because it is often within the range of the first natural frequency of most highway

beam bridges. The characteristics of the vehicle and its modal information are presented in

Tables 4.3 and 4.4
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Table 4.3: Vehicle parameters (2DOF)
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Body mass (ms) = 36 ton

Axle mass (mu) = 4 ton

Suspension stiffness (ks) = 1.8 × 107 N/m

Tire stiffness (kt) = 7.2 × 107 N/m

Suspension damping (cs) = 14.4 × 105 Ns/m

Tire damping (ct) = 14.4 × 105 Ns/m

Table 4.4: Eigenfrequencies of the (2DOF) vehicle

Vehicle mode Natural freq. [Hz]

Bouncing of body mass 3.18

Axle hop 23.85

4.2.2.2 Vehicle Model: 8DOF

A more realistic model for a five-axle heavy vehicle is also described in Section 3.1.1. The

vehicle is composed of a two-axle tractor and a three-axle semi-trailer connected with a

hinge. The effect of vehicle roll on bridge dynamics is not considered, and the analysis is

performed in the pitch plane only.

The characteristics of the vehicle are obtained from [80] and are presented in Figure 4.2.

The eigenmodes with their corresponding eigenfrequencies are computed and presented in

Table 4.5. It can be observed that the heavy vehicle has two ranges of vibrational frequencies,

the first range is from 1.5 Hz to 5 Hz, representing the sprung mass bounce involving pitching

and axle hop movements; the second range is 8 Hz to 12 Hz, representing the axle hop

involving slight suspension pitch modes.

Table 4.5: Eigenmodes and eigenfrequencies of the (8DOF) vehicle

Vehicle mode Freq.
[Hz]

Mode shape

yt θt θs y1 y2 y31 y32 y33

Bounce of body mass 1.4 1.00 -0.21 -0.02 0.21 0.11 0.07 0.06 0.05

Bounce and pitch 1.6 1.00 -0.61 0.02 0.25 -0.12 -0.07 -0.8 -0.09

Pitch, axle hop, and bounce 4.6 0.34 1.00 -0.62 -0.04 0.79 0.18 0.32 0.46

Axle hop (tractor front) 8.9 -0.03 0.01 0.00 1.00 0.01 0.00 0.00 0.00

Axle hop (tractor rear) 10.4 -0.02 -0.07 0.04 0.00 1.00 0.03 0.06 0.09

Axle hop (tridem middle) 12.0 0.00 0.00 0.00 0.00 0.00 -0.50 1.00 -0.50

Axle hop (tridem front) 12.0 0.00 0.00 0.00 0.00 0.00 1.00 0.21 -0.58

Axle hop (tridem rear) 12.1 0.00 0.00 0.00 0.00 0.00 0.50 -0.58 1.00
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(a) Sketch of a truck model

Dimensional data (m)

a1 = -0.13 b4 = 2.40

a2 = 1.10 b5 = 3.50

b1 = 0.50 b6 = 4.15

b2 = 2.50 b7 = 2.15

b3 = 1.30

Mass parameters (kg)

Tractor sprung mass (mt) 4500

Semi-trailer sprung mass (ms) 31450

Tractor front axle mass (m1) 700

Tractor rear axle mass (m2) 1100

Semi-trailer tridem mass (m31, m32, m33) 750

Inertia parameters (kg m2)

Tractor pitch moment of inertia (It) 4604

Semi-trailer pitch moment of inertia (Is) 16302

Suspension parameters (kN/m)

Tractor front axle (k1) 400

Tractor rear axle (k2) 1000

Semi-trailer tridem axle (k31, k32, k33) 750

Damping parameters (kNs/m)

Tractor front axle (c1) 10

Tractor rear axle (c2) 10

Semi-trailer tridem axle (c31, c32, c33) 10

Tire stiffness (kN/m)

Tractor front axle (kt1) 1750

Tractor rear axle (kt2) 3500

Semi-trailer tridem axle (kt31, kt32, kt33) 3500

(b) Vehicle parameters (8DOF)

Figure 4.2: Vehicle parameters (8DOF)
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4.2.3 Road Unevenness

Road unevenness is often obtained by measuring existing roadways using profilometers,

which is a laborious time-consuming procedure. Therefore, [26] suggested a simplified way

of representing road surfaces. The authors describe road unevenness as a Gaussian random

process characterized by a spatial power spectral density function (PSD), which was ex-

plained earlier in Section 3.1.4. The work of [26] has served as the basis for ISO 8608 [27]

which classify the roadway profiles according to their degree of roughness. In order to gener-

ate artificial road profiles, a description of the PSD is provided by the ISO 8608 [27], which

is represented as:

SFF (κ) = SFF (κ0)

(
κ

κ0

)−a
,

where κ is the unevenness wavenumber, a is taken as 2, and the value of SFF (κ0) depends

on the road condition class. Some of these classes are given in Table 4.6. The dynamic

analysis is performed in the time domain, therefore, a description of the road unevenness

in the time domain is needed. Consequently, the temporal power spectral function SFF (ω)

is required with ω as the temporal frequency. Equation (3.34) illustrates the relationship

between SFF (κ) and SFF (ω), which has been used in the realization of road unevenness.

The cut-off temporal frequencies used in the road profile realizations are chosen to bound

the ranges of frequencies of the road unevenness to those that coincide with the frequencies

of vibration of the vehicle models. Each realization of road profiles follows Equation (3.36)

where ωl = 1.74 rad/s and ωu = 34.90 rad/s for the two-degree-of-freedom vehicle model,

and ωl = 1.74 rad/s and ωu = 75.54 rad/s for the eight-degree-of-freedom vehicle model

with ∆ω = 0.104 rad/s. The road profiles generated are passed through a moving average

filter to take the tire envelopment of road unevenness into account, [89]. Two examples of

road profiles of class A generated are depicted in Figure 4.3(a) and their computed PSDs

are shown in Figure 4.3(b). The upper and the lower cut-off wavenumbers corresponding

to the cut-off temporal frequencies according to Equations (3.31) and (3.37) can be seen

in Figure 4.3(b). Well-maintained highway roads are assumed to have very good to good

road conditions [40]. Therefore, these road classes are adopted for the realizations of road

profiles, which are used in the dynamic analysis.
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Table 4.6: ISO 8608 road profile classifications

Class SFF (κ0)[× 10−6 m3/cycle]
Min. Mean Max.

A 0 1 2
B 2 4 8
C 8 16 32
D 32 64 128
E 128 256 512
F 512 1024 2048
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(b) Computed PSD for the artificial road profiles and the
PSD specified by ISO 8608

Figure 4.3: Artificial road profiles of Class A and their PSDs

4.3 Dynamic Analysis

The dynamic analysis is performed using a non-iterative algorithm to solve the differential

equations of the bridge and the vehicle systems using the Newmark-β time integration

method [21]. This solution algorithm allows reasonable computational time for the systems

used in the analysis.
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4.3.1 General Analysis

Many experimental studies that have investigated and quantified the dynamic response of

bridges due to traveling vehicles have showed inconsistent results, especially when different

response measures have been used as mentioned in [16, 46, 96, 97]. Therefore, three responses

are considered for this analysis: displacements as a structural serviceability measure, strains

as a structural design measure, and accelerations as a vibrational serviceability measure.

The numerical estimates used to quantify these measures are the Dynamic Incremental Fac-

tor for the displacements (DIFu) and strains (DIFε), and the maximum accelerations. The

Dynamic Incremental Factor is defined as the ratio of a maximum dynamic response to the

corresponding static one within a cycle of the dynamic response [98]. Furthermore, the max-

imum accelerations are normalized by the gravitational acceleration. The aforementioned

numerical estimates for quantifying the dynamic response are determined at the mid-span of

the single system and the middle of the first span of the continuous system as these locations

are critical for the static response.

For the eight-degree-of-freedom vehicle model, the maximum dynamic response when study-

ing its time history depends on the position of the axle of the vehicle. Figure 4.4 depicts the

response at the contact point of every axle of the eight-degree-of-freedom vehicle model as

it moves over the single-span bridge system. The maximum displacements and strains are

attained as the rear axle of the semi-trailer reaches the mid-span as shown in Figures 4.4(a)

and 4.4(b). The accelerations attain their maximum values when the tractor’s axles pass the

mid-span, Figure 4.4(c). The same observations are made for the continuous system, Fig-

ure 4.5. The maximum displacements and strains occur when the semi-trailer’s tridem axles

travel over the middle of the first span, Figures 4.5(a) and 4.5(b). Whereas the accelerations

are more sensitive to the movement of the tractor axles, Figure 4.5(c). In order to calculate

the Dynamic Incremental Factor, the static response for the eight-degree-of-freedom vehicle

model is computed when the rear axle of the semi-trailer is at the location chosen for the

single-span and continuous bridge systems.

A common assumption in the analysis of beam bridges is that the support conditions are

perfect pin supports. The influence of the bridge’s bearings, i.e., elastomeric bearings, has
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(a) Displacements
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(b) Strains
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(c) Accelerations

Figure 4.4: Dynamic responses of the single-span system at the contact points of the
(8DOF) vehicle: ( ) Tractor front axle, ( ) Tractor rear axle, ( ) Semi-trailer front axle,

( ) Semi-trailer middle axle, ( ) Semi-trailer rear axle

been addressed in a number of studies [1, 6, 92]. These studies examine the effects of in-

cluding the elastomeric bearings in the bridge model on global or local, as well as in or

out of the plane displacements and/or rotations of the bridge. It was found that the in-

clusion of bearings in the dynamic analysis resulted in larger displacements, especially the

horizontal ones [92]. Furthermore, the traffic-induced accelerations of the bridge when con-

sidering the elastomeric bearings were greater than those of the bridge with pin bearings [6].

Figures 4.6 and 4.7 depict the effect of elastomeric bearings (ignoring road unevenness) for

the single-span and continuous bridge systems, respectively. In addition, the dynamic re-

sponse retrieved from the two-degree-of-freedom and eight-degree-of-freedom vehicle models
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(c) Accelerations

Figure 4.5: Dynamic responses of the continuous system at the contact points of the
(8DOF) vehicle: ( ) Tractor front axle, ( ) Tractor rear axle, ( ) Semi-trailer front

axle, ( ) Semi-trailer middle axle, ( ) Semi-trailer rear axle

are also compared in Figures 4.6 and 4.7. For the single-span system (Figure 4.6), the

main difference in the response stems from the vehicle model used in the analysis. The

two-degree-of-freedom vehicle model is rather conservative, which is understandable as it

assumes a concentrated mass, whereas the total mass of the eight-degree-of-freedom vehicle

model is distributed according to its axles. The dynamic response of the bridge obtained

with the eight-degree-of-freedom vehicle model is less than the response obtained with the

two-degree-of-freedom vehicle model. The difference between the responses of the two mod-

els is 5% for the displacements, 6% for the strains, and 57% for the max. accelerations.

The second difference in the response stems from the influence of considering the bearings
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in the bridge model, which is evident for the accelerations as shown in Figure 4.6(c), less

apparent for the displacements as shown in Figure 4.6(a), and insignificant for the strains

as shown in Figure 4.6(b). The same results are obtained for the continuous system, as seen

in Figure 4.7. It can be observed from Figure 4.7 that the main differences of the responses

of the continuous system are also a result of the type of vehicle model used, i.e., the dynamic

response of the bridge resulting from the eight-degree-of-freedom vehicle model is less than

the response resulting from the two-degree-of-freedom vehicle model, which is broken down

as follows: 6% for the displacements, 9% for the strains, and 86% for the max. accelerations.

A time shift can be seen in Figures 4.6 and 4.7 between the maximum response due to the

two-degree-of-freedom and the eight-degree-of-freedom vehicle model. This time shift is the

time needed for the rear axle of the semi-trailer to reach the critical location for obtaining

the maximum dynamic response.

The worst cases of the dynamic responses are to be selected for more detailed analysis.

Therefore, the dynamic estimates are compared for four cases, which are listed below and

shown in Figure 4.8:

• Single-span system traversed by the two-degree-of-freedom vehicle model (Case 1)

• Single-span system traversed by the eight-degree-of-freedom vehicle model (Case 2)

• Continuous system traversed by the two-degree-of-freedom vehicle model (Case 3)

• Continuous system traversed by the eight-degree-of-freedom vehicle model (Case 4)

It can be observed from Figure 4.8 that the DIFu and DIFε are dependent on the speed of

the vehicle, which will be explained in Section 4.3.5. Further, the maximum accelerations

are generally positively proportional to the speed. The dynamic response of Cases 1 and 2

(using the single-span system) have produced the highest values for the dynamic response

estimates as depicted in Figure 4.8, therefore, they been selected as the worst cases of the

dynamic response, which will be used for the further analyses.

A detailed analysis is performed for the dynamic responses, in which their constituents and

frequency contents are examined. Such a study helps to develop a better understanding
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Figure 4.6: Dynamic responses of the single-span system at mid-span: ( ) Response for
the 2DOF vehicle model assuming pin supports, ( ) Response for the 2DOF vehicle model
assuming elastic spring supports, ( ) Response for the 8DOF vehicle model assuming pin

supports, ( ) Response for the 8DOF vehicle model assuming elastic spring supports

of the dynamic problem and also explains the tendencies that arise when the probabilistic

study is introduced and applied.

4.3.2 Mode Contributions to the Dynamic Responses

The first step is to assess the contribution of the vibrational modes to the dynamic re-

sponses. Figure 4.9 depicts the contribution of either the first mode or multi-mode (up to

the fiftieth) solution to the dynamic response of the single-span bridge system when the

two-degree-of-freedom vehicle model travels over it at a speed of 25 m/s (90 km/h). The

number of vibrational modes considered and the degree to which they influence the quality
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Figure 4.7: Dynamic responses of the continuous system at the middle of the first span:
( ) Response for the 2DOF vehicle model assuming pin supports, ( ) Response for the
2DOF vehicle model assuming elastic spring supports, ( ) Response for the 8DOF vehicle
model assuming pin supports, ( ) Response for the 8DOF vehicle model assuming elastic

spring supports

of the dynamic estimate depends on the response studied. This dependency is illustrated in

Table 4.7, where each entry represents the ratio between the maximum dynamic response

obtained after performing the dynamic analysis up to an assigned vibrational mode and the

response of the multi-mode solution. At 98.7%, the first mode is almost enough to describe

the displacements appropriately, whereas strains and accelerations require higher modes to

obtain estimates with the same degree of accuracy as the displacements. The same observa-

tion is made when the eight-degree-of-freedom vehicle model is used in the dynamic analysis.

The dependency of the response on the number of mode shapes analyzed may explain the

inconsistency in quantifying the dynamic response when different response estimates are
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Figure 4.8: The dynamic response estimates against the speed of the vehicle:
( ) Case 1, ( ) Case 2, ( ) Case 3, ( ) Case 4

obtained from experimental studies.
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Table 4.7: Ratios of the mode contribution to the dynamic response

up to Displacement Strain Acceleration
2DOF 8DOF 2DOF 8DOF 2DOF 8DOF

1st 0.987 0.992 0.850 0.877 0.792 0.846
2nd 0.988 0.992 0.851 0.877 0.792 0.846
3rd 0.999 0.999 0.934 0.948 0.977 0.944

...
...

...
...

...
...

...
11th 0.999 0.983 0.975 0.983 0.994 0.973

...
...

...
...

...
...

...
21st 0.999 0.999 0.991 0.997 0.998 0.995
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Figure 4.9: Vibrational mode contributions to different responses: ( ) First mode solu-
tion, ( ) Multi-mode solution

4.3.3 Sources of Excitation and their Interactions

The focus of the dynamic problem studied is the interaction between the bridge and vehicle

when road unevenness is considered. As the vehicle travels over the bridge, its dynamic tire

forces introduce dynamic effects on the bridge. These effects are mainly due to the excitation

of the vehicle caused by the dynamic deflection of the bridge (Source I) and the initial road

unevenness (Source II). The combination of these two excitations describes the dynamic

effect of the coupling of the vehicle and bridge on the response of interest. Figure 4.10

depicts the mid-span displacements of the single-span system, i.e., the total response and its

constituents due to the two-degree-of-freedom vehicle models traveling at a speed of 25 m/s

(90 km/h). The total response is the moving weight solution combined with the interaction

of the two sources of excitation. The interactions between the excitations caused by the
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dynamic deflection of the bridge and road unevenness vary, thereby having different effects

on the moving weight solution. In addition, the amplitudes of the excitations due to road

unevenness have a great influence on the additional dynamic effects caused by bridge-vehicle

interaction as these excitations may render the ones due to the dynamic deflection of the

bridge to secondary. Figure 4.10 depicts two examples for the two-degree-of-freedom vehicle

model excited by two different road profiles while traveling over the bridge. Figure 4.10(a)

shows the excitations to be significant enough to amplify the dynamic response. This case

is attributed as “greatly amplified”. Whereas, Figure 4.10(b) shows the excitations being

out-of-phase with approximately equal amplitudes to cancel each other, thereby having

no significant effect on the moving weight solution. This case is attributed as “slightly

amplified”. This observation depends on the interaction between the excitations due to the

dynamic deflection of the bridge and road unevenness as well as the internal interaction

between the excitations caused by the frequencies constituting the road unevenness.

The interaction forces corresponding to the displacements in Figure 4.10 are retrieved and

plotted for both cases in Figure 4.11. It can be seen that the maximum of the interaction

forces for the greatly amplified case is larger by a factor of 1.95 when compared to the

slightly amplified case as shown in Figure 4.11(a). In studying the amplitude spectra shown

in Figure 4.11(b), it is observed that the amplitudes around the bouncing frequency of the

vehicle and the bridge’s first natural frequency (3.2 Hz) are higher for the greatly amplified

case.

The realization of road profiles is described in Section 3.1.4 as a summation of cosine waves

with random phase angles. Hence, the main difference between a realization and another

is the randomly selected phase angles, which are introduced to ensure the randomness of

the generated road profiles. Therefore, it is logical to assume that these phase angles are

the reason behind the variation of the effects caused by road unevenness on the dynamic

response. In order to examine this, the interaction forces caused by a single harmonic exci-

tation related to one of the frequencies describing the road unevenness are determined and

shown in Figure 4.12. The frequencies are selected around the bouncing frequency of the

vehicle, and the same set of data employed in the realizations of the road profiles for the

analyses in Figure 4.10 are used. It can be seen from Figure 4.12, that the interaction forces

caused by single harmonic excitations vary from being in-phase and out-phase. Therefore,
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the forces in Figure 4.12 may amplify or cancel each other depending on the phase angles

assigned to the exciting frequencies of the road profile. Also in Figure 4.12, the sum of the in-

teraction forces due to the single harmonic excitations is computed to show the amplification

(Figure 4.12(b)) or the cancellation (Figure 4.12(b)) of the output; the sum holds as linear

systems are assumed. The same analysis can be performed for all frequencies of the road

profile and this amplification or cancellation of the exciting forces would explain the differ-

ence in the total contact forces observed in Figure 4.11 and in the responses in Figure 4.10.

The above are only examples of what can be expected when performing the dynamic analysis

considering road unevenness, which may explain the output of the dynamic analysis and its

scatter when a probabilistic analysis is run.
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Figure 4.10: Decomposition of the mid-span displacement of the single-span system:
( ) Source I, ( ) Source II, ( ) Total coupled response, ( ) Moving weight

4.3.4 Frequency Content of the Dynamic Responses

The frequency content of the dynamic responses is examined as it gives an idea of their

responsive behavior in relation to the sources of excitation. The amplitude spectra of the

dynamic responses of the single-span system with the two-degree-of-freedom vehicle traveling

over it are shown in Figure 4.13. It can be seen that the displacement and strain amplitude

spectra show the same pattern compared with the spectrum for the acceleration. In general

the response due to the moving weight is of a low frequency content. However, in looking

at the bridge-vehicle interaction, another peak appears around the first bending natural
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Figure 4.11: Contact forces between 2DOF vehicle model and the bridge considering
road unevenness: ( ) greatly amplified, ( ) slightly amplified
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(a) greatly amplified: In-Phase excitations
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(b) slightly amplified: Out-of-Phase excitations

Figure 4.12: Contact forces due to single excitations of road unevenness temporal
frequencies: ( ) ω1 = 19.87 rad/s, ( ) ω2 = 19.94 rad/s, ( ) ω3 = 20.03 rad/s,

( ) ω4 = 20.11 rad/s, ( ) Sum

frequency of the bridge system (3.2 Hz), which coincides with the bouncing frequency of the

vehicle. Furthermore, when road unevenness is considered the main additional contribution

to the response amplitude is at 3.2 Hz. This additional contribution is only obtained when

the bridge-vehicle interaction is considered. Again, estimates of the response studied react

differently to the excitation caused by road unevenness because the response’s amplitudes

increase in varying degrees around the bridge’s natural frequency, i.e., the displacement’s

amplitude increases by a factor of 3.33, the strain’s amplitude by 1.66, and the acceleration’s
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amplitude by 3.27. The same examination is carried out for the eight-degree-of-freedom vehi-

cle model traveling over the bridge system and depicted in Figure 4.14. Similar observations

are made for the displacements and strains, however, their responsive behavior to the ex-

citation caused by the road unevenness is not as strong as when the two-degree-of-freedom

vehicle model is used in the analysis. The response amplitudes increase around the bridge’s

natural frequency by a factor of 1.67 for the displacements and by 1.51 for the strains. In

studying the accelerations, it can be seen that the amplitude spectrum has several peaks;

the main peak is around the bridge’s first natural frequency and the other peaks, which are

of smaller magnitude, appear around the axle hop frequencies of the tractor and the semi-

trailer. The response amplitude of the accelerations increases by a factor of 1.55 around the

bridge’s first natural frequency.

The conclusion that can be drawn after investigating the amplitude spectra of the responses

is that the estimate of the displacements and accelerations are highly influenced by the

coupled model considering road unevenness, followed by the strains. Furthermore, these

results depend on the vehicle model used in the dynamic analysis, e.g., the two-degree-of-

freedom vehicle model shows higher sensitivity to road unevenness in comparison with the

eight-degree-of-freedom vehicle model.

In short, the above analyses show the response constituents and their responsive behavior

when road unevenness is considered. This is of great help when examining the output

of the probabilistic analysis. The magnitude and scatter of the responses of the coupled

subsystems when road unevenness is considered rely on the main contributing frequencies

and their corresponding amplitudes.

4.3.5 Critical Ratios

The results for the dynamic responses studied in the previous subsections depend on the

frequencies of the bridge, the vehicle and the driving speed used in the analysis. The influence

of these frequencies and their interaction on the dynamic response is evident. A number

of studies have focused on the relation between the dynamic response and speed. In the

study done by [11], it was found that a unique function for the maximum dynamic response
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Figure 4.13: Amplitude spectra of the dynamic response due to excitation of the 2DOF
vehicle: ( ) Amplitude spectrum for the dynamic response ignoring road unevenness,

( ) Amplitude spectrum for the dynamic response considering road unevenness

and the speed exists. This was calculated analytically for a simply supported beam using

a moving weight model, in which the first beam mode was considered. Furthermore, [95]

studied critical speeds in relation to the frequency of the bridge system; the examination

was also done for a moving weight model on single-span bridges.

The relationship between the speed and first natural frequency of the bridge is examined

here when the interaction between the bridge and the vehicle is considered. Figure 4.15

depicts the dynamic response estimates due to the two-degree-of-freedom vehicle model in

relation to the speed circular frequency ωs and the bridge first natural frequency ωb. The

speed circular frequency ωs is defined as:

ωs =
πv

L
, (4.1)
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Figure 4.14: Amplitude spectra of the dynamic response due to excitation of the 8DOF
vehicle: ( ) Amplitude spectrum for the dynamic response ignoring road unevenness,

( ) Amplitude spectrum for the dynamic response considering road unevenness

where v is the speed of the vehicle [m/s] and L is the span of the bridge [m].

The pattern for the displacements and the strains is clear and similar, whereas the accel-

erations show a slightly different trend since they tend to increase positively in relation to

the speed circular frequency with no distinguishable pattern, as shown in Figure 4.15. The

same relationship is plotted in Figure 4.16 for the dynamic response estimates due to the

eight-degree-of-freedom vehicle model. The patterns between the response estimates are

similar to the ones from the two-degree-of-freedom vehicle model. However, the values of

the dynamic response estimates are smaller for the eight-degree-of-freedom vehicle model.

Diagonal lines are drawn to envelop the local peaks of the dynamic response relations in

Figures 4.15 and 4.16. The slopes of these lines represent the critical ratios relating to the

frequencies of the speed and bridge that envelop the maximum dynamic response estimate,
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Figure 4.15: The Dynamic Incremental Factor versus the bridge’s first natural frequency
and the speed circular frequency for the 2DOF vehicle model

which is represented as:

FRc =
ωs
ωb

(4.2)

Some of these critical frequency ratios FRc are computed and presented in Table 4.8. The

ratios apply to short and medium bridges that have a range of first bending natural frequen-

cies of between 10 rad/s and 40 rad/s (1.6 Hz to 6.4 Hz) and to vehicle speeds that range

from 40 km/h to 130 km/h (10 m/s to 36 m/s). The critical ratios for the DIFu and DIFε

obtained with the two-degree-of-freedom and the eight-degree-of-freedom are approximately

the same. The ratios for the accelerations are not computed since they increase positively

in relation to the speed circular frequency and there are no clear enveloping slopes for the

response.

For the ratios presented in Table 4.8, the critical speeds for the bridge system studied are
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Figure 4.16: Dynamic responses versus the bridge’s first natural frequency and the speed
circular frequency for the 8DOF vehicle model

84 km/h and 130 km/h. An equivalent way to represent the frequency ratios ωs/ωb is td/Tn,

with td as the time it takes the vehicle to cross the bridge and Tn represents the period of the

bridge that corresponds to its first natural frequency. For instance, td/Tn = 5.5 is equivalent

to ωs/ωb = 0.090. The ratio td/Tn is used only for convenience as a way to explain the

pattern observed between the maximum dynamic responses and the speed.

Table 4.8: Critical frequency ratios (FRc)

DIFu DIFε

2DOF 8DOF 2DOF 8DOF

0.088 0.090 0.089 0.092
0.143 0.144 0.145 0.146

The time histories for the displacements of the simply supported system due to the two-

degree-of-freedom vehicle model traveling at different speeds are plotted in Figure 4.17. It
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can be seen that the nature of the response varies when the speed is changed. Also shown

in Figure 4.17 is the static solution. The difference between the two curves is an indication

of the dynamic effects, which are seen to be relatively small for moderate speeds. This

implies that the forces of the vehicle vary slowly relative to the natural period of the bridge.

The number of local maxima or peaks that develop depends also on the td/Tn ratio. A

longer duration td or lower speed leads to more local peaks. In addition, the location of the

local maxima depends on the ratio td/Tn which is important in determining the maximum

dynamic response and may explain the trend in Figures 4.15 and 4.16. For example, the

derived critical ratios for the maximum dynamic response in Table 4.8 for the two-degree-

of-freedom vehicle model correspond to the dynamic responses depicted in Figures 4.17(b)

and 4.17(d). Whereas, in Figures 4.17(a) and 4.17(c) the local maxima occur in positions

where the absolute maximum of the dynamic response is not greatly affected by these local

maxima. This observation depends on the exciting frequency of the speed and the first

natural bending frequency of the bridge.

Further analysis is performed studying the number and the magnitude of the local peaks

that appear in the dynamic response in relation to the different td/Tn ratios, Figure 4.18.

The vehicle model is crossing the bridge at different speeds for which the full time history of

the bridge response is examined. The local maxima (peaks) is plotted as a function of td/Tn

in Figure 4.18 with n as the number of peaks appearing in the time history of the response. If

0.50 ≤ td/Tn ≤ 1.60, only one peak occurs. A second peak develops if td/Tn ≥ 1.60, but it is

smaller than the first peak when 0.50 ≤ td/Tn ≤ 2.65. A third peak develops if td/Tn ≥ 2.60.

The second peak is larger than the first and third peaks when 2.65 ≤ td/Tn ≤ 4.75 and so

on. The maximum response is sought and represented as a solid line in Figure 4.18. A

dependency is depicted in Figure 4.18 the same as the one in Figure 4.15 but with respect

to the ratio td/Tn which is equivalent to ωs/ωb.

The local maxima due to the eight-degree-of-freedom vehicle model is plotted as a function

of td/Tn in Figure 4.19. If 0.50 ≤ td/Tn ≤ 1.55, only one peak occurs. A second peak

develops if td/Tn ≥ 1.55, but it is smaller than the first peak when 0.50 ≤ td/Tn ≤ 2.55. A

third peak develops if td/Tn ≥ 2.60. The second peak is larger than the first and third peaks

when 2.55 ≤ td/Tn ≤ 4.80 and so on. The maximum response is represented as a solid line

in Figure 4.19. Again the same trend is depicted as in Figure 4.16.
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(a) td/Tn=6.65, v=69 km/h
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(b) td/Tn=5.50, v=84 km/h
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(c) td/Tn=4.75, v=97 km/h
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(d) td/Tn=3.55, v=130 km/h

Figure 4.17: Dynamic response of the single-span system due to the 2DOF vehicle
moving at different speeds: ( ) Dynamic response ( ) Static response

As mentioned before, the relations plotted in Figures 4.18 and 4.19 mainly depend on the

speed and the bridge’s first bending frequency. Further, the vehicle model mainly influ-

ences the value of the dynamic amplification of the response rather than the critical ratios.

Therefore, similar patterns are observed for the vehicle models for the same bridge system.

4.4 Conclusions

It is evident that compared to the continuous system, the single-span bridge system repre-

senting short to medium bridges offers the highest dynamic amplifications in the responses
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Figure 4.18: Response maxima due to the 2DOF vehicle traveling on the bridge
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Figure 4.19: Response maxima due to the 8DOF vehicle traveling on the bridge

resulting from a traveling heavy vehicle. The responses obtained from the simplified two-

degree-of-freedom vehicle model are rather conservative compared with the responses ob-

tained from the more realistic model of the eight-degree-of-freedom model.

The response obtained with the moving weight is of a low frequency content and when

considering the bridge-vehicle interaction, other peaks appear, and their magnitudes and

positions depend on the natural frequencies of the bridge system and vehicle. Furthermore,

the response amplitudes increase in variant portions around the bridge’s natural frequency

depending on the response examined. It is expected that the estimate of the displacements

and the accelerations are highly dependent on the bridge-vehicle interaction considering road

unevenness. It is worth mentioning that these conclusions depend on the vehicle model used

in the dynamic analysis as the response resulting from the two-degree-of-freedom vehicle
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model shows higher sensitivity to road unevenness when compared with the one resulting

from the eight-degree-of-freedom vehicle model.

For the dynamic responses studied critical ratios can be derived that make up the maximum

dynamic response. These ratios are used to calculate the critical speeds for the bridge system

studied, for which the estimates of the additional dynamic effects caused by modeling bridge-

vehicle interaction are determined.

The worst cases concerning the dynamic response are found for a single-span bridge system,

which is used for further analyses in the next chapter.



text



Chapter 5

Assessment of the Coupled

Subsystems

5.1 Introduction

In the previous Chapter, a deterministic analysis was performed, in which one realization of

the input parameters and/or the road profiles is used. In studying the effects of a class of road

unevenness, an interest is developed in running a full probabilistic analysis for the dynamic

response estimates. This Chapter aims to use probabilistic analysis to assess the output of

the coupled subsystems of the bridge and the vehicle. The assessment is performed in two

parts; the first part is based on performing a sensitivity analysis to quantify the influence of

the uncertainty of the vehicle dynamics and bridge bearings on the variance of the dynamic

response, thereby assessing the model’s quality from its input parameters. The second part

is based on using the total uncertainty of the model to rank its plausible descriptions and

determining their fitness in studying the dynamic response of interest at critical speeds,

thereby supporting the level of complexity in deriving the model.

89
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5.2 Coupled Subsystems

The probabilistic analysis is performed for the cases, which were identified as the worst

cases for the dynamic responses presented earlier in Section 4.3.1. Hence, the responses

of the single-span bridge system described in 4.2.1 caused by the movement of the two-

degree-of-freedom described in Section 4.2.2.1 and the eight-degree-of-freedom vehicle mod-

els described in Section 4.2.2.2 are the objective outputs retrieved from the probabilistic

analysis, which are used later in the assessment. The problem of the bridge-vehicle interac-

tion is analyzed in the time domain, its solution method has been explained and presented

in Section 3.1.3. Road unevenness is considered in the analysis, which is characterized as

a Gaussian random process. A description of the process and its realization can be found

in Section 3.1.4.

5.3 Probabilistic Analysis

The vehicle dynamics, bearings stiffness and road profiles are treated as random input

parameters and processes. The former is described by means of probability distribution

functions, while the latter is described by means of power spectral density function, which

is explained in Section 4.2.3. The standard deviations and distribution types of the input

parameters of the two-degree-of-freedom vehicle model are presented in Table 5.1(a). The

distribution types and the standard deviations are retrieved from [36]. The mean values,

standard deviations and distribution types of the eight-degree-of-freedom vehicle model are

adopted from the studies of [40, 99], and presented in Table 5.1(b). In addition, the rotational

and vertical stiffness of the bearings are allowed a variation of an order of 20% following the

recommendations of [100]; the mean values, standard deviations, and distribution types of

the stiffness of bearings are presented in Table 5.1(c). Latin Hypercube sampling is used to

generate the samples of the input parameters, which are assumed to be uncorrelated.

Another important point in this probabilistic analysis is that a sufficient number of road

profiles need to be used to describe appropriately the dynamic response caused by the

excitation of the vehicle by road unevenness. For the simply supported single-span system,



Chapter 5. Assessment of the Coupled Subsystems 91

Table 5.1: Input parameters used in the probabilistic analysis

(a) Vehicle parameters (2DOF)

Parameter Mean Standard
deviation

Distribution type

Suspension stiffness (N/m) 1.8 × 107 0.18 × 107 Normal
Tire stiffness (N/m) 7.2 × 107 0.72 × 107 Normal
Suspension viscous damping (Ns/m) 14.4 × 105 1.44 × 105 Normal
Tire viscous damping (Ns/m) 14.4 × 105 1.44 × 105 Normal
Speed (km/h) 80 12 Normal

(b) Vehicle parameters (8DOF)

Parameter Mean Standard
deviation

Min Max Distribution

Tractor front axle suspension stiffness (N/m) 4 × 105 0.92 × 105 2 × 105 8 × 105 Normal
Tractor rear axle suspension stiffness (N/m) 10 × 105 3 × 105 6 × 105 14 × 105 Normal
Semi-trailer axle suspension stiffness (N/m) 7.5 × 105 1.2 × 105 4 × 105 10 × 105 Normal
Suspension viscous damping (Ns/m) 10 × 103 4 × 103 4 × 103 12 × 103 Normal
Tractor front axle tire stiffness (N/m) 17.5× 105 4.5 × 105 9 × 105 21 × 105 Normal
Tractor rear axle tire stiffness (N/m) 35 × 105 8.75 × 105 28 × 105 40 × 105 Normal
Semi-trailer axle tire stiffness (N/m) 35 × 105 9 × 105 28 × 105 40 × 105 Normal
Speed (km/h) 80 12 40 140 Normal

(c) Elastomeric bearings parameters

Parameter Mean Standard
deviation

Distribution type

Vertical stiffness (N/m) 2.0 × 109 0.4 × 109 Log-normal
Rotational stiffness (Nm/rad) 1.0 × 106 0.2 × 106 Log-normal

an analytical solution for quantifying the statistical characteristics of the dynamic response

due to the bridge-vehicle interaction when considering random road unevenness is available

by [42], which can be used to check the minimum number of samples needed for the dynamic

analysis. The influence of the number of samples of road profiles on the variance of the

dynamic response DIFu of the bridge traversed by the two-degree-of-freedom vehicle model at

a speed of 90 km/h (25 m/s) is depicted with the convergence limit according to the solution

of [42] in Figure 5.1. The number of sub-samples considered appropriate and adopted for this

vehicle model is 1000. The same check for the eight-degree-of-freedom vehicle model is done

and plotted in Figure 5.2, which shows that the standard deviation of the dynamic response

is converging to a limit. The number of sub-samples considered appropriate and adopted for

this vehicle model is also 1000. Similar plots for the minimum number of samples are made

for the DIFε and the normalized accelerations for both vehicle models and can be found in

Appendix .1. The number of sub-samples selected for all response estimates examined is

1000.
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Figure 5.1: Effect of number of samples on the deviation of the dynamic response
estimate DIFu due to the excitation of 2DOF vehicle: ( • ) Monte Carlo Simulation,

( ) Convergence limit
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Figure 5.2: Effect of number of samples on the deviation of the dynamic response
estimate DIFu due to the excitation of 8DOF vehicle: ( • ) Monte Carlo Simulation,

( ) Converging limit

The number of road profiles identified earlier is run for every sample of the vehicle’s input

parameters and speed. This is contributed as sub-sampling and has been explained in

Section 2.4.1.1. For example, Figure 5.3 depicts the histogram of the DIFε values when

analyzing 1000 sub-samples of road profiles for one set of vehicle input parameters and

speed. In other words, the strains are retrieved for the same vehicle crossing the bridge

at the same speed, but assuming a different road profile every time. A number of different

distributions are tested to fit the output values, the most appropriate of which is the extreme

value distribution type I as it gives the largest log-likelihood estimate. The mean value and

the value of the 95% quantile are retrieved for the output of the sub-samples and assigned
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to the corresponding sample of vehicle input parameters and speed.
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Figure 5.3: Histogram of the analyzed samples of the DIFε with a fitted distribution
and log-likelihood estimates: ( ) Extreme value distribution

After obtaining the output from the sub-sampling and repeating the analysis for all the

samples of the vehicle dynamics and speed, an approximation algorithm is used to map the

input-output relation before running the sensitivity analysis. A total number of 1000×1000

samples of input parameters and processes are used in the dynamic analysis for every case

study. These analyzed samples act as the support samples for the approximation model.

The proposed approximation algorithm is a hybrid between the global polynomial regression

models and the moving least squares as explained in Section 2.4.2.3.

The input-output mapping is used because of the large number of samples required for the

sensitivity analysis; despite the fact that the numerical simulations are quite fast, they can

require an enormous amount of time, which the study cannot afford. Therefore, the meta-

model acts as a preliminary step to the sensitivity analysis. The reason behind using the

hybrid algorithm for the developed meta-model is the clear distinctive dependency of the

dynamic responses on the speed. This dependency can only be captured accurately using

approximation models that can capture localities such as the moving least squares. Whereas,
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the output can be mapped efficiently with respect to the other input parameters using global

polynomial regression surfaces. The base functions for the approximation models consist of

linear, quadratic and mixed terms as explained in Section 2.4.2.

The predictive coefficient of determination R2
cross is used to check the quality of the approx-

imation model. An acceptance limit for the R2
cross values is set at 0.85. Figure 5.4 depicts

an example for the approximation of the DIFε comparing the analyzed samples with the ap-

proximated ones. The optimum radius for the moving least squares and the corresponding

R2
cross is computed using cross-validation as described in Section 2.4.2.4. Table 5.2 presents

the selected values of influence radius D and the computed values of the R2
cross when the

dynamic responses of the single-span system assuming perfect pin supports are approxi-

mated, and Table 5.3 presents D and the computed R2
cross when the dynamic responses of

the single-span system assuming elastic supports are approximated. The shape factor α

in Equation (2.21) is taken as 0.38.

Table 5.2: Optimum D and R2
cross values for the hybrid meta-model of responses con-

sidering pin supports

D R2
cross

2DOF 8DOF 2DOF 8DOF

DIFu 0.15 0.15 0.89 0.95
DIFε 0.10 0.10 0.91 0.98
Norm. acceleration 0.30 0.20 0.92 0.91

Table 5.3: Optimum D and R2
cross values for the hybrid meta-model of responses con-

sidering elastic spring supports

D R2
cross

2DOF 8DOF 2DOF 8DOF

DIFu 0.15 0.15 0.89 0.96
DIFε 0.10 0.10 0.90 0.97
Norm. acceleration 0.25 0.20 0.92 0.89

5.4 Sensitivity Analysis

Within the Monte Carlo framework, the input uncertainties are propagated through the

output. Sensitivity analysis is used to apportion the output uncertainty to its inputs, which
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Figure 5.4: The analyzed samples with the approximated ones; the R2
cross is 0.91:

(4) Analyzed values, ( • ) Approximated values

might be useful in detecting the relative important inputs in determining the output. The

mathematical measures of the relative importance are the sensitivity indices. The first order

indices are represented as Si and the total order indices are represented as ST i. The value

of the sensitivity index reflects the amount of the output’s uncertainty reduced if the true

values of the input parameters are known. Therefore, a high value for the sensitivity index

indicates that the input parameter influences the output significantly, whereas a very low

value indicates that the input parameter has a negligible influence. This might help the

modeler or engineer to investigate the influential inputs and their underlying subsystems

in greater detail since ignoring the effect of these influential inputs would influence the

reliability of the output. Such an analysis utilizes the model itself without the need for

measurements or reference solutions and assesses the model’s output using its input. This

analysis is used here to investigate how much the vehicle dynamics, bridge bearings, and

road unevenness contributes to the variance of the dynamic output. The following are the

computed indices for running a general sensitivity analysis of the coupled subsystems in

bridges.

5.4.1 Sensitivity Analysis for the Vehicle Dynamics

The study of the dynamic response constituents in Section 4.3.3 is extended by identifying

the main parameters that influence each constituent. The two constituents of the dynamic
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response examined are: the dynamic response due to the excitation of the vehicle caused

by the dynamic deflection of the bridge (Source I) and the dynamic response due to the

excitation of the vehicle caused by road unevenness (Source II). First order indices Si and

total order indices ST i are computed for the responses due to the two-degree-of-freedom

vehicle model and illustrated in Tables 5.4-5.6. In studying the sensitivity indices ST i of

the input parameters for the first source of excitation (Source I), it can be seen that the

speed is the dominating factor for the variance of the dynamic responses of the displacements,

strains, and accelerations. The speed contribution is approximately the same for the different

responses, however, ST i of the speed has the highest value of 0.99 for the accelerations.

Moreover, the contribution of the variance of the vehicle dynamics is not that significant

to the variance of the output when considering this source of excitation (Source I). The

same cannot be said for the response due to the excitation by road unevenness (Source II)

since the contribution of the variance of the vehicle dynamics, mainly suspension stiffness,

becomes a significant factor. The highest contribution of suspension stiffness obtained is

0.31 for the accelerations followed by the displacements and strains with a value of 0.19.

Speed is still the dominating factor, however, its contribution is getting smaller.

Table 5.4: Sensitivity indices for the displacement response estimate DIFu due to exci-
tation of the (2DOF) vehicle

Parameter
Source I Source II

Si STi Si STi

Suspension damping 0.00 0.01 0.03 0.04
Tire damping 0.00 0.01 0.03 0.03
Suspension stiffness 0.02 0.02 0.17 0.19
Tire stiffness 0.00 0.01 0.01 0.01
Speed 0.97 0.98 0.75 0.76

Table 5.5: Sensitivity indices for the strain response estimate DIFε due to excitation of
the (2DOF) vehicle

Parameter
Source I Source II

Si STi Si STi

Suspension damping 0.00 0.01 0.03 0.05
Tire damping 0.00 0.01 0.03 0.03
Suspension stiffness 0.02 0.03 0.17 0.19
Tire stiffness 0.00 0.00 0.00 0.00
Speed 0.96 0.97 0.75 0.75
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Table 5.6: Sensitivity indices for the normalized acceleration response due to excitation
of the (2DOF) vehicle

Parameter
Source I Source II

Si STi Si STi

Suspension damping 0.00 0.01 0.00 0.00
Tire damping 0.00 0.01 0.08 0.10
Suspension stiffness 0.01 0.02 0.31 0.31
Tire stiffness 0.00 0.01 0.03 0.03
Speed 0.99 0.99 0.56 0.58

The dynamic response is the result of the interaction between the considered sources of ex-

citation combined with the moving weight solution. The speed is the only input parameter

that influences the moving weight solution when fixing the weight of the vehicle, which is

done throughout the investigation. Therefore, when the bridge-vehicle interaction is consid-

ered in the analysis, the values of the computed sensitivity indices are a compromise between

the results obtained from the moving weight and the results obtained from the other sources

of excitation. These indices are computed for the mean value and the 95% quantile and

shown in Tables 5.7-5.9. In studying the mean value of the dynamic response, the speed is

the main contributor, however, the vehicle dynamics, which is still mainly represented by

the stiffness of the suspension system (ks) have a relatively significant attribution.

The higher the contribution of the variance of the vehicle dynamics to the variance of the

dynamic response, the more the bridge-vehicle interaction influences the response’s quality.

This contribution that is indicated by the sensitivity index attributes the amount of uncer-

tainty, which cuts out from the output if the true values of vehicle characteristics are known,

thereby obtaining a better quality of the output. From the above, one can conclude that the

displacements with SksT i = 0.21 and the accelerations with SksT i = 0.16 are strongly influenced

by the variance of the inputs of vehicle when road unevenness is considered. Furthermore,

one can also conclude that the strains are more resilient to the effects of the excitation caused

by road unevenness since they are influenced by the variance of the stiffness of the suspen-

sion system, however at a much lower contribution (SksT i = 0.07 ). This can be explained

by the different responsive behavior of the dynamic estimates in relation to the sources of

excitation explained in Section 4.3.4. The same can be observed when the analysis is run

for the 95% quantile.
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Moreover, the difference ST i − Si indicates an interaction between the input parameters in

relation to the output studied. The results in Tables 5.7-5.9 show weak interactions between

the speed and stiffness of the suspension system.

Table 5.7: Sensitivity indices for the displacement response estimate DIFu due to exci-
tation of the (2DOF) vehicle

Parameter
Mean 95% quantile

Si STi Si STi

Suspension damping 0.03 0.04 0.02 0.03
Tire damping 0.02 0.03 0.02 0.02
Suspension stiffness 0.18 0.21 0.14 0.15
Tire stiffness 0.00 0.00 0.00 0.00
Speed 0.73 0.76 0.79 0.81

Table 5.8: Sensitivity indices for the strain response estimate DIFε due to excitation of
the (2DOF) vehicle

Parameter
Mean 95% quantile

Si STi Si STi

Suspension damping 0.00 0.01 0.02 0.02
Tire damping 0.00 0.01 0.01 0.01
Suspension stiffness 0.04 0.07 0.07 0.08
Tire stiffness 0.00 0.00 0.00 0.01
Speed 0.93 0.94 0.89 0.91

Table 5.9: Sensitivity indices for the normalized acceleration response due to excitation
of the (2DOF) vehicle

Parameter
Mean 95% quantile

Si STi Si STi

Suspension damping 0.00 0.00 0.00 0.00
Tire damping 0.05 0.06 0.03 0.03
Suspension stiffness 0.14 0.16 0.12 0.12
Tire stiffness 0.02 0.02 0.01 0.02
Speed 0.77 0.80 0.83 0.84

The second example shows the sensitivity indices for the response due to the passage of the

eight-degree-of-freedom vehicle model. Not only are the vehicle dynamics tested, but the

effect of the class of road unevenness class on the results is also examined. Tables 5.10-5.12

show the sensitivity indices of the vehicle dynamics and the speed when considering Class

A and Class B roadways. In studying the indices for both classes of road unevenness, it

is clear that the indices are highly influenced by the degree of roughness introduced in the
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dynamic analysis. The ST is of the speed are 0.98 and 0.88 for the displacements when

considering Class A and Class B roadways, respectively. In addition, ST is of the stiffness of

the suspension of the tractor’s rear axle are 0.02 and 0.09 when considering Class A and Class

B roadways, respectively. The conclusion drawn from these results is that when roadways are

rougher, the contribution of the speed is lower and that of the vehicle dynamics is higher.

In other words the influence of bridge-vehicle interaction on the variance of the dynamic

response is more evident since the uncertainties in vehicle dynamics contribute more to the

output uncertainty when rougher roadways are considered. The same tendency has been

observed for strains. For the acceleration, the contribution of the speed changes from 0.831

to 0.506 when the road class changes from Class A to Class B, which highlights the strong

influence of the level of excitation due to road unevenness on the variance of accelerations.

The observations above show an increased influence of bridge-vehicle interaction on the

quality of the output with rougher roadways. The fact that the additional dynamic effects

due to bridge-vehicle interaction are greater with rougher surfaces is true, but one must

consider the uncertainties accompanying the response since it affects the output’s quality.

A comparison between the indices for the different responses in Tables 5.10-5.12 leads to the

following observation: the second highest ST i for the displacements and strains is the stiffness

of the suspension system of the tractor, whereas for the accelerations, it is the damping of the

suspension system. In short, the sensitivity indices for the displacements and strains have a

similar trend, which is different from the one of the accelerations. This may be explained by

the similar frequency content between the displacements and the strains, which is different

from the one of the accelerations as depicted in Section 4.3.4.

In addition, the difference ST i−Si, is small, still offers larger values when compared with the

differences obtained for the two-degree-of-freedom vehicle model. This indicates stronger

interactions between the vehicle dynamics and the speed for the eight-degree-of-freedom

vehicle model.
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Table 5.10: Sensitivity indices for the displacement response estimate DIFu due to exci-
tation of the (8DOF) vehicle

Parameter
Class A Class B

Si STi Si STi

Suspension system stiffness
Tractor front axle 0.00 0.01 0.01 0.02
Tractor rear axle 0.01 0.02 0.08 0.09
Semi-trailer tridem axle 0.01 0.02 0.03 0.04

Suspension system damping
Trailer and semi-trailer 0.00 0.01 0.01 0.02

Tire stiffness
Tractor front tire 0.00 0.00 0.00 0.01
Tractor rear tire 0.00 0.00 0.00 0.01
Semi-trailer tridem tire 0.00 0.00 0.00 0.00

Speed 0.96 0.98 0.84 0.88

Table 5.11: Sensitivity indices for the strain response estimate DIFε due to excitation of
the (8DOF) vehicle

Parameter
Class A Class B

Si STi Si STi

Suspension system stiffness
Tractor front axle 0.00 0.00 0.01 0.02
Tractor rear axle 0.01 0.01 0.08 0.09
Semi-trailer tridem axle 0.00 0.01 0.03 0.04

Suspension system damping
Trailer and semi-trailer 0.00 0.00 0.01 0.01

Tire stiffness stiffness
Tractor front tire 0.00 0.01 0.00 0.01
Tractor rear tire 0.00 0.00 0.00 0.01
Semi-trailer tridem tire 0.00 0.00 0.00 0.00

Speed 0.98 0.98 0.84 0.87

5.4.2 Sensitivity Analysis for the Bearings

The elastomeric bearings supporting the bridge system can have an influence on the variance

of the dynamic response. A quantitative measure of this influence is the objective of this

subsection. Therefore, instead of investigating the single input parameters of the modeled

subsystems, they have been grouped. The parameters related to the bearings (i.e. rotational

and vertical stiffness) are treated as the bearing group, and the vehicle inputs are considered
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Table 5.12: Sensitivity indices for the normalized acceleration response due to excitation
of the (8DOF) vehicle

Parameter
Class A Class B

Si STi Si STi

Suspension system stiffness
Tractor front axle 0.00 0.00 0.00 0.01
Tractor rear axle 0.00 0.00 0.02 0.03
Semi-trailer tridem axle 0.00 0.00 0.02 0.02

Suspension system damping
Trailer and semitrailer 0.10 0.11 0.31 0.32

Tire stiffness stiffness
Tractor front tire 0.00 0.00 0.01 0.01
Tractor rear tire 0.05 0.06 0.12 0.13
Semi-trailer tridem tire 0.00 0.01 0.01 0.01

Speed 0.80 0.83 0.46 0.52

as the vehicle group. The sensitivity indices are calculated for the bearing, the vehicle

groups and the speed. The computed sensitivity indices for the response due to the two-

degree-of-freedom and the eight-degree-of-freedom vehicle models traveling on the single-

span bridge system are computed and presented in Table 5.13. The output investigated

in the sensitivity analysis is the mean value of the sub-samples analyzed. Each of these

sensitivity indices can be used to assess the significance of the underlying subsystem. For

example, ST i for the bearings when examining the displacements due to the two-degree-of-

freedom vehicle model is 0.05. This is the highest contribution to the variance of the dynamic

responses form the stiffness of bearings. The expectation here is that the accelerations would

show the highest dependency on the bearings since they are the most affected when the

bearings are introduced to the bridge system assuming a straight road profile, as shown

in Figure 4.6(c). However, road unevenness effects, when considered, dominate and the

variance of the accelerations is more dependent on the vehicle dynamics and speed. The

fact that strains are resilient to the effects of road unevenness has already been established;

they are also weakly affected by the uncertainties in the bearing’s stiffness with an STi of 0.03.

Similar results are obtained when the eight-degree-of-freedom vehicle model is used in the

dynamic analysis. Moreover, for the eight-degree-of-freedom vehicle model, the sensitivity

indices for the displacements and the strains are similar, for instance, the ST i of the vehicle

dynamics for the eight-degree-of-freedom model is 0.10 for the displacements and 0.08 for
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the strains. On the other hand, ST i of the vehicle dynamics for the two-degree-of-freedom

model is 0.20 for the displacements and 0.09 for the strains. The results obtained support

the significance of the vehicle model used.

Table 5.13: Sensitivity indices considering bridge bearings

2DOF 8DOF

Displacements
Bridge Bearings 0.05 0.03
Vehicle Dynamics 0.20 0.09
Speed 0.78 0.92

Strains
Bridge Bearings 0.03 0.02
Vehicle Dynamics 0.10 0.08
Speed 0.92 0.95

Normalized accelerations
Bridge Bearings 0.02 0.01
Vehicle Dynamics 0.18 0.22
Speed 0.82 0.79

In short, the sensitivity analysis investigates the contributions of the inputs of the subsystems

when coupled to the variance of the dynamic response. These contributions are quantified

by the mathematical estimates of Si and ST i. The higher they are, the more influential their

corresponding coupling is on the output’s quality. Based on the analyses above, the quality

of displacements and accelerations show more dependency on bridge-vehicle interaction and

this can be observed to a greater extent when considering rougher roadways.

5.4.3 Sensitivity Analysis for Temporal Frequencies of Road Un-

evenness

Sensitivity analysis has been used for the purpose of assessing the dynamic output. However,

in this investigation it is used to identify the temporal frequencies of road unevenness,

which influence a dynamic output the most. A recent study attempted to identify the

wavelengths of irregularities that affect the dynamic response at different speeds [101]. The

study considered the irregularity as a sinusoidal wave corresponding to one wavelength and

ran the dynamic analysis for variant speeds. Then the authors repeated the procedure for
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the different wavelengths. Such a procedure overlooked the realistic and random nature of

unevenness.

The randomness of the realized road profiles has been considered in this investigation, and

the dynamic response is also determined for different speeds. Hence, the speed and corre-

sponding temporal frequencies of road unevenness are used for the sensitivity analysis.

The description of the road profiles following Equation (3.36) is modified by assuming ran-

dom amplitudes, which would enable the application of the sensitivity analysis. This modi-

fied model can be found in [39, 102]. Road unevenness is modeled as:

f(x) =

Nd∑
k=0

[Ckcos(ωkx+ Φk)] , (5.1)

where Ck is a random variable following Rayleigh distribution with a mean value of βk
√

π
2

and a variance of β2
k(2− π

2
) taking βk as

√
SFF (ωk)∆ω.

The sensitivity analysis is run directly on the model output since overfitting cannot be

avoided for any meta-model built for mapping the input-output relationship. The problem

of overfitting arises from the large number of inputs that result from the discretized temporal

frequencies of road unevenness. Furthermore, grouping the frequencies of road unevenness

allows efficient application of the analysis. The general scheme for running the sensitivity

analysis is as follows:

1. One set of random phase angles is generated Φ (1 × Nd) with Nd as the number of

discretized frequencies.

2. Random samples of the amplitudes are generated C (Ns×Nd) with Ns as the number

of samples.

3. The road profiles are generated according to Equation (5.1) assuming the same set of

phase angles for every realization.

4. The dynamic analysis is performed considering the samples of road profiles generated

and the dynamic output is obtained.
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5. The sensitivity analysis is applied and the sensitivity indices for the speed and the

ranges of road frequencies studied are estimated.

6. All steps (1-6) are repeated in order to consider different random sets of phase angles

and the average value of the sensitivity indices are calculated.

The analysis is preformed in such a way to overcome the challenge imposed by considering

the random phase angles in the realization of road profiles.

The numerical example is illustrated for the dynamic response due to the eight-degree-

of-freedom vehicle model traveling at different speeds considering road unevenness. The

sensitivity indices Si and ST i are given in Table 5.14. These indices provide quantitative

measures for the influence of frequency ranges of road profiles on the variance of the dynamic

response. The ranges of the frequencies of road profiles are chosen in the ranges of the

eigenfrequencies of the eight-degree-of-freedom vehicle model. The first range (0.2 Hz to

4.6 Hz) corresponds to the bouncing of the tractor and the semi-trailer masses with some

pitching modes; the second range (4.6 Hz to 10.5 Hz) corresponds to the axle hop of the

tractor axles; and the third range (10.5 Hz to 12.5 Hz) corresponds to the axle hop of the

semi-trailer axles. It can be observed from the indices in Table 5.14 as expected that the

displacements and strains are mainly affected by the temporal frequencies of road profiles,

which coincide with the bouncing mode of the tractor and the semi-trailer, whereas the

accelerations are affected by the ones that coincide with the bouncing modes and the axle

hop modes, especially the ones of the semi-trailer axles. The corresponding wavelengths of

road unevenness can be calculated for the different speeds.

5.5 Total Uncertainty

Most of the studies concerning the dynamic analysis of bridges focus on obtaining the dy-

namic response without questioning the necessity of the complex modeling and of performing

the dynamic analysis. Attempts have been made by [15, 25], as well as others, to investigate

the cases where the interaction between the vehicle and the bridge is needed. These studies

have often been performed using a standard parametric study and in some cases defining a



Chapter 5. Assessment of the Coupled Subsystems 105

Table 5.14: Identification of the frequencies of road unevenness with the greatest impact
on dynamic response

Si STi

Displacements
Road temporal frequency range
0.2 to 4.6 [Hz] 0.19 0.28
4.6 to 10.5 [Hz] 0.00 0.00
10.5 to 12.5 [Hz] 0.00 0.00
Speed 0.71 0.81

Strains
Road temporal frequency range
0.2 to 4.6 [Hz] 0.11 0.18
4.6 to 10.5 [Hz] 0.00 0.00
10.5 to 12.5 [Hz] 0.00 0.00
Speed 0.81 0.89

Normalized accelerations
Road temporal frequency range
0.2 to 4.6 [Hz] 0.08 0.11
4.6 to 10.5 [Hz] 0.02 0.04
10.5 to 12.5 [Hz] 0.04 0.08
Speed 0.78 0.84

threshold to accept the shortcomings in cases where the interaction is ignored [15]. Recent

studies computed the inherent uncertainty of the dynamic response when road unevenness is

introduced in the analysis [42, 44, 103]. However, the issue of judging whether the improved

value of the dynamic response is worth the added computational cost and the accompanying

uncertainty is rarely addressed. In this section, the total uncertainty of a model stemming

from the input parameters “Model Input Uncertainty” and the implications of modeling

simplifications and assumptions “Model Framework Uncertainty” are computed. The total

uncertainties are used to rank the coupled models according to their appropriateness for a

dynamic response at critical speeds.

Total uncertainty seems to be an attractive option for assessing and ranking a set of plausible

models. The evaluation of the total model uncertainty has been explained in Section 2.4.3.

The uncertainty is measured by the variance of the model output as follows:

VMi
(Y ) = V (Y Mi) + V (εMi

∆ ) + V (εref ), (5.2)
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where V (εMi
∆ ) is defined as:

V (εMi
∆ ) =

[
E(Y Mi)− E(Y ref )

]2
, (5.3)

and V (εref ) is the uncertainty originating from the assumption that the adjusted model is

the reference model. The term
[
V (εMi

∆ ) + V
(
εref
)]

is the additive framework uncertainty.

The plausible models tested in this section are as follows:

• The decoupled model of a moving weight (Model 1)

• The coupled model of the bridge and the vehicle without considering random vibrations

(Model 2)

• The coupled model of the bridge and the vehicle considering random vibrations (Model

3)

• The coupled model of the bridge and the vehicle considering random vibrations with

elastic supports (Model 4)

The model which gives the lowest total uncertainty may be recommended for the examined

response as previously explained.

The critical ratios for the dynamic response are derived in Section 4.3.5. These ratios

combined with the natural frequency of the bridge give the critical speeds that envelop the

maximum dynamic response. The bridge system used in the investigation has a first natural

bending circular frequency of 20 rad/s. The critical frequency ratios considered are 0.090 and

0.144, thus, the critical speeds are computed according to Equation (4.1) and are 84 km/h

and 130 km/h, respectively. The investigation is carried out for the two-degree-of-freedom

and the eight-degree-of-freedom vehicle models traveling at the derived critical speeds over

Class A and Class B roadways. The results are expressed using the standard deviation

Std(. . .) =
√
V (. . .).

Since a probabilistic analysis is performed, E
(
Y Mi

)
and V

(
Y Mi

)
for the response measures

(DIFu, DIFε and Norm. Acceleration) are estimated considering random input parameters

and processes and are shown in Tables 5.15 and 5.16. In studying the results presented in the
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tables, it can be seen that the dynamic response obtained with the two-degree-of-freedom

vehicle model traveling at a speed of 84 km/h increases by a maximum of 37% for the

displacements and of 24% for the strains. The dynamic response obtained with the eight-

degree-of-freedom vehicle model traveling at a speed of 84 km/h increases by a maximum of

14% for the displacements and of 5% for the strains. Moreover, it is also observed that this

increase in the dynamic response is accompanied by uncertainties which originate in great

part from considering road unevenness. The response’s means and standard deviations are

used for computing the total uncertainty according to Equation (5.2).

The value of V (εref ) is unknown, however, it is assumed to take on different values, and their

influence on the total uncertainty of a model prediction is examined. The model Mi with

the lowest VMi
(Y ) is assumed to be the most fit model since there is a balance between the

better prediction and its uncertainty. The influence of the tested values of V (εref ) affects

as expected the qualitative evaluations of the VMi
(Y ), but it does not affect the ranking

of the single models. For example, Figures 5.6(g), 5.6(h), and 5.6(i) depict the standard

deviation of the models’ predictions for different dynamic responses when the eight-degree-

of-freedom vehicle model travels at a speed of 84 km/h considering Class B roadway. For

every response measure, a model dominates with the lowest or the highest uncertainty. The

model most fit can be assigned by the lowest total uncertainty. It can be said that with

regard to serviceability measures (displacements) and vibrational serviceability measures

(accelerations) the models considering the bridge-vehicle interaction can be considered the

most fit. On the other hand, with regard to the strains, the uncertainties of input parameters

and processes outweigh the better response of the coupled subsystems when road unevenness

is considered. The investigation is performed in a similar manner for all vehicle models and

speeds. The complete total uncertainty results for the studied critical speeds considering

Class A and B roadways are depicted in Figures 5.5 and 5.6.
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Table 5.15: Mean values and standard deviations for the dynamic responses considering
the (2DOF) vehicle model

(a) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 84
km/h considering Class A roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.071 0.000 1.041 0.000 0.0197 0.000
Model 2 1.041 0.002 1.011 0.001 0.0196 0.001
Model 3 1.178 0.097 1.099 0.089 0.0499 0.015
Model 4 1.189 0.098 1.096 0.091 0.0531 0.016

(b) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 130
km/h considering Class A roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.132 0.000 1.093 0.000 0.031 0.000
Model 2 1.104 0.002 1.073 0.002 0.030 0.001
Model 3 1.212 0.113 1.124 0.110 0.057 0.017
Model 4 1.231 0.114 1.143 0.117 0.059 0.018

(c) Mean values and standard deviations for the dynamic responses for vehicle model traveling at a speed of 84 km/h
considering Class B roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.071 0.000 1.041 0.000 0.0197 0.000
Model 2 1.041 0.002 1.011 0.001 0.0196 0.001
Model 3 1.341 0.182 1.237 0.152 0.0968 0.028
Model 4 1.372 0.181 1.237 0.157 0.0992 0.029

(d) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 130
km/h considering Class B roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.132 0.000 1.093 0.000 0.031 0.000
Model 2 1.104 0.002 1.073 0.002 0.030 0.001
Model 3 1.383 0.182 1.246 0.153 0.105 0.028
Model 4 1.408 0.208 1.249 0.185 0.110 0.037
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Table 5.16: Mean values and standard deviations for the dynamic responses considering
the (8DOF) vehicle model

(a) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 84
km/h considering Class A roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.065 0.000 1.017 0.000 0.011 0.000
Model 2 1.064 0.001 1.016 0.001 0.011 0.000
Model 3 1.071 0.028 1.021 0.027 0.017 0.003
Model 4 1.085 0.029 1.027 0.028 0.019 0.003

(b) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 130
km/h considering Class A roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.119 0.000 1.065 0.000 0.020 0.000
Model 2 1.133 0.002 1.076 0.002 0.019 0.001
Model 3 1.140 0.062 1.080 0.056 0.024 0.004
Model 4 1.160 0.065 1.086 0.058 0.026 0.004

(c) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 84
km/h considering Class B roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.065 0.000 1.017 0.000 0.011 0.000
Model 2 1.064 0.001 1.016 0.001 0.011 0.000
Model 3 1.121 0.064 1.046 0.066 0.034 0.009
Model 4 1.135 0.059 1.043 0.063 0.036 0.009

(d) Mean values and standard deviations for the dynamic responses for the vehicle model traveling at a speed of 130
km/h considering Class B roadways

Model DIFu DIFε Norm. Acceleration
Mean Std Mean Std Mean Std

Model 1 1.119 0.000 1.065 0.000 0.020 0.000
Model 2 1.133 0.002 1.076 0.002 0.019 0.001
Model 3 1.202 0.149 1.116 0.149 0.038 0.010
Model 4 1.220 0.151 1.118 0.155 0.039 0.010
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(l) Speed = 130 km/h

Considering Class B roadways

Figure 5.5: Total model uncertainty of responses due to 2DOF vehicle traveling over the
bridge considering different classes of roadways: ( ) Dynamic response due to a moving
weight, ( ) Dynamic response considering BVI without road unevenness, ( ) Dynamic
response considering BVI with road unevenness, ( ) Dynamic response considering BVI

with road unevenness and elastomeric bearings
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Figure 5.6: Total model uncertainty of responses due to 8DOF vehicle traveling over the
bridge considering different classes of roadways: ( ) Dynamic response due to a moving
weight, ( ) Dynamic response considering BVI without road unevenness, ( ) Dynamic
response considering BVI with road unevenness, ( ) Dynamic response considering BVI

with road unevenness and elastomeric bearings
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The following are the concluded observations from Figures 5.5 and 5.6:

• Considering Class A roadways: With regard to the two-degree-of-freedom vehicle

model, it can be said that the couplings of the bridge subsystems (Model 4) are of

significance at the first critical speed 84 km/h for the serviceability measure (displace-

ments) and vibrational serviceability measure (accelerations). With regard to the more

realistic vehicle model, i.e., the eight-degree-of-freedom model, the effects of couplings

are clear for the accelerations, whereas the decoupled model of moving weights (Model

1) can be described as the adequate model with the lowest total uncertainty for the

displacements and strains. When the eight-degree-of-freedom vehicle travels at a speed

of 130 km/h, the moving weight solution (Model 1) is no longer conservative compared

with the coupled models (Models 2, 3, and 4). Therefore, the bridge-vehicle interaction

is of greater significance for the displacements and strains.

• Considering Class B roadways: With regard to the two-degree-of-freedom vehicle

model, the couplings of the bridge subsystems (Model 3 and Model 4) are impor-

tant at both critical speeds for all response measures studied. In contrast, with regard

to the more realistic vehicle model, i.e., the eight-degree-of-freedom model, the effect

of the couplings on the obtained uncertainties is clear for the displacements and the

accelerations. With regard to the strains, the simpler models (Model 1 and Model 2)

can be described as adequate enough.

The ranking of the models depends on the vehicle’s speed and the investigated response,

however, the conclusions drawn above can apply to the critical frequency ratios derived ear-

lier. These ratios represent the make up of the maximum dynamic response for classes of

bridges and speeds discussed in Section 4.3.5. In addition, the class of the roadways has a

major influence on determining the significance of the coupled subsystems in bridge engi-

neering. The rougher the road surfaces, the more important the bridge-vehicle interaction

becomes. Nevertheless, such a study is an attempt to support the application of detailed

models over simpler ones. The first critical speed 84 km/h is a practical speed for heavy

vehicles (eight-degree-of-freedom), and it has been observed that the use of moving weight

model solutions (Model 1) to get the global displacements and strains of the bridge’s super-

structure can be sufficient assuming that the road profiles are very good. However, when
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rougher road profiles (Class B) are used, displacements have an increase of 13.5% if the

bridge subsystems are coupled (Model 4) and this better response is not overpowered by the

accompaying uncertainty, therefore, this model is considered to be appropriate for the case

being studied. The strains show lower sensitivity for the coupling effects since the simpler

models (Model 1 and Model 2) are still considered to be fit for Class B of the road profiles.

5.6 Conclusions

As to be expected, the main players of the dynamic response when a heavy vehicle is pass-

ing is the speed. However, the vehicle dynamics also contributes here, and its collective

attribution depends on the response estimate investigated and the vehicle model used. The

variance of the displacements and accelerations are more dependent on modeling the bridge-

vehicle interaction. This is even more the case with rougher roadways. Whereas strains are

more resilient to the effects of the couplings when compared with the displacements and

accelerations.

Total model uncertainty can be used to balance the better response of the model to its

uncertainty in order to select the model that is most fit for a certain response. The plau-

sible models tested are the following: coupled model of the bridge and vehicle considering

random vibrations with elastic supports (Model 4), coupled model of the bridge and vehicle

considering random vibrations (Model 3), coupled model of the bridge and vehicle without

considering random vibrations (Model 2), decoupled model of a moving weight (Model 1).

The model which gives the lowest total uncertainty is recommended for the response exam-

ined. For the first chosen critical speed 84 km/h which is a practical speed for heavy vehicles

(eight-degree-of-freedom), the moving weight model (Model 1) is sufficient for obtaining the

global displacements and strains of the bridge system assuming that the road profiles are

very good. However, for rougher road profiles (Class B), the modeling of bridge-vehicle

interaction is considered appropriate as the increase of 13.5% in the displacements is not

overpowered by the accompaying uncertainty. The strains are still governed by the simpler

models (Model 1 and Model 2) for Class B road profiles. Whereas, the accelerations are
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mainly governed by the models that consider bridge-vehicle interaction for both classes of

road profiles.

The observations drawn can apply to the derived critical frequency ratios. Furthermore, the

rougher the road surfaces, the greater the importance of the interaction between the bridge

and vehicle.



Chapter 6

Assessment of Coupled Partial

Models

6.1 Introduction

Structural engineering uses different partial models of materials, structural elements, loading,

to name a few, to represent real structures. These classes of models are often referred to as

partial models, which are looked at separately to allow a thorough study and avoid excessive

complexity in handling the engineering problem. However, different classes of partial models

may interact with each other and influence the global response.

Every class of a partial model may be presented by different plausible descriptions, which

emulate a behavior, a phenomenon or an action, however, these descriptions may also show

inconsistencies or incompatibilities. The engineer has to make sure that the partial models

affecting the engineering problem are considered. Moreover, the engineer has to decide on

the appropriate plausible description to obtain a reliable prognosis. Therefore, a systematic

procedure that assesses coupled partial models in quantitative measures is needed. This

investigation tries to address the questions related to the importance of considering a class

of a partial model in the analysis, the interactions between the partial models, and the

quality of a combination between plausible descriptions of partial models.

115
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Since heavier vehicles now travel on road networks, existing highway bridges are checked

for their adequacy in handling this increase in the dynamic loadings. The conditions of the

bridge, like the long-term deflections, may be of importance since they excite the vehicle

traversing the bridge. Therefore, the model of the bridge-vehicle interaction (loading) and

the model for the long-term deflections (material) are coupled to study their effects on the

dynamic response of the bridge.

The first part of this chapter describes the partial models studied for the engineering prob-

lem. The second part discusses the assessment method of the response of the coupled partial

models. An application example of the assessment procedure is presented for the response

scenarios selected for the dynamic problem.

6.2 Partial Models

Deflections may develop in concrete beam bridges due to long-term deformations. These

deformations often cause harmonic excitation in a vehicle traveling over the bridge at a

constant speed. Thus, the dynamic effects due to the bridge-vehicle interaction are influenced

by these static deformations. In other words, there is an interaction between the loading

model of a traveling vehicle and the creep model of the bridge’s material. Within the

current research area, very few studies have been involved in such a topic. The effects

of road surface roughness and the long-term deflection of prestressed concrete bridges on

the dynamic effects due to moving vehicles were examined in [104]. The concrete bridges

studied were multi-span girder bridges and cable-stayed bridges. The authors concluded that

the effects of random road unevenness on the dynamic impact induced by moving vehicles is

significant for girder bridges, while that of long-term deflections of the concrete deck is small

to moderate. However, the authors conducted the study by a direct comparison between

the responses. The issues of the response quality or the significance of considering long-

term deflections were not addressed. In this examination, the partial models of loading and

material are coupled and the quality of the response of the global model is examined.
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6.2.1 Creep Models

The creep models describe the time-dependent increase of the creep compliance Cc,cr over

time. Cc,cr is defined for constant stresses, and it depends on the specifics of the creep model.

Thus, the creep strain εc,cr is computed as:

εc,cr = σcCc,cr (t, t0) , (6.1)

where σc is the stress in concrete, t is the actual concrete age and t0 is the age of concrete

at the beginning of loading. The stresses vary when analyzing prestressed and reinforced

concrete structures. Therefore, in order to use the creep compliance models, the stress

history σc (t) is integrated over time using numerical algorithms, i.e. the Boltzmann principle

of superposition.

The creep models vary in their level of complexity, theoretical background, and input pa-

rameters. The following four creep models examined are those according to:

• The American Concrete Institute ACI209 [105]

• The Model Code 90-99 MC99 [106] - incorporated in the recent publication of Model

Code 10 [107]

• B3 by Bažant and Bajewa [108]

• GL2000 by Gardner and Lockman [109].

Model ACI209 and MC99 are built according to the product-ansatz, by combining the

ultimate creep value ϕc,∞ with a time function. The ultimate creep value ϕc,∞ indicates

that the creep deformations hit a plateau after approximately 70 years of loading, whereas,

model B3, which follows the summation ansatz to include the viscoelastic, viscoplastic and

drying creep contributions, shows a steady increase over time without an ultimate creep

value. Model GL2000 is purely an empirical model which is created by fitting experimental

data.
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The creep strains are considered as additional terms to the strains in the concrete, which

leads to an increase of the total strains εc,tot of the concrete over time, and is expressed as:

εc,tot (t) = εc,el (t) + εc,cr (t) , (6.2)

with εc,el (t) as the time-dependent elastic strains.

The modeling and the assessment of the examined creep models are found in the study

of [110]. The author’s assessment is based on the uncertainty of the model’s prognosis,

combining parameter and model uncertainties. Their results have been used in this investi-

gation.

6.2.2 Loading Model of a Heavy Vehicle

The loading model of a heavy vehicle traveling over a bridge has been treated in several

studies, which were reviewed in Section 3.1. The loading describing a single heavy truck

traveling over a bridge is considered to be a partial model with the following plausible

descriptions:

• A model of a moving weight at a constant speed

• A model for the bridge-vehicle interaction without considering road unevenness

• A model for the bridge-vehicle interaction considering road unevenness

The problem of the bridge-vehicle interaction is solved in the time domain performing a direct

time integration algorithm, Newmark-β algorithm, in a non-iterative procedure conditioning

over a very small time step [21]. The solution algorithm and its verification were presented in

Section 3.1.3. Road unevenness is characterized as a Gaussian random process. A description

of the process and its realization can be found in Section 3.1.4.

The quality of the individual loading model is determined using the total uncertainty pre-

sented in Section 5.5. The model with the lowest uncertainty is given a quality of 1 and the

rest of the models are graded proportionally for the response investigated.
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6.3 Numerical Analysis

The quality of the response of the coupled partial models is examined. Therefore, there is

a need to consider the effects of the partial models combined on the global response. For

the partial models studied, the main steps in performing the dynamic analysis considering

bridge-vehicle interaction and long-term deflections are depicted in Figure 6.1.

Modeling the bridge system in an FEM en-
vironment and extracting mode shapes

Calculation of long-term deflections for the super-
structure of the bridge for a period of 100 years [110]

MvŸv + CvẎv + KvYv = Pv
MbŸb + CbẎb + KbYb = Pb

yiw = yib + yiuneven + yicreep

Solving equations of motion and re-
trieving the dynamic response [21]

Assessment of the global response,
displacements and accelerations

Figure 6.1: Flowchart of the numerical analysis
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6.4 Assessment Method

The assessment approach used extends the concepts of sensitivity analysis presented in

Section 2.4.1. As previously mentioned, the sensitivity analysis can be performed for a

general family of inputs. These inputs could be simply input parameters or models. The

possibility of investigating the influence of model selection on the variance of the output, in

addition to model input parameters was addressed by [47]. This kind of investigation was

carried out by [76], in which the influences of the model choice and input parameters on

the uncertainty of the model prognosis were investigated. The author introduced a random

variable with discrete values to describe the input parameter related to the choice of a model.

The contributions of the input parameters and the model choice serve as guidelines for the

direction of further research. An extension of the idea using graph theory and sensitivity

analysis is proposed in a joint publication [111]. The proposed algorithm first identifies the

partial models that are of relevance to a specific response and then estimates a measure

for determining the reliability of the prognosis based on the influence of a partial model

description.

In the following subsection, the main description of the assessment method is illustrated.

A detailed account of the proposed procedure and its extended application can be found

in [111].

6.4.1 Graphical Representation

A graph is used to map the combinations of partial models for an engineering problem.

Thus, the vertices of a graph correspond to the partial models and the edges correspond

to the coupling of the partial models as shown in Figure 6.2. The path through the graph

presents a possible global coupled model of the engineering problem studied [112], e.g., the

path is indicated by the shaded vertices and their solid line edges in Figure 6.2.

In addition, the vertices may have additional attributions, such as weighting factors. These

factors, e.g., (b5), (b6), etc., are denoted as the quality of the partial models. The plausible

descriptions of a partial model, e.g., C-1, C-2, and C-3 in Figure 6.2, are grouped in one
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class of a partial model C. For example, model class C may contain the different descriptions

of the loading model on a bridge due to a moving heavy vehicle on it. Connections between

C-1 and C-2 are not allowed. In other words, two or multiple descriptions of a partial model

cannot be simultaneously assigned to another class of a partial model.

Class C

Model
C-1:
(b5)

Model
C-2:
(b6)

Model
C-3:
(b7)

Class B

Model
B-1:
(b3)

Model
B-2:
(b4)

Class A

Model
A-1:
(b1)

Model
A-2:
(b2)

Figure 6.2: Example of a graph grouping seven partial models (boxes) into three different
classes (A, B, and C) connecting them through the couplings (dashed and solid lines)

6.4.2 Sensitivity to a Partial Model Class

For engineering applications, several classes of partial models Mi are often coupled to rep-

resent a global model. The influence of a class of a partial model Mi on the global response

can be identified using sensitivity indices.

A classical description of a variance-based sensitivity analysis is given in Section 2.4.1. It

basically examines how the output uncertainty of a model is apportioned to the model’s

input uncertainties. In this case, the same concept is employed to apportion the output

uncertainty to the classes of partial models. The estimated first order SMi and total effect

SMTi indices indicate the influence of a class of a partial model on the uncertainty of the

global behavior. A high value of SMTi indicates that Mi influences the response of the global

model significantly, whereas a very low value of SMTi indicates that the influence of this

model class on the global behavior is negligible. Moreover, the sensitivity analysis detects

and quantifies the interrelation between the partial model classes, SMTi − SMi , which may

have a physical interpretation. Such an examination would categorize the model classes into
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influential or non-influential classes. Partial model classes that are labeled as non-influential

may be excluded from further examinations.

Each Mis are described using an uncorrelated, uniformly distributed, discrete random pa-

rameter as follows:

XM
i ∈ {0, 1} , with i = 1, . . . , nM , (6.3)

where nM is the number of classes of the partial models examined. The values of Xi are either

0 or 1, where 0 indicates a deactivated model class and 1 indicates an activated model class.

An activated model class simply means that its corresponding partial model is involved in

building the global one; and a deactivated model class means that its corresponding partial

model is not considered in building the global one. For example, the loading model class of a

heavy vehicle traveling over a bridge can be deactivated by ignoring the additional dynamic

effects of a moving vehicle or activated by considering the dynamics of the vehicle, its speed,

and interaction with the bridge.

For these nM random variables, the sensitivity indices are estimated following the relation-

ships explained in Section 2.4.1. The input parameters Xi have discrete values that enable

an efficient calculation of the sensitivity indices using Equations (2.7) and (2.9). The combi-

nations between the possible values of the discrete input parameters are limited. The model

output of each of these combinations is retrieved and the terms V (E(Y |Xi)), V (E(Y |X˜i)),
and V (Y ) can be calculated directly without the need for the full sensitivity scheme by

Saltelli et al. [47].

6.4.3 Sensitivity to the Description within a Partial Model Class

Each partial model can have multiple descriptions, thus, it is important to identify the influ-

ence of the model choice within a class of a partial model. Such an examination quantifies

the influence that the selection of the appropriate plausible description from a partial model

class Mi has on the variance of the global response. As previously mentioned, [76] proposed

introducing an additional input parameter for describing the model choice. The sensitivity

indices for the model’s input parameters and the model choice parameter are computed

and used to estimate the contribution of the input parameters and the model choice to the
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output uncertainty. Thus, the values of the sensitivity indices indicate whether it is the

description of the model or its input parameters that most contribute to the uncertainty of

the output and guide the examination accordingly. The proposed method extends this idea

for investigating the significance of the model choice considering multiple classes of partial

models, which are coupled to build a global model.

As in the previous section, an uncorrelated, uniformly distributed, discrete random variable

is introduced, which is expressed as:

XMC
i ∈ {1, 2, . . . , nPMi

} , with i = 1, . . . , nM , (6.4)

where nPMi
is the number of the plausible descriptions of a partial model within a model

class Mi, and the variable XMC
i resembles the choice of the jth description of a partial model

PMi,j from class Mi. For the global model in Figure 6.2, XMC
i can have the values of 1, 2 or

3, which correspond to the models C-1, C-2, and C-3 of model class C. The combinations

between the possible values of the discrete input parameters of the different partial models

XMC
i are also finite. The output of each of these combinations is obtained and the terms

V (E(Y |Xi)), V (E(Y |X˜i)), and V (Y ) are computed.

The total effect sensitivity indices SMC
Ti are computed to the input parameters of the model

choice. A high SMC
Ti indicates that the choice of description of a partial model within a

model class Mi leads to a high variation in the global model response. In other words, the

choice of description from group Mi is significant for the quality of the output response. A

low SMC
Ti means, that the choice of the models within Mi has a minor effect on the response

and consequently the response quality. These cases occur when the different descriptions of

the partial model within Mi cause similar effects on the response studied.

In short, the sensitivity regarding the model choice is a measure of how much the model

choice within a model class Mi contributes to the variation of the output. Therefore, it

follows that the more the variation of the response can be attributed to the choice of model

within a class Mi, the more important it is to choose the most appropriate model from

Mi, in order to obtain a better global response quality. Therefore, SMC
Ti index can be

used as a weighting factor of a partial model class, considering its plausible descriptions,

when coupled with other partial model classes. This weighting factor is combined with the
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individual quality of the partial models within a class Mi, and the global model quality

(MQGM) can be computed.

6.4.4 Quality of Coupled Partial Models

The weighting factor of the vertex (bij) is denoted as the quality of the partial model PMi,j

within the global coupled model. This factor is computed as follows:

bij =
SMC
Ti ·MQPMi,j∑nM

i=1 S
MC
Ti

, with PMi,j ∈ Mi, (6.5)

where MQPMi,j
is the quality of a studied response using the jth description of the partial

model PMi,j from class Mi which is examined individually, and SMC
Ti is the estimate for the

significance of a chosen description from the model class Mi on the quality of the global

response (see Section 6.4.3). The sum of the total effect indices
∑nM

i=1 S
MC
Ti may be larger

than one for a non-additive global model, and since this may affect the computation of the

quality of the global model, a normalizing constant of
∑nM

i=1 S
MC
Ti is used in the calculation

of bij.

Accordingly, the global model quality MQGM can be determined as follows:

MQGM =

nM∑
i=1

SMC
Ti ·MQPMi,j∑nM

i=1 S
MC
Ti

, with PMi,j ∈ Mi, (6.6)

MQGM is a quantitative measure for the quality of the global model, which has a value of

between 0 and 1, with 1 representing the best quality.

6.5 Numerical Example

6.5.1 General Description

The system of the multi-span continuous bridge and the two-degree-of-freedom vehicle model

described in Section 4.2.1 and Section 4.2.2.1, respectively, are used in the analysis. The
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characteristics of the vehicle are given in Table 4.3. The modal information of the bridge

and the vehicle are shown in Table 4.2 and Table 4.4, respectively. In addition, the super-

structure is a prestressed concrete box girder. The considered load cases are the dead load

of the superstructure and pavement g=166 kN/m, and a uniformly distributed traffic load

of p=46 kN/m following DIN EN 1991-2 [113].
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(b) Geometry of the prestressing
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(c) Cross section deck

Deck

Concrete C 50/60
CEM II,52.5N
Eco [MN/m2] 38500
Ecm [MN/m2] 32800
fcm [MN/m2] 58
c [kg/m3] 400
w-c [−] 0.4
f–a [−] 0.5
sl [m] 0.15
a [−] 0.015

fctm [MN/m2] 4.1
εc1 -0.0026
βct 0.4

Steel prestessed
Y1770C

Ep [MN/m2] 190000
fp0.1 [MN/m2] 1500

(d) Material parameters

Figure 6.3: Bridge geometry and materials

The creep deformations are calculated for quasi-permanent loading for a load duration of

100 years. A heavy vehicle is assumed to traverse the bridge at t− t0=100 y, therefore, the

state of the bridge at t−t0=100 y considering the long-term deflections of the superstructure

is computed and employed in the dynamic analysis. Moreover, random road unevenness is

generated by means of the Monte Carlo simulation and considered in the dynamic analysis.

In total, 500 samples of random profiles simulated with the following properties: SFF (κ0)

= 0.5 × 10−6 m3/cycle [27], ωl = 7 rad/s, ωu = 35 rad/s, and N = 320. The road surfaces
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generated are passed through a moving average filter to take the tire envelopment of road

unevenness into account [89].

The dynamic response due to the bridge-vehicle interaction considering the initial conditions

of the superstructure is obtained. The numerical estimates used for the assessment are

the Dynamic Incremental Factor for the displacements DIFu and the maximum normalized

accelerations at the middle of the first span.

6.5.2 Dynamic Response

The following is an analysis sample of the dynamic displacement of the bridge when the

bridge-vehicle interaction is considered with long-term deflections and road unevenness.

Both road conditions are a source of excitation for the vehicle, which introduces additional

dynamic effects on the bridge. The combination of these excitations constitutes the dynamic

response. For a better understanding of the effects of the initial conditions of the bridge

superstructure on the dynamic response, four schemes are analyzed;

• Scheme 1: a perfect straight smooth road

• Scheme 2: long-term deflections only

• Scheme 3: road unevenness only

• Scheme 4: long-term deflections and road unevenness

For the analysis sample examined in this section, GL2000 creep model is used to compute the

long-term deflections of the superstructure at t− t0=100 y. The first mid-span displacement

of the bridge considering the different schemes for a vehicle traveling at a speed of 90 km/h

(25 m/s) is depicted in Figure 6.4. It follows then that the dynamic effects are not only

affected by road unevenness, but they are also affected by the long-term deflections of the

superstructure.

The frequency content of the dynamic response is examined in Figures 6.5 and 6.6. This

investigation examines the responsive behavior of the dynamic response of the bridge to the
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Figure 6.4: First mid-span displacement considering different schemes: ( ) Scheme 1,
( ) Scheme 2, ( ) Scheme 3, ( ) Scheme 4

sources of excitation considered. The highest amplitudes are at low frequencies, which cor-

respond to the excitation caused by the moving weight of the vehicle as shown in Figure 6.5.

However, other peaks appear around the first and second natural bending frequencies of the

bridge (2.5 Hz and 3.6 Hz). Also, when Scheme 2 or Scheme 3 are considered, the main

additional contributions to the response amplitudes are at 2.5 Hz and 3.6 Hz.
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Figure 6.5: Fourier amplitude spectrum of the bridge’s first mid-span displacement:
( ) Scheme 1, ( ) Scheme 2, ( ) Scheme 3

The response measure studied reacts differently to the type of excitation (Scheme 2 or Scheme

3) as the response amplitudes increase in variant portions around the natural frequencies of

the bridge as shown in Table 6.1. The conclusion that could be drawn after investigating

the amplitude spectra of the dynamic response is that the initial state of the bridge when

the vehicle traverses a bridge is of importance, not only because of road unevenness, but
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Figure 6.6: Fourier amplitude spectrum of the bridge’s first mid-span displacement:
( ) Scheme 1, ( ) Scheme 4

also because of the long-term deflections. Therefore, it would be of interest to estimate

the influence of creep models and dynamic loading models on the dynamic response using

quantified measures. Such measures help in assessing the reliability of the prognosis.

Table 6.1: Factors for the increase in the response amplitudes of the displacements

at 2.5 Hz at 3.6 Hz

Scheme 2 1.86 2.54
Scheme 3 3.76 3.06
Scheme 4 4.51 4.15

6.5.3 Assessment Results

The classes of the partial models examined are the creep model of concrete and the loading

model of a heavy vehicle traveling over the bridge. In the following section, the assess-

ment results obtained for two response scenarios are presented, which are the DIFu and the

maximum normalized accelerations.

6.5.3.1 Scenario I: DIFu

In this scenario, the influence that the examined partial models have on the DIFu for the first

mid-span displacement is studied. According to the procedure described in Section 6.4, the

influence of a class of partial models is investigated first. The classes of the partial models
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are denoted as creep (C) M1 and loading (L) M2. The parameters XM
i , with i = 1, 2 are

sampled for the sensitivity analysis and the first order SMi and total effect SMTi sensitivity

indices are calculated as shown in Table 6.2. The loading model is the dominant partial

model, with a SMi = 0.94. This is to be expected since the loading class is the main model

for estimating DIFu. It can be observed that the creep model class has a small influence on

DIFu. Studying the difference SMTi − SMi , it is clear that there is an interaction between the

creep and loading model classes as indicated by the higher values of SMTi . The loading model

is affected by the material model since long-term deflections can be treated as an excitation

for the vehicle model (loading) and this relation may be reflected in the difference SMTi − SMi .

Table 6.2: Sensitivity indices for the DIFu

C L

SMi 0.03 0.94

SMTi 0.06 0.97

SMTi − SMi 0.03 0.03

SMC
i 0.09 0.86

SMC
Ti 0.14 0.91

SMC
Ti − SMC

i 0.05 0.05

The first examination identifies the key classes of partial models affecting the DIFu. The

importance of the choice of a plausible description within a class of a partial model is then

investigated. The two parameters XMC
1 and XMC

2 are considered, where XMC
1 represents the

choice for the creep model and XMC
2 the choice for the loading model. The possible discrete

values of XMC
i are shown in Table 6.3, and the estimated SMC

i and SMC
Ti are presented

in Table 6.2. The choice of the loading model is of great importance. This means that

selecting the moving weight, or BVI with or without road unevenness when running the

dynamic analysis has a major influence on the DIFu. However, the choice of the creep

model still has a significant influence with a contribution of SMC
Ti = 0.14. Thus, the quality

of the global model depends on the quality of the chosen loading and creep models.

The quality of the individually examined partial models has to be retrieved in a preliminary

step. This has been obtained for the creep models from the study of [110]. The total model

uncertainty is used for the loading models, which has been explained in Section 6.2.2. The

qualities of the partial models are given in Table 6.3. For a combination of a creep and a

loading model described by a path in the graph, a quality MQGM can be computed using
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Table 6.3: PM descriptions and qualities for the DIFu

XMC
1 Creep MQPM XMC

2 Loading MQPM

1 ACI209 0.68 1 Moving weight 0.91
2 MC10 0.76 2 BVI without uneven-

ness
1.00

3 B3 1.00 3 BVI with unevenness 0.84
4 GL2000 0.92

Equation (6.6). This is shown in Figure 6.7 for a combination of the creep model ACI209 and

loading model considering the bridge-vehicle interaction without road unevenness, where the

MQGM = 0.96.
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Figure 6.7: Graph of significant model classes for the DIFu

6.5.3.2 Scenario II: Normalized Accelerations

The same steps are applied for the second response scenario, the maximum normalized

accelerations. First, the influence of partial model classes is estimated for the accelerations.

It can be seen from Table 6.4 that the loading model class with SMC
Ti = 0.98 is the leading

model class. The effect of the creep model class on the accelerations is of a lower order

when compared with the displacements. In addition, the influence of the choice from the

plausible descriptions of the model class is examined. XMC
1 contributes the choice of the
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creep model and XMC
2 contributes the choice of the loading model. The estimated SMC

i

and SMC
Ti are presented in Table 6.4. The choice of loading model has a major influence

on the accelerations. The choice of creep model also has an influence with a contribution

of SMC
Ti = 0.07, however, it is not as strong as its influence on the DIFu. The quality of

the accelerations retrieved from the global model still depends on the quality of the selected

loading and creep models.

Table 6.4: Sensitivity indices for the normalized accelerations

C L

SMi 0.02 0.97

SMTi 0.03 0.98

SMTi − SMi 0.01 0.01

SMC
i 0.04 0.93

SMC
Ti 0.07 0.96

SMC
Ti − SMC

i 0.03 0.03

The quality of the individually examined partial models are given in Table 6.5. Figure 6.8

shows a combination of creep model ACI209 and loading model considering bridge-vehicle

interaction without road unevenness, where the MQGM = 0.68.

Table 6.5: PM descriptions and qualities for the normalized accelerations

XMC
1 Creep MQPM XMC

2 Loading MQPM

1 ACI209 0.68 1 Moving weight 0.72
2 MC10 0.76 2 BVI without uneven-

ness
0.73

3 B3 1.00 3 BVI with unevenness 1.00
4 GL2000 0.92

The quality of the response is 0.96 for the DIFu and 0.68 for the normalized accelerations

when considering the same model combinations. This difference shows that the quality of

the response heavily relies on the response itself, therefore, generalized conclusions need

thorough examination of the responses of interest. In addition, these findings also rely

on the plausible descriptions of the partial model classes considered. It is necessary to

point out that the results of the assessment for this example depend on the level of road

unevenness considered in the dynamic analysis. The road profiles generated here represent

very good roadways, which is the status of most highway bridges. However, when much

rougher road profiles are chosen, it is to be expected that the excitations of the vehicle due to
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Figure 6.8: Graph of significant model classes for the normalized accelerations

unevenness would surpass the excitation caused by long-term deflections. Nevertheless, such

an examination is of significance and practical relevance as it helps in choosing appropriate

descriptions of the partial models and calculating better estimates for the dynamic response.

6.6 Conclusions

The dynamic effects due to the bridge-vehicle interaction are influenced by the creep defor-

mations. The two partial models with their plausible descriptions of the dynamic loading

and material are interrelated. The assessment procedure extends the use of sensitivity anal-

ysis to quantify the influence of model choice on the global response. It first identifies the

influence of the partial models on a specific response and detects interactions that may exist

between the partial models classes. And second it estimates a quantified measure for the

dependency of the response quality on the descriptions of the partial model.

The response measures used in the assessment are the Dynamic Incremental Factor for the

displacements DIFu and the maximum normalized accelerations. The main conclusion to be

drawn from these measures is that different qualities for the response can be computed for
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the same combinations of partial models. This finding points the fact that the quality of the

response heavily relies on the response itself, therefore, generalized statements need careful

examination of responses of interest. These findings also rely on the plausible descriptions of

the partial model classes considered. Nevertheless, the procedure can be applied to different

engineering problems.
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Chapter 7

Conclusions and Recommendations

for Further Research

7.1 General Conclusions

The objective of this study has been to suggest tools that can help to assess the dynamic

responses of coupled models in bridges. This branch of structural dynamics lacks the quan-

tified measures and mathematical expressions that could serve as guidelines in assessing the

fitness of a model. Motivated by the interest of considering road unevenness in the dynamic

analysis, a probabilistic study was performed. This study has been used to examine the

concepts of sensitivity and uncertainty analyses to assess the dynamic output.

Sensitivity analysis is used to apportion the output uncertainty to its inputs, which could

be useful in detecting the relatively important inputs for determining the output. The

mathematical measures for this relative importance are the sensitivity indices, which are

the first order indices Si and total order indices ST i. A high value of the sensitivity index

indicates that the input parameter influences the output significantly, whereas a very low

value indicates that the input parameter has a negligible influence. This might help the

modeler or engineer to investigate the influential inputs and their underlying subsystems or

partial models in greater detail since ignoring the effects of these influential inputs would

affect the reliability of the output of the coupled model. Such an analysis utilizes the model

135
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itself with no need for measurements or reference solutions. A setting for the sensitivity

analysis is proposed, which enables performing the sensitivity analysis considering random

stochastic processes. The classical and proposed sensitivity settings are used to identify the

relevant inputs and subsystems that have the most influence on the variance of the dynamic

response.

Concepts of total uncertainty based on the additive adjustment factor are used to rank the

models built for the dynamic problem. The balance between the better response of the

model and its uncertainty can be used to choose the model that is most fit for the response

to be examined. The plausible models tested are as follows:

• The decoupled model of a moving weight (Model 1)

• The coupled model of the bridge and the vehicle without considering random vibrations

(Model 2)

• The coupled model of the bridge and the vehicle considering random vibrations (Model

3)

• The coupled model of the bridge and the vehicle considering random vibrations with

elastic supports (Model 4)

The model with the lowest total uncertainty is recommended for the response being exam-

ined.

In addition, the influence of partial models on the dynamic responses has been examined.

A discrete input parameter was introduced to represent a partial model with its plausible

descriptions. The estimated sensitivity indices for this input parameter is considered as a

measure of how much the partial model affects the quality of the output of coupled partial

models.

Before stating the main conclusions regarding the assessment of the dynamic output, the

main observations from a general dynamic analysis considering bridge-vehicle interaction

are determined and are as follows:
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• Compared to the continuous system, the single-span bridge system representing short

to medium bridges offers the highest dynamic amplifications in the responses resulting

from a heavy vehicle traveling on it. The responses obtained from the simplified two-

degree-of-freedom vehicle model are rather conservative compared with the responses

obtained from the more realistic eight-degree-of-freedom vehicle model.

• Modeling elastomeric bearings also has an effect on the displacements and accelera-

tions, however, these effects are not significant compared with those of the bridge-

vehicle interaction considering road unevenness.

• The response obtained due to the moving weight is of a low frequency content. How-

ever, when considering the bridge-vehicle interaction, other peaks appear, and their

magnitudes and positions depend on the frequencies of the bridge system and vehicle.

The displacements and strains amplitude spectra show the same trend when compared

with those of the accelerations. Furthermore, the response estimates studied react dif-

ferently to the excitation caused by road unevenness since the response amplitudes

increase in variant portions around the bridge’s natural frequency.

• The conclusion that can be drawn after investigating the amplitude spectra of the

responses is that the estimate of the displacements and accelerations are highly de-

pendent on the bridge-vehicle interaction considering road unevenness, followed by the

strains. In addition, these results depend on the vehicle model used in the dynamic

analysis; the response obtained with the two-degree-of-freedom vehicle model shows

higher sensitivity to road unevenness when compared with the one obtained with the

eight-degree-of-freedom vehicle model.

• The critical ratios that envelop the maximum dynamic response are obtained. These

ratios indicate a strong relationship between the speed of the vehicle and the first

natural frequency of the bridge. The values of the Dynamic Incremental Factor (DIF)

is highly dependent on the speed. By the identification of these critical ratios, critical

speeds and their corresponding reasonable measure of DIF can be calculated and used

for designing or upgrading bridges.
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The observations above may help in explaining some of the results obtained by the sensitivity

and uncertainty analyses. The following conclusions can be drawn for the vehicle models

examined:

• As to be expected, the main input affecting the dynamic response when a heavy vehicle

is passing is the speed.

• The vehicle dynamics also contributes here. Its collective attribution depends on the

response estimate investigated and the vehicle model. For the eight-degree-of-freedom

vehicle model, the stiffness of the tractor suspension has an impact on the variances

of the displacements and strains. The stiffness of the tractor suspension is significant

for the accelerations, but it is the damping of the tractor suspension that has a higher

contribution to the variance of the acceleration.

• The contribution of the stiffness of the elastomeric bearings is examined. It was found

that the bearings can have the most impact on the variance of displacements.

• It can be said that the displacements and accelerations are more dependent on the

modeling of the bridge-vehicle interaction considering elastomeric bearings. This is

even more the case with rougher roadways. Furthermore, strains show lower sensitivity

to the previously mentioned couplings.

• The ranking of the coupled models examined by using total uncertainty depends on

the speed of the vehicle and the response studied. The conclusions drawn from this

apply to the critical ratios derived. Also, the class of the roadway has a major influence

on determining the significance of the coupled subsystems in bridge engineering. The

rougher the road surfaces, the greater the importance of the interaction between the

bridge and vehicle is.

• The first critical speed considered for the bridge (84 km/h) is a practical speed for

heavy vehicles (eight-degree-of-freedom). The use of the moving weight model (Model

1) to obtain the global displacements and strains of the bridge system can be sufficient

assuming that the road profiles are very good. However, for rougher road profiles

(Class B), the displacements increase by 13.5% if the bridge subsystems are coupled
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(Model 4) and this better response is not overpowered by the accompanying uncer-

tainty, therefore, (Model 4) is considered to be the appropriate model for the case

studied. The strains are still governed by the simpler models (Model 1 and Model 2)

for Class B road profiles.

• Another investigation is run that considers the long-term deflections of concrete in the

dynamic analysis. It has been shown that the partial models of creep have an influence

on the dynamic output for the case studied, however, this finding is highly dependent

on the level of road unevenness considered.

These conclusions are drawn for the global responses of the beam bridges studied. The con-

clusions could be different for other responses. However, the general assessment procedure

providing mathematical expressions regarding model assessment can be applied in a similar

manner regardless of the type of model. It is worth mentioning that the main setback of

such a study is the computational cost of the entire analysis, however, once the output is

obtained, it can be used for other purposes as well.

7.2 Recommendations for Further Research

Model quality and assessment have not been areas of interest in bridge dynamics. Other

disciplines, such as material, geo-technical, or mechanical engineering, are more advanced

in using model quality and assessment in their applications. Therefore, this has been an

attempt to include concepts of model assessment in the dynamic problem of bridge en-

gineering. Based on the observations made during the course of this research, a number

of directions for further research are recommended for the assessment of models and the

engineering problem studied:

• The adaptation of the sensitivity analysis to include random processes in its application

and the use of the total uncertainty in ranking plausible numerical models is generic

in application. These assessment procedures can be used for other engineering appli-

cations, in which probabilistic studies are used to solve the randomness of the system
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and the computational cost is not too high. A further extension of model assessment

can be the adaptation and the use of Bayesian model selection without measurement

data in model selection from plausible sets of models in engineering applications.

• The engineering problem in hand can be elaborated further as the following:

– The analysis that has been presented was run for one type of heavy vehicle.

Considering other models for trucks traveling on the road networks would make

the study more comprehensive. Each of these vehicles have a different set of input

parameters. In addition to the inputs of the vehicles, an input parameter can be

introduced to represent the choice of a vehicle model, which is selected from the

complete set of plausible vehicles. This combined with the traffic data, which

is often expressed using probabilistic descriptions, general assessment of loading

models of bridges can be developed

– A 3D model of the vehicle subsystem can be used, in which rolling effects are in-

cluded. Consequently, a 3D model for the bridge and elastomeric bearings can be

used. The assessment of local behaviors may be of more interest and significance,

e.g., the life span of expansion joints when introducing local irregularities in the

road profiles

– Other boundary conditions for the bridge may be included by integrating the soil

in the numerical model to check whether the vibrations due to traffic can affect

the settlements in the soil and whether differential settlements of the soil can

excite the vehicle enough to influence the dynamic response
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Modeling

.1 Mass, damping and stiffness matrices: 8DOF

When deriving the equations of motion from the equilibrium of forces and moments acting

on each mass of the eight-degree-of-freedom model, the following matrices are formulated

for the vehicle model.

Mv =



(mT +mS) b5mS b4mS

b5mS

(
IT + b25mS + m4m5

m4+m5
a21

) (
b4b5mS − m4m5

m4+m5
a1a2

)
b5mS

(
IT + b25mS + m4m5

m4+m5
a21

) (
b4b5mS − m4m5

m4+m5
a1a2

)
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

m1 0 0 0 0

0 m2 0 0 0

0 0 m31 0 0

0 0 0 m32 0

0 0 0 0 m33



(1)
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Cv =



(c1 + c2 + c31 + c32 + c33) [−b1c1 + b2c2 + b5(c31 + c32 + c33)]

−b1c1 + b2c2 + b5(c31 + c32 + c33) [b21c1 + b22c2 + b25(c31 + c32 + c33)]

(b31 + b4)c31 + (b32 + b4)c32 + (b33 + b4)c33 b5[(b31 + b4)c31 + (b32 + b4)c32 + (b33 + b4)c33]

−c1 b1c1

−c2 −b2c2
−c31 −b5c31
−c32 −b5c32
−c33 −b5c33

[(b31 + b4)c31 + (b32 + b4)c32 + (b33 + b4)c33] 0 0 0 0 0

b5[(b31 + b4)c31 + (b32 + b4)c32 + (b33 + b4)c33] 0 0 0 0 0

(b31 + b4)c31 + (b32 + b4)c32 + (b33 + b4)c33 0 0 0 0 0

0 c1 0 0 0 0

0 0 c2 0 0 0

−(b31 + b4)c31 0 0 c31 0 0

−(b32 + b4)c32 0 0 0 c32 0

−(b33 + b4)c33 0 0 0 0 c33


(2)

Kv =



(k1 + k2 + k31 + k32 + k33) [−b1k1 + b2k2 + b5(k31 + k32 + k33)]

−b1k1 + b2k2 + b5(k31 + k32 + k33) [b21k1 + b22k2 + b25(k31 + k32 + k33)]

(b31 + b4)k31 + (b32 + b4)k32 + (b33 + b4)k33 b5[(b31 + b4)k31 + (b32 + b4)k32 + (b33 + b4)k33]

−k1 b1k1

−k2 −b2k2
−k31 −b5k31
−k32 −b5k32
−k33 −b5k33

[(b31 + b4)k31 + (b32 + b4)k32 + (b33 + b4)k33] 0 0 0 0 0

b5[(b31 + b4)k31 + (b32 + b4)k32 + (b33 + b4)k33] 0 0 0 0 0

(b31 + b4)k31 + (b32 + b4)k32 + (b33 + b4)k33 0 0 0 0 0

0 (k1 + kt1) 0 0 0 0

0 0 (k2 + kt2) 0 0 0

−(b31 + b4)k31 0 0 (k31 + kt31) 0 0

−(b32 + b4)k32 0 0 0 (k32 + kt32) 0

−(b33 + b4)k33 0 0 0 0 (k33 + kt33)


(3)
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where mT is the tractor sprung mass, mS is the semi-trailer sprung mass, m1 is the tractor

front axle mass, m2 is the tractor rear axle mass, (m31, m32, m33) are semi-trailer tridem

masses, IT is the tractor pitch moment of inertia, IS is the semi-trailer pitch moment of

inertia, c1 is the damping of the tractor front axle suspension system, c2 is the damping of

the tractor rear axle suspension system, (c31, c32, c33) are the damping of the semi-trailer

tridem axle suspension systems, k1 is the stiffness of the tractor front axle suspension system,

k2 is the stiffness of the tractor rear axle suspension system, (k31, k32, k33) are the stiffness

of the semi-trailer tridem axle suspension systems, kt1 is the stiffness of the tractor front

axle tire, kt2 is the stiffness of the tractor rear axle tire, and (kt31, kt32, kt33) are the stiffness

of the semi-trailer tridem axle tires.
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Additional: Probabilistic Study

.2 Minimum number of road profiles considered in the

dynamic analysis
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Figure 1: Effect of number of samples on the deviation of the dynamic response esti-
mate (DIFu) due to the excitation of 2DOF vehicle: ( • ) Monte Carlo Simulation, ( )

Convergence limit
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Figure 2: Effect of number of samples on the deviation of the dynamic response esti-
mate (DIFε) due to the excitation of 2DOF vehicle: ( • ) Monte Carlo Simulation, ( )

Convergence limit
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Figure 3: Effect of number of samples on the deviation of the bridge acceleration due to
the excitation of 2DOF vehicle: ( • ) Monte Carlo Simulation, ( ) Convergence limit
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Figure 4: Effect of number of samples on the deviation of the dynamic response esti-
mate (DIFu) due to the excitation of 8DOF vehicle: ( • ) Monte Carlo Simulation, ( )

Convergence limit
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Figure 5: Effect of number of samples on the deviation of the dynamic response esti-
mate (DIFε) due to the excitation of 8DOF vehicle: ( • ) Monte Carlo Simulation, ( )

Convergence limit
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Figure 6: Effect of number of samples on the deviation of the bridge acceleration due to
the excitation of 8DOF vehicle: ( • ) Monte Carlo Simulation, ( ) Convergence limit
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.3 Log-likelihood estimates for the fitted distributions

Table 1: Log-likelihood estimates for the fitted distributions to the analyzed responses
due to moving 2DOF

Normal Log-normal Extreme value

DIFu 482.70 493.05 503.46
DIFε 493.32 501.18 507.31
Norm. acceleration 265.07 284.34 285.46

Table 2: Log-likelihood estimates for the fitted distributions to the analyzed responses
due to moving 8DOF

Normal Log-normal Extreme value

DIFu 2466.01 2468.63 2477.48
DIFε 2501.05 2502.62 2506.06
Norm. acceleration 2534.77 2554.72 2557.59

Table 3: Log-likelihood estimates for the fitted distributions to the analyzed responses
due to moving 2DOF considering elastic spring supports

Normal Log-normal Extreme value

DIFu 480.66 489.42 499.13
DIFε 547.68 555.92 564.06
Norm. acceleration 218.46 248.31 249.58

Table 4: Log-likelihood estimates for the fitted distributions to the analyzed responses
due to moving 8DOF considering elastic spring supports

Normal Log-normal Extreme value

DIFu 2440.47 2443.76 2451.05
DIFε 2472.89 2473.72 2476.36
Norm. acceleration 2532.84 2551.42 2553.74
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