
Technical Report #: BUW-CSCW-2006-02 April 2006

CollaborationBus:
An Editor for the Easy Configuration
of Complex Ubiquitous Environment

Tom Gross, Nicolai Marquardt
Faculty of Media, Bauhaus-University Weimar, Germany
({tom.gross, nicolai.marquardt}(at)medien.uni-weimar.de)

Computer-Supported Cooperative Work Group
Faculty of Media

Bauhaus-University Weimar

Contact:
Prof. Dr. Tom Gross
Faculty of Media
Bauhaus-University Weimar
Bauhausstr. 11, Room 113
99423 Weimar, Germany

E: tom.gross@medien.uni-weimar.de
T.: (++49-3643) 58-3733
F: (++49-3643) 58-3709

W: http://www.uni-weimar.de/
medien/cscw/

Gross, T. and Marquardt, N. CollaborationBus: An Editor for the Easy Configuration of Complex Ubiquitous
Computing Environments. Technical Report # BUW-CSCW-2006-02, Computer-Supported Cooperative
Work Group, Faculty of Media, Bauhaus-University Weimar, Bauhausstr. 11, 99423 Weimar, Germany,
Apr. 2006.

— 1 —

CollaborationBus:
An Editor for the Easy Configuration
of Complex Ubiquitous Computing Environments
Tom Gross, Nicolai Marquardt
Faculty of Media, Bauhaus-University Weimar, Germany
({tom.gross, nicolai.marquardt}(at)medien.uni-weimar.de)

Abstract. Early sensor-based infrastructures were often developed by experts with a thorough
knowledge of base technology for sensing information, for processing the captured data, and
for adapting the system’s behaviour accordingly. In this paper we argue that also end-users
should be able to configure Ubiquitous Computing environments. We introduce the
CollaborationBus application: a graphical editor that provides abstractions from base technology
and thereby allows multifarious users to configure Ubiquitous Computing environments. By
composing pipelines users can easily specify the information flows from selected sensors via
optional filters for processing the sensor data to actuators changing the system behaviour
according to the users’ wishes. Users can compose pipelines for both home and work
environments. An integrated sharing mechanism allows them to share their own compositions,
and to reuse and build upon others’ compositions. Real-time visualisations help them
understand how the information flows through their pipelines. In this paper we present the
concept, implementation, and early user feedback of the CollaborationBus application.
Author Keywords. Ubiquitous Computing; editor; configuration.
ACM Classification Keywords . H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical User Interfaces, User-Centred Design; H.5.3 [Information Interfaces and
Presentation]: Group and Organisation Interfaces – Computer-Supported Cooperative Work.

1 Introduction
Early sensor-based infrastructures were often developed by experts with a thorough
knowledge of base technology for sensing information, for processing the captured data,
and for adapting the system’s behaviour accordingly [Baldwin et al. 2004b; Girod et al.
2004; Salber et al. 1999; Sobeih et al. 2005; Talja 2002]. In this paper we argue that also
end-users should be able to configure Ubiquitous Computing environments. There are
some research projects providing easy-to-use configuration interfaces for non-expert users
to create sensor-based Ubiquitous Computing applications, yet mostly only for the private

— 2 —

home [Barkhuus & Vallgarda 2003; Dey et al. 2004; Humble et al. 2003; Mavrommati et
al. 2004; Sohn & Dey 2003]. Furthermore, most systems lack integrated facilities for the
collaborative exchange of users’ configurations. Only some systems—typically complex
configuration tools [Baldwin et al. 2004b; Madden et al. 2005]—provide enhanced
visualisations of the data flow and sensor-network data [Buschmann et al. 2005] to
support users while creating or configuring applications.

In this paper we introduce CollaborationBus: a graphical editor that provides adequate
abstractions from base technology and thereby allows multifarious users—ranging from
novice to experts—to easily configure complex Ubiquitous Computing environments.

By composing pipelines users can easily specify the information flows from selected
sensors via optional filters for processing the sensor data to actuators changing the system
behaviour according to the users’ wishes. Whenever the sensors capture values that are in
the range indicated by the users, the actuators perform the specified actions. All pipeline
compositions are stored in the respective user’s personal repository. A central interface
allows users to control their respective repository—they can create new pipeline
compositions, or edit, activate or deactivate existing ones.

An integrated sharing mechanism allows users to share their own pipeline
compositions with others users. In an analogous manner they can add others’
compositions to their own repository, and build new compositions based on these
compositions.

Real-time visualisations display relations between incoming and outgoing events of the
pipeline, and let the user interactively adjust and keep track of the information flow
through their pipelines. They help the users understand the information flow through their
compositions, which can become quite complex consisting of sets of sensors, filters, and
actuators.

In this paper we present the concept, implementation, and early user feedback of the
CollaborationBus application. First, we develop scenarios of configurations for
Ubiquitous Computing environments and derive requirements. Then we present the
concept and user interface of CollaborationBus, and describe its implementation. We
continue with a discussion of related work. Finally, we report on early user feedback, draw
conclusions, and report on future work.

2 Requirements
In this section we develop scenarios of configurations for Ubiquitous Computing
environments and derive requirements for the CollaborationBus editor.

2.1 Application Scenarios

Users should be able to configure environments in their private homes as well as in their
workplaces.

2.1.1 Smart Telephone

In a first scenario users wish to control the sound volume of their music players and starts
their calendar application in dependence of their office telephones’ state. A simple binary
detection sensor attached to the telephone is the first input source of this pipeline. The

— 3 —

second input source checks whether the user is currently logged in at the office computer.
The condition modules check the telephone sensor state as well as the login information.
Finally, the user wants to specify the desired information flow: if the pipeline detects that
the phone is used, an AppleScript OS scripting file is started to mute the volume of the
Mac, the sensor board infrared control is used to mute the sound system, and another
AppleScript starts the iCal calendar application, so that the user can input new
appointments during the phone call. When the phone call ends, the application will fade-in
the music again after a few seconds.

2.1.2 Personal Notification Selection

In this second scenario, users want to get information about the current activities of their
project colleagues and friends. User can add an instant messenger state sensor as a source
of the pipeline, and some further movement and noise sensors as additional sensor value
sources. Then users can add keyword filters to check the sensor data of the instant
messaging sensor to match the names of the project colleagues or project descriptions. As
actuators the users specify that all events are collected and sent as an email once a day. If
the message occurrence reaches a specified occurrence threshold, the CollaborationBus
system will additionally send the user a summary message to his mobile phone via the
SMS-Gateway.

2.1.3 Informal Group Awareness

In a final scenario, programmers in tow remote labs wish to obtain more information about
the activities of the members in the other labs. They have the idea of a universal info
channel of the lab activities as an RSS feed that can be integrated in tickertape displays or
in screensaver visualisation. They create a new pipeline composition and add the following
information sources: the current lab members logged in at the server, the lab members in
the instant messenger chat, the current CVS submits of the developers, the current
temperature of the two labs, as well as the average values of the movement and noise
sensors in the two labs and the coffee lounge. As actuator component they add an RSS
feed generator, and publish the RSS file to a server. Now, the lab members can access this
RSS feed and add it to their favourite notification display (e.g., a Web browser, or a
screensaver). This summary of group events and activities can help users to find out more
about the whole development team, and can facilitate the informal and spontaneous
communication between the colleagues.

2.2 Functional Requirements

The following functional requirements were derived from various application scenarios
(three of them were described above), and from a detailed study of related work (some
examples of related work are presented below).
• Provide adequate abstraction for various applications domains: Configuration

editors should allow users to integrate a variety of software and hardware sensors
capturing information, and software and hardware actuators adapting the behaviour
of the environment accordingly. The integration of existing and new sensors and
actuators should be easy. Various configurations should be possible—ranging from
configurations for home environments as well as for work environments.

— 4 —

• Support diverse users with heterogeneous knowledge, ranging from novice to
experts: Configuration editors should facilitate the immediate utilisation. For this
purpose, they should provide a pre-defined library of common configurations and
configuration assistants that allow the users—especially novice users—to use the
editor immediately and to incrementally explore its functionality. Additionally,
configuration editors should offer guided compositions. Therefore, the user
interface and the functionality provided should be restricted to significant and
needed functions; functions that are not adequate or not needed should be disabled
(e.g., if a sensor captures data in the form of text strings, calculations such as
average should be disabled). Finally, configuration editors should provide details on
demand. For this purpose—especially more experienced users—should be able
move from more abstract to more fine-grained layers, and to see and manipulate
details.

• Support the exchange of configurations among users: Configuration editors should
allow the sharing of configurations among users. The sharing of configurations is
useful for workgroups and friends, because it allows users to build on the results of
other users, and gives less experienced users the chance to benefit of the knowledge
of more experienced users.

3 Concept
In this section we describe CollabortationBus’ key concepts for a generic approach, for
pipelines, for a diverse user experience, and for collaborative sharing.

3.1 Generic Approach

The approach of CollaborationBus is generic—it works across multiple applications
domains, temporal patterns, and complexity patterns.

3.1.1 Spanning Application Domains

Sensor- and actuator-based applications in the private home differ from those in the
cooperative work domain. While we try to integrate a common, universal user interface and
metaphors for users of both domains, these domains can vary in their use of hardware and
software sensors as illustrated in Table I.

Smart Home Applications (cf. a in Table I) are mainly built with hardware sensors and
actuators, where the developed sensor-based applications adapt the home environment
automatically to the requirements of the private users. While computer applications
provide appropriate functionality for the configuration and creation of these applications,
the computer and its applications should disappear during the everyday execution of the
sensor-based applications. In order to support the development of appropriate applications,
the CollaborationBus editor supports a variety of hardware sensors and actuators, and the
editor is only needed for composing the setting.

In contrast to these mainly hardware-based applications, most Collaborative Work
Applications are based on both hardware and software sensors and actuators (cf. d in
Table I). Since computers are in general part of the workplace, software sensors and their
events (e.g., appointments, emails, tasks, project activity) and software actuators (e.g., for

— 5 —

sending emails, displaying messages on the computer screen) can be used to create
sensor-based applications for awareness and information-flow of workgroups. At the
same time, the integration of hardware—both sensors and actuators—and their physical
user interfaces can facilitate the interaction with these applications. This results in tangible
user interfaces for applications at the workplace (e.g., physical sliders so set the presence
in an instant messaging systems; LCD displays for displaying important email messages;
audio signals to inform about the current project’s state). CollaborationBus supports the
creation and configuration of all these free combinations of physical user interfaces with
software events as a main feature and allows users to create their envisioned interfaces
themselves.

Home actuators Office actuators

H
om

e
se

ns
or

s

a) Smart Home Applications: often
connections between hardware sensors
and actuators (e.g., to control electrical
devices (power plugs) in dependence of
observed sensor values, or to control
multimedia home devices)

b) Home Awareness Applications:
mixed use of software and hardware
sensors and actuators (e.g., to observe
the private home from the work office,
or to display state of family members at
home)

O
ffi

ce
se

ns
or

s

c) Office Awareness Applications:
mixed use of software and hardware
sensors (e.g., to summarise information
of projects and to inform people at
home about the working activity.

d) Collaborative Work Applications:
common are applications based on
software sensors and actuators (e.g., to
observe computer logins, instant
messenger presence, and other
activities)

Table I. Applications with sensors/actuators in home and work environments.

In between these two domains are applications that bridge the gap between the private
home and the business work (cf. b and c in Table I). Home Awareness Applications (cf. b
in Table I) support connections to family members and friends at the workplace. For
instance, ambient displays let the users perceive the information in multi-sensory ways.
This includes that users can configure their sensor-based applications at home as well as at
their office; thus a universal application interface is required.

Office Awareness Applications bridges the gap between the home and the work
environment (cf. c in Table I) by informing users about events from the office while they
are at home. Users define their own information channels that connect home environment
with their work environment (e.g., project report summaries that are generated and
delivered to the private home, important email or instant messages that are forwarded to the
private home). Here, the configuration editor requires in most cases a variety of software
sensors in the work environment that are connected to physical actuators in the private
home.

On a whole both environments—the home and the work environment—have become
increasingly intertwined in the recent years (e.g., telework). Therefore, utilities need to
allow the building of universal sensor-based applications spanning both ambiences and the
integration of software sensors and actuators as well as hardware sensors are needed.

3.1.2 Spanning Temporal Patterns

In any application domain various patterns with regard to capturing ongoing data and
starting actuators can be identified:
• Recurrent, permanent (e.g., applications with ongoing collection of data)

— 6 —

• Recurrent, occasionally (e.g., applications depending on day-time, during the
holidays, at night)

• One-time (e.g., applications with call-back if the required person is reachable)
The software needs adequate methods to support any of these temporal patterns, and

should provide a structured overview of the current configurations of a user. Another
important aspect is to enable the easy re-use of created configurations in the past: a copy
method and templates can speed up the creation process. Systems supporting all these
temporal patterns are needed.

3.1.3 Spanning Complexity Patterns

Each setting can have a specific complexity pattern ranging from simple sensor-actuator
tuples to networks of sensors and actuators:
• One sensor, one actuator (e.g., one binary sensor controls one actuator)
• Sensor, filters, actuator (e.g., only react to certain temperature values of a temperature

sensor)
• Multiple parallel sensors, filters and actuators (e.g., create summaries of various

sensor sources, control a set of actuators)
• Complex network of components (e.g., determine the current activity or even mood

of a person)
The CollaborationBus editor supports any application domain, and any temporal

pattern described above. It supports any complexity pattern, except for complex networks.
Complex networks are typically not configured with a graphical editor, but rather
developed with programming languages; therefore, here a graphical editor is would not be
used anyways.

3.2 Pipelines

In CollaborationBus all relations between sensor and actuators are handled with a pipeline
metaphor.

Pipelines are compositions that include several components: at least one sensor and one
actuator component, and additionally further filter components for processing sensor
values (e.g., to delimit the forwarded values, or to convert data formats). All components
inside of a composition are connected via pipelines that forward events between them.
Pipelines can be nested in various ways: several parallel sub-pipelines can be added (this
represents the OR condition); sequences of sensor sources can be created (AND
condition); or negations can be specified (NOT condition).

Sensors are the sources of any initial event in a pipeline. They can either be hardware
sensors (e.g., sensors for temperature, movement, light intensity) or software sensors (e.g.,
sensors for unread emails, mouse activity, shared workspace events, open applications).
Actuators are at the sink-side of the pipeline composition. Hardware actuators affect the
real environment of the users (e.g., activate light sources or devices), while software
actuators only influence the computer system (e.g., display screen messages, start
applications).

Filters for processing the captured data are between sensors at the one side and
actuators at the other are. The filter components can process all incoming events of a
sensor source. Each filter component represents a single condition or transformation
based on the incoming event value. Filters typically generate data of particular formats

— 7 —

(e.g., integer values, Boolean values, strings). There are universal filter types that can be
applied to any type of sensor data and specific filter types that can only be applied to
particular types of sensor data. The respective filter types can do the following processing:
• Universal (e.g., count the event occurrence, create event summary reports)
• Numerical processing (e.g., numeric threshold, interpolation, average)
• String processing (e.g., search for specified keywords)
• Binary processing (e.g., negation, conjunction)
• Transformations (e.g., numeric value to string message, binary value to numeric)
Filters can be assembled in many different combinations. This includes, for example,

an adaptive behaviour to changed conditions of the sensor sources (e.g., modified upper or
lower limit of a temperature sensor, or a changed scale of values) by transmitting these
changed conditions to all pipeline components. Each component can decide if a
modification of the component settings is necessary, and eventually display a confirmation
dialog. The components also include a variety of transformation methods (e.g., for
generating a short message to the mobile phone (SMS) a string message can be entered,
and the values of the respective sensors can be attached).

With CollaborationBus users can easily connect local sensors and actuators or sensors
and actuators from remote locations and build new configurations in a few seconds. Each
pipeline composition includes all these components—sensors, actuators, and filters—and
defines a complete information flow through them. All compositions of a user are stored
in a personal repository. This repository includes all data to dynamically instantiate the
included pipeline compositions.

3.3 Experience for Diverse Users

The CollaborationBus editor can be used by users with diverse levels of technical
background. Users’ knowledge can range from no experience at all to very thorough
technical knowledge. Figure 1 shows various user types ranging from novice users with
no experience to more experienced users and to experts. It shows the methods that are
available and can be used in dependence of the existing knowledge. It also shows the user
interfaces and support tools that are offered for the respective user types (the user
interfaces and supporting tools are described below).

Novice users with no prior technical knowledge can start using CollaborationBus by
loading and adapting pre-configured application configurations that are part of the
CollaborationBus distribution. As they progress, they can use the integrated sharing tool
to load other users’ configurations and to use them as templates for their own
configurations. They can, furthermore, modify and enhance the application configurations
and templates.

More experienced users can create their own application configurations, and execute
them in order to learn more about intra-pipeline event forwarding.

Expert users can create the envisioned system-behaviour by developing the required
software in a high-level programming language. Typically, for these activities they use
toolkits, platforms, libraries, and development and debugging environments to facilitate and
speed up the development process.

Taking these diverse user types into consideration is a core concept of
CollaborationBus and its user interface (the latter is described below).

— 8 —

Figure 1. User experience levels, and adequate tools to support users.

3.4 Collaborative Sharing

Users can build their own personal pipeline compositions from scratch, or build on shared
compositions from colleagues and friends. Three types of sharing are possible:
• Sensor and event sharing: users either share the events of their own sensors, or the

processed events of their sensors.
• Actuator sharing: users share the control of a personal actuator with other users, so

that other users can send commands to the actuator and control the system
behaviour.

• Pipeline sharing: users share complete more or less complex pipeline compositions
with others.

The first sharing method lets users create their own configuration in dependence of
remote located sensors of other users. The second sharing method lets users control the
actuators of other users (leading to new challenges of potentially concurrent access to
actuators). And the third sharing method lets users exchange and re-instantiate complete
pipeline compositions, requiring a unified description format and exchange protocol for
pipeline compositions. In the latter case the recipients of the compositions can change this
released pipeline composition to fit to their requirements. Because each user creates a new
instance of this pipeline composition, the changes of other users are not affecting the
original composition.

With all sharing methods security and privacy issues have to be considered. Adequate
levels of abstraction and control over access privileges of the own information sources are
needed. In order to restrict the shared information, users can choose the sharing of abstract
templates. In these shared pipeline compositions, the original sensors and actuators of a
user are not included in the sharing entry. Thus, the abstract template of a composition
contains mainly the configuration of all filter components between the sensors and
actuators. Using this abstract template, other users can insert their own sensors in the
placeholders at the beginning of the pipeline composition, and their own actuators at the
end. This let them use the knowledge of the processing filter components of the

— 9 —

composition, while at the same the user who shares his pipeline composition does not
share his own sensors and actuators.

4 User Interface
The CollaborationBus provides three major graphical user interface (GUI) components:
the Login and Control GUI; the Editor GUI; the Shared Repository GUI; and the Real-
Time Visualisation GUI.

4.1 Login and Control GUI

The Control GUI is the central access point for all users to their personal repository of
configurations. In order to get to their Control GUI, users have to login first. Figure 2
shows the Login and the Control GUIs.

Figure 2. Login GUI and Control GUI.

After login, users can see the Control GUI with the listing of their pipeline
compositions, including an indicator of the current state of each pipeline composition
(rectangle to the right of the pipeline name): Off (grey), Running (green) or In Edit Modus
(orange).

All functions for modifying the repository and its compositions are available from
within this interface: Add, Remove, Rename, and Clone pipeline compositions (via the
Commands button). Users can Start and Stop the threaded execution of each composition

— 10 —

(via the Start/Stop button). And, they can use the Share method to upload the selected
composition directly to the shared repository (via the Commands button).

While the basic functions for the personal repository are available in the Control GUI,
the underlying filter composition of each of the pipelines is only available in the Editor
GUI that can be opened for each of the pipeline compositions. Figure 3 shows the Editor
GUI. In the top area the user can choose several buttons for loading the Pipelines (via the
Pipelines button), change the Preferences (via the Preferences button), etc. In the middle
area the respective pipeline with its sensors, conditions, and actuators is shown (each
individual item is represented as a rectangular box). In the bottom area the properties of
the currently selected pipeline part (rectangular box) are shown and can be altered.

Figure 3. Editor GUI.

In order to create a new pipeline composition, users can first discover the available
sensor sources (e.g., movement sensor, temperature, sensor telephone sensor, instant
messenger status sensor) of the infrastructure in a graphical sensor browser (the browser
can be started by pressing the ‘+’-sign to the right of ‘Sensors and Conditions’), and add
the sensors they need to the pipeline. Then they can specify rules and conditions (these
can also be viewed by pressing the ‘+’-sign to the right of ‘Sensors and Conditions’) for
the sensor values by adding sets of filters and operators. For each sensor types with the
according sensor value type, specific filters and operators can be selected (e.g., an event
value threshold, a counter for number of occurrences). Finally, the actuators can be
specified by selecting them in the graphical actuator browser (the browser can be started
by pressing the ‘+’-sign to the right of ‘Actuators’). Here, the editor provides the option
to specify the mapping between the pipeline output and the actuator commands (e.g., if the

— 11 —

pipeline output is a message, it can be displayed; if the pipeline output is a simple
temperature value, the corresponding sound volume can be set).

4.2 Shared Repository GUI

The collaborative sharing mechanism described above is integrated in the Control GUI and
in the Editor GUI. In order to make a pipeline composition available for others, users have
two options. They can either select the Share method in the Control GUI (via the Shared
button; cf. Figure 2). Here the default settings for sharing are used and no additional
parameters are needed. Or they can choose the Sharing command in the Editor GUI (via
the Sharing button; cf. the top area in Figure 3) to specify further settings for the shared
composition. Further settings include description, category, and type of sharing (cf. three
types of sharing above). Finally the users can upload the pipeline composition.

In order to use one of the shared pipeline compositions, the user can access the Shared
Repository GUI from within the Control GUI. Figure 4 shows the Shared Repository
GUI. By selecting one of the available compositions in the list at the left side, the
information for this entry is displayed at the right side of the dialogue (description, owner,
category, type of sharing, used sensor sources and actuators).

Users can then download the respective composition.

Figure 4. Shared Repository GUI.

4.3 Real-Time Visualisation GUI

In the assembly of pipeline compositions with a variety of components it can be difficult to
keep track of the intra-pipeline communication between the components and the
processing of the forwarded pipeline events. The Real-Time Visualisation GUI of the
CollaborationBus provides a variety of graph visualisations that can either display the
forwarded values of each component of the pipeline (e.g., useful for interpolation and
threshold filters) or the quantity of forwarded values (e.g., useful for gate filters, counters
or timers).

— 12 —

Figure 5 shows the Real-Time Visualisation GUI with a time plot visualisation on the
left (showing the absolute values of 4 temperature sensors), and an overview of the
pipeline events on the right (showing the number of occurrences of events in a specific
pipeline).

Figure 5. Real-Time Visualisation GUI (with time plot visualization, and overview of the pipeline
events).

With these visualisations, the user obtains an inside view of the pipeline processing.
The command Start Pipelines (via the Start Pipelines button) activates all components of
the respective pipeline(s) and registers for the respective sensor events, starts the
processing of threads, prepares the actuator modules, and generates and dynamically
updates the visualisations. When any of the components of a pipeline is changed (e.g., a
threshold, or an interpolation settings), the implication to the processing can be recognised
immediately. Thus the adjustment and fine-tuning of component parameters becomes
easier.

In order to enable the testing of pipeline composition, we have, furthermore, integrated
an input interface for simulated sensor events. It allows the users to manually insert sensor
values to test and verify the pipeline composition without having to wait for real sensor
values from the sensors.

5 Implementation
Figure 6 provides an overview of the software architecture of CollaborationBus. All sensor
and actuator components are connected to the SensBase infrastructure, which provides
adapters for the connection of sensors and actuators, a central registry of all connected

— 13 —

components and a database for persistent storage of sensor event data. SensBase was
implemented with the Sens-ation platform [Gross et al. accepted]. SensBase provides
inference engines that can transform, aggregate, and interpret sensor values. A variety of
gateways (e.g., Web Service, XML-RPC, Sockets) provide interfaces for the retrieval of
sensor descriptions, event data, actuators, and so forth.

Figure 6. CollaborationBus software architecture.

The CBServer uses these gateways to register for the sensor values needed for the
users’ pipeline compositions. These compositions are inside of the Personal Repository
of each user and include the complete description of all assembled components (in
serialised XML format, for platform independency and easy exchange of pipeline
composition descriptions). The CBServer can serialise and de-serialise these XML
descriptions, and validate and process these descriptions. In the Shared Repository the
published pipeline compositions are stored. Furthermore, the CBServer manages a
directory of all available sensors and actuators, as well as filter components, and submits
them to the client application when needed.

The CBClient implements the GUIs described above.
CollaborationBus is implemented in Java with Swing libraries for the GUIs. Several

libraries are used for XML [W3C 2005a] processing (e.g., for the serialisation of pipeline
compositions [XStream 2005], for parsing sensor descriptions, for creating XPath
expressions [W3C 2005b]); for remote connections (e.g., SOAP
[The Apache Software Foundation 2005] and XML-RPC [Winer 19999] connections);
and for GUI enhancements.

6 Related Work
This chapter gives an overview of research related to the composition of sensor- and
actuator-based applications. We introduce examples of programming tools for Ubiquitous

gross
Placed Image

— 14 —

Computing applications, software for controlling sensor networks, and collaborative
sharing between users.

6.1 Programming Ubiquitous Computing Applications

Several research projects address the challenge to allow end-users to create and configure
intelligent applications the in-home environment.

With iCAP, Sohn and Dey introduce an application that allows end-users to rapidly
prototype Ubiquitous Computing applications [Sohn & Dey 2003]. Similar to
CollaborationBus, it uses rule-based conditions; especially the disjunction and junction of
rules in their ‘sheets’ is similar to our parallel and sequential pipelines (yet we think that
workflow-adapted pipelines stimulate a better understanding of rule compositions than
free arrangements). iCAP does not support sharing, or real-time visualisations.

Irene Mavrommati et al. have introduced an editing tool for the creating device
associations in an in-home environment [Mavrommati et al. 2004]. Their editor connects
various components called e-Gadgets to realise Ubiquitous Computing scenarios at home
(similar to our connected processing components). Yet, it does not support workplace
environments.

The jigsaw editor of Jan Humble et al. [Humble et al. 2003; Rodden et al. 2004]
demonstrates another application for getting control over the technological home
environment. The metaphor of specifying the applications’ behaviour by assembling
pieces of a jigsaw puzzle sounds intuitive. Yet, we would like to give the users more
control over their application than the encapsulated in jigsaw pieces allows.

Some systems are based on mobile devices to control configurations from every
location at every time. This includes systems for PDAs [Mavrommati et al. 2004], mobile
phones [Barkhuus & Vallgarda 2003], and TabletPCs [Humble et al. 2003]. These mobile
systems often provide only limited access to complex configuration methods. We have not
created a version for mobile devices yet, but a lightweight mobile version of
CollaborationBus would certainly be highly complementary to the existing version.

Another approach for configuring Ubiquitous Computing environments is
programming by demonstration. This method requires an extended period of observation
of relevant sensor values. In a later definition and learning phase, the users specify relevant
sensor events in the event timeline, so that algorithms from artificial intelligence can detect
patterns in the observed sensor values and automatically execute desired actuators [Dey et
al. 2004]. Programming by demonstration tools hide most specific details of the
underlying mechanisms from the users. On the one hand this reduces the barrier for non-
technical users to configure Ubiquitous Computing environments, but on the other hand
restricts the influence and control methods for users.

The related work applications mentioned so far address the development of complete
sensor-based applications in a rather abstract way. In the eBlocks project [Cotterell &
Vahid 2005; Cotterell et al. 2003] a user interface for building sensor-based applications
and configuring Boolean condition tables is introduced. As the authors show in their
evaluation, users still need support in building these Boolean tables (e.g., support by
different colours or written text [Cotterell & Vahid 2005]). Therefore, we introduced
pipelines to allow the easy combination of Boolean AND, OR, and NOT conditions,
simply by adding components to a pipeline processing stream or by adding a new parallel
pipeline.

— 15 —

The Phidgets created at the GroupLab by Saul Greenberg et al. [2001] facilitate the
development of physical user interfaces. It provides a range of sensor and actuator
elements for developers of sensor-based applications. The use of Phidgets requires few
hardware skills, but considerable programming knowledge.

6.2 Sensor Network Composition Software

A variety of applications for the compositions of sensor-based networks is available
[Baldwin et al. 2004a; Park et al. 2000]. For instance, the VisualSense modelling and
simulation framework as part of the PTOLEMY II project [Baldwin et al. 2004a; Baldwin et
al. 2004b] is a toolkit for the control over fine granular sensor network communication
and processing. The GUI includes functionality for processing component assembly, and
for graph visualisations to display the processed values of components.

Since the evaluation of the communication in sensor networks can be difficult for
newly created applications, several special complex development environments have been
presented (e.g., SensorSim [Park et al. 2000], EmTOS [Girod et al. 2004], TinyDB
[Madden et al. 2005], and J-Sim [Sobeih et al. 2005]). These tools provide adequate
development environments for expert users (because they including programming
languages, operator sets, mathematical processing libraries, visualisation tools, etc.). The
integration of visualisations for the event flow inside of sensor-network arrangements is
interesting for our purpose [Buschmann et al. 2005]. However, users with a non-technical
background probably have difficulties in using these applications.

6.3 Collaborative Sharing

While in CSCW collaborative sharing of location information, files, workspaces, software
and patterns is wide-spread [Greif & Sarin 1987], an approach to sharing sensor- and
actuator-based applications among users is still missing. In [Greif & Sarin 1987] design
issues of CSCW applications that use data sharing are examined. This includes proposals
for access control, adding meta-information, version history, and methods for handling
updates and concurrency difficulties. Further common classifications of sharing between
users are described in [Olson et al. 2004; Olson et al. 2005]. They have found common
groups with similar sharing preferences, and patterns in the sharing behaviour of users.
Integrating support for these clustered groups could facilitate the usage of sharing
mechanisms.

Hilbert and Trevor describe the importance of personalisation as well as shared devices
for Ubiquitous Computing applications [Hilbert & Trevor 2004]. With the modification of
applications to the personal needs, the use of these applications becomes easier for users.

7 Conclusions
In this paper we have introduced the CollaborationBus editor that allows the any users to
create sensor-actuator relations.

— 16 —

7.1 Summary

Even novice users can easily specify complex Ubiquitous Computing environments with
the CollaborationBus editor, without having to deal with complex configuration settings or
programming details. The CollaborationBus encapsulates and hides the details of the
underlying base technology (e.g., the sensor infrastructure, the sensor and actuator
registration, the sensor event registration). At the same time, more experienced users can
control the pipeline composition configuration in any technical detail they need and get
any detail on demand.

Furthermore, users can share their pipeline compositions with colleagues and friends
via a shared repository. Users can also decide how accurate they want to share (e.g.,
complete compositions, abstract template, only the processed event value). With a
minimum effort, each user can browse the shared repository and download shared pipeline
compositions and adapt the used shared repository template to fit to their needs (by
specifying their own personal properties of the pipeline). This way the CollaborationBus
features an incrementally growing library of ready-to-use pipeline compositions that form
a diverse network of collaborative sensor-actuator-relations.

7.2 Evaluation

While the evaluation of the CollaborationBus GUI and functionality as well as the
produced pipeline compositions is of vital interest to us, a formal user evaluation is still
missing. Nevertheless, we have collected several user opinions at the public demonstration
of CollaborationBus to many visitors at the Cooperative Media Lab Open House 2005
from 14 to 17 July 2005, where the visitors had the chance to try out the CollaborationBus
software in detail (with a huge set of connected sensors and actuators).

Most of the visitors quickly started to create their own compositions, and to select
desired sensors, actuators and filters. At the same time, they hesitated to change the
configuration of the filter components, and were somehow not completely confident about
whether they change the right parameters. A helpful support in this case was the Real-
Time Visualisation GUI; in particular, the activation of the graph views of all pipeline
events. It supported users in understanding the effect of parameter changes.

The most popular function of the tool was the integrated sharing mechanism. Users
enjoyed browsing the large set of ready-to-use pipeline compositions in the shared
repository. Often they used one of the shared compositions as template, modified
parameters in the compositions or built a new configuration on the basis of this
composition and sometimes shared this composition again. They also liked the idea of
sharing their own compositions with others.

A typical barrier of users when creating sensor-based applications with
CollaborationBus was that they worried about privacy issues. Many of the visitors said,
that it is an important criterion influencing their decision to use such as systems was to
exactly know all outgoing or shared personal data and to be able to quickly and easily
change the settings.

— 17 —

7.3 Future Work

Currently all components of the CollaborationBus system have been implemented. In the
future we would like to evaluate the created pipeline compositions of the users (especially
those in the shared repository), and identify common patterns in the created compositions.
From that we would like to develop assistive functions that provide users suggestions for
reasonable compositions.

The configuration interface of the filter components in the Editor GUI can also be
improved to become more intuitive for the user. A graphical mapping could allow users to
drag and drop the desired input and output commands and the component configuration.

A final important aspect related to security is the introduction of a system-wide
authorisation and authentication system in order to further secure the access to the sensor
values and pipeline compositions. For this purpose the CollaborationBus repository
storage and the sensor value access could be integrated in the security system of the SENS-
ATION platform.

Acknowledgments
We thank the members of the Cooperative Media Lab—especially Tareg Egla, and Christoph Oemig—for
inspiring discussions on the concepts and implementation of CollaborationBus, and for providing the
PRIMI and Sens-ation platform.

References
Baldwin, P., Kohli, S., Lee, E.A., Liu, X. and Zhao, Y. Modelling of Sensor Nets in Ptolemy II. In

Proceedings of the Third International Symposium on Information Processing in Sensor Networks -
IPSN 2004 (Apr. 27-27, Berkeley, CA). ACM, 2004a. pp. 359-368.

Baldwin, P., Kohli, S., Lee, E.A., Liu, X. and Zhao, Y. Visualsense - Visual Modeling for Wireless and
Sensor Network Systems. Report Number: UCB ERL Memorandum UCB/ERL M04/8, Ptolemy
Project, Apr. 2004b.

Barkhuus, L. and Vallgarda, A. Interactive Poster: Smart Home in Your Pocket. Presented at The Fifth
International Conference on Ubiquitous Computing - UbiComp 2003 (Oct. 12-15, Seattle, WA).
2003.

Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P. and Kroeller, A. SpyGlass: A Wireless Sensor
Network Visualiser. SIGBED Review 2, 1 (Jan. 2005). pp. 1-6.

Cotterell, S. and Vahid, F. A Logic Block Enabling Logic Configuration by Non-Experts in Sensor
Networks. In Extended Abstracts of the Conference on Human Factors in Computing Systems -
CHI 2005 (Apr. 2-7, Portland, OR). ACM, 2005. pp. 1925-1928.

Cotterell, S., Vahid, F., Najjar, W. and Hsieh, H. First Results with eBlocks: Embedded Systems
Building Blocks. In Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis - CODES+ISSS 2003 (Oct. 1-3, Newport
Beach, CA). IEEE Computer Society Press, Los Alamitos, CA, 2003. pp. 168-175.

Dey, A.K., Hamid, R., Beckmann, C. and Hsu, D. A CAPpella: Programming by Demonstration of
Context-Aware Applications. In Proceedings of the Conference on Human Factors in Computing
Systems - CHI 2004 (Apr. 24-29, Vienna, Austria). ACM, 2004. pp. 33-40.

— 18 —

Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil, E. and Schoellhammer, T.
A System for Simulation, Emulation, and Deployment of Heterogeneous Sensor Networks. In
Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems -
SenSys 2004 (Nov. 3-5, Baltimore, MD). ACM, 2004. pp. 201-213.

Greenberg, S. and Fitchett, C. Phidgets: Easy Development of Physical Interfaces Through Physical
Widgets. In Proceedings of the ACM Symposium on User Interface Software and Technology -
UIST 2001 (Nov. 11-14, Orlando, FL). ACM, N.Y., 2001. pp. 209-218.

Greif, I. and Sarin, S. Data Sharing in Group Work. ACM Transactions on Office Information Systems
5, 2 (Apr. 1987). pp. 187-211.

Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-Oriented Platform for the Development of
Sensor-Based Infrastructures. International Journal of Internet Protocol Technology (IJIPT)
(accepted).

Hilbert, D.M. and Trevor, J. Personalizing shared ubiquitous devices. ACM interactions 11, 3 (May/June
2004). pp. 34-43.

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.-P., Koleva, B., Rodden, T. and Hansson, P.
Playing with the Bits - User-Configuration of Ubiquitous Domestic Environments. In Fifth
International Conference on Ubiquitous Computing - UbiComp 2003 (Oct. 12-15, Seattle, WA).
Springer-Verlag, Heidelberg, 2003. pp. 256-264.

Madden, S.R., Franklin, M.J., Hellerstein, J.M. and Hong, W. TinyDB: An Acquisitional Query
Processing System for Sensor Networks. ACM Transactions on Database Systems 30, 1 (2005).
pp. 122-173.

Mavrommati, I., Kameas, A. and Markopoulos, P. An Editing Tool that Manages Device Associations in
an In-Home Environment. Personal Ubiquitous Computing 8, 3-4 (July 2004). pp. 255-263.

Olson, J.S., Grudin, J. and Horvitz, E. Towards Understanding Preferences for Sharing and Privacy.
Report Number: MSR-TR-2004-138, Microsoft Research, 2004.

Olson, J.S., Grudin, J. and Horvitz, E. A Study of Preference for Sharing and Privacy. In Extended
Abstracts of the Conference on Human Factors in Computing Systems - CHI 2005 (Apr. 2-7,
Portland, OR). ACM, 2005. pp. 1985-1988.

Park, S., Savvides, A. and Srivastava, M.B. SensorSim: A Simulation Framework for Sensor Networks.
In Proceedings of the 3rd ACM International Workshop on Modelling, Analysis, and Simulation
of Wireless and Mobile Systems - MSWiM 2000 (Aug. 11, Boston, MA). ACM, ACM, 2000. pp.
104-111.

Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble, J., kesson, K.-P. and Hansson, P.
Between the Dazzle of a New Building and its Eventual Corpse: Assembling the Ubiquitous Home.
In Proceedings of the Conference on Designing Interactive Systems: Processes, Practices,
Methods, and Techniques - DIS 2004 (Aug. 1-4, Cambridge, MA). ACM, 2004. pp. 71-80.

Salber, D., Dey, A.K. and Abowd, G.D. The Context Toolkit: Aiding the Development of Context-
Enabled Applications. In Proceedings of the Conference on Human Factors in Computing Systems -
CHI'99 (May 15-20, Pittsburgh, PA). ACM, N.Y., 1999. pp. 434-441.

Sobeih, A., Chen, W.-P., Hou, J.C., Kung, L.-C., Li, N., Lim, H., Tyan, H.-Y. and Zhang, K. J-Sim:
A Simulation Environment for Wireless Sensor Networks. In Proceedings of the 38th Annual
Symposium on Simulation (Apr. 2-8, San Diego, CA). IEEE Computer Society Press, 2005. pp.
175-187.

Sohn, T. and Dey, A.K. Interactive Poster: iCAP: An Informal Tool for Interactive Prototyping Context-
Aware Applications. In Extended Abstracts of the Conference on Human Factors in Computing
Systems - CHI 2003 (Apr. 5-10, Fort Lauderdale, Florida). ACM, N.Y., 2003. pp. 974-975.

Talja, S. Information Sharing in Academic Communities. New Review of Information Behaviour
Research 3 (2002). pp. 143-159.

The Apache Software Foundation. WebServices - Axis Architecture Guide. World Wide Web
Consortium, http://ws.apache.org/axis/java/architecture-guide.html, 2005. (Accessed 17/9/2005).

W3C. Extensible Markup Language (XML). W3C Recommendation. World Wide Web Consortium,
http://www.w3.org/TR/1998/REC-xml-19980210, 2005a. (Accessed 17/9/2005).

— 19 —

W3C. XML Path Language (XPath). W3C Recommendation. World Wide Web Consortium,
http://www.w3.org/TR/xpath, 2005b. (Accessed 17/9/2005).

Winer, D. XML-RPC Specification. http://xmlrpc.scripting.com/spec, 19999. (Accessed 17/9/2005).
XStream. XStream - Java Object XML Serialisation. World Wide Web Consortium, http://xstream.

codehaus.org/architecture.html, 2005. (Accessed 17/9/2005).

