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Introduction

Structures subjected to compldynamic efécts with aknown resonance range are widely
applied in practice. One of the mostpiontant stages of their designing is the resonance state. On the
one hand the resonance phenomena with ordinatgmals sharply increase tdgnamic load. From
the point of view of strength measures should be taken to remove them for example by widening th
zones of operation without resonance which is necessary especially for building structures.

On the other hand however many elements and structures (mostly machine-building) operate i
resonance state as a main operation mode that's why it is desirable to draw the natural frequenc
nearer to those of the dynamic effects.

Having in mind the main and increasingly important requirement for economy of contemporary
structures it follows that both problems presented above amizgiton dynamic problems. They can
be solved by such a distribution of structure parameters called design variables where its natur
frequencies take a state determined in relation to the dynamic effects frequencies.

Regardless of its practical significance ttiigmnamic opimization problems class has not been
fully examined yetAiaiitea, Neifii, 1983]. ®tting the ondition that the structure opees in a zone
without resonance the ojiization problems are most often solved for natural frequen@ctspm
control [Arman, 1977; Olhoff, 1982Aaie+0é, EAaitaa, @adaipé, 1989] or for forced odtations
according to the stressed and deformed state critdd@iga, Oeéeiila, 1975; Haug, Arora, 1983].

The paper presents a possible approach to solve the problem of thin eddescdplsign with
minimum weight in resonance operating modes. An effective afidisntly common methods are
worked out on the base of Wilder's energy resonance method, the method of finite elements fc
dynamic research and the methods of parameter optimization.

Formulation of the Optimization Problem

The primary design of homogeneous thin elastic pldte is constant thicknes$” and one of
its natural frequencies i&)(jo’. The plate takes the are@ with a boundarydQ. Its weight is
G = pgAt® where: p is a density of the material which the plate is madegof; a gravitational

acceleration;A - a area limited by the boundad2 .
Harmonious dynamic edtt with frequencyd is applied to the plate. The plateosid reach

the resonance state af, =6 and continue its operation in that mode.

To satisfy the non-linear strength and stiffnésstations, that is to take into amant the

influence of the dynamic eftt magnitude, a minimal admissible plate thickrtesis assigned. In this
way construction requirements to the plate are taken intouatcTo apply the theory to thin elastic
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plates a maximal admissible plate thicknessis assigned too. Thignitation is a part of tdmology
requirements as well.
Hence the variation area of the plate thickngss, x, ) taken to be a design variable, is
(1) D={t: t'<t(x,%)st!, 0<t"<t”, o =6}.
that is the area (1) is the one of the admissible plate designs.
A plate design with minimal weight is searched

(2) G'=min pg[t(x,% )dxdx.
tOD ro)

which is its optimal design.
The problem can be conventionally markeddany — 6 — minG.

Solution of the Optimization Problem

From the area of admissible designs (1) it follows that with changing the naaieatintkness
its natural frequencies cannot take arbitrary values and they change in the following infé@ &4, [
Oeeéeiiia, 1979]
(3) wlD[wI,wI], wZE[ w‘z,wﬂ Ve W [ﬁ w; ,w} vy =12, 000,
where w; and w; are respectively the smallest and the biggest possible values of each natura
frequenciesw; .

Hence to arise the phenomenon of resonance the dynamatseffequency must come into
some of these intervals, e.g. into the inter{(abj‘,w;] . With assigned primary plate design and

dynamic efécts frequency the following cases are possible (it is supposed that the intervals (3) don't
overlap):

1. 6<w; - aresonance state is not reachedvas 6. With optimization the ite thickness

t(x,, %, ) takes the value df- which the minimal plate weight corresponds to

2. 8> w; -inthat case a resonance state is not reached. Withizzgiion the thickness takes

the value oft” which the maximal weight corresponds to.
3. 6=w!” - the plate is in resonance state and witlingigation it is @ough only to miimize

its weight preserving its resonance natural frequency.
4. 0% w(jo), but GD[ a)j‘,w;] - the plate is not in a resonance state but it can be reached.
Hence at first this state must be reached, thai;is 6, after that it is to minimize the gte weight

preserving the resonance natural frequency.

If some of the intervals (3) overlap the resonaratescan be reached. haild be which one
or which ones of its natural frequencies may possibly overlap with the specified dynamic effect
frequencies. Hence the last case should be applied once or several times. After tletesgarg to
compare the obtained optimal plate designs appraising which one is the most economic.

The further statement is connected with the examination of the last most common case.

The analysis of the platdynamic behaviour in the kind of a forced resonancellaigmn
problem is complex for many reasons. One of them is that to the condition of a constant resonanc

b Further abstraction of the material is impossible and adding some to any point of the plate will not decrease it

natural frequency in all cases.



frequencyw, =0 is difficult to be satisfied because the iopzation of the mte vill most probably

bring it out of the resonance state.

These difficulties can be successfully overcome by applying Wilder's energy resonance methoc
Because the resistanterces with the elastic structures doing small oscillations are comparatively
small, the form of the force resonance iketion is very close to the resonance natural form of
oscillation, that is

(4) {03, )} = d{ 3)}cos(ot+95),

where: {v} is a vector of generalised displacemeft} - a vector of spaceoordimates; {¢} - a

resonance natural forng - an amplitude of forced resonance oscillations; a current moment of
time.

Hence by means of effect over the resonance nafumal by phte thickness changing the
desirable plate behaviour is achieved in resonance state.

This method gives a possity to reducephysically and geometrically linear dynamic problem
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to the problem of pite natural frequencies and oscillation foAf&fiTé1a, Neifiii, 1983]. For that aim
it is necessary to present the optimal state criterion in the kind of

(5) 3= ({03 (% %)),
The digitilized model of a thin elasticghé is presented b} number of finite elements with a
constant thickness and is with degrees of freedom. The components efter t, (r =1,2,...,N )

must belong to the area of admissible designs (1).
The free oscillation equations of a plate linear digitalized model can be written in the way of

(6) [ ()] (o3 -2 MR} 0 j=12.. 01

where:[ K] and[ M] are respectively matrixes of plateffsiess and equivalent massgg;} - an

eigenvector that corresponds to the natural frequesncyA ; = wjz({t}) - an eigenvalue.
The condition that
(7) {¢]}T[ MK{ ¢} =90, jj=12..,n
is satisfied for the system of eigawiors{¢,} whered; is Kronecker's symbold; =1 with i =j,
0; =0 with i #j).
The presented methods contain two main poietsching the specified plate natural frequency
6 value of w; ({t}) andminimizing its weightG({ t}).

To find a design with frequencw, ({t}):e from the specified primary gle design the
method of direct search and recurrent dependency is used
(8) B ={g“ 4" k=012,
where: {t}® - is a primary vector of finite elements thicknegsit}“> - a vector of thickness
changing;(k) - a number of iteration.

The vector component§dt} of each iteration are taken to kLeroportional to the

corresponding ector-gradient component@x\j({dt}) of the eigenvalueA; which are of the

following kind

oA

9) —t":{asj}Tﬁ

[K] _ + 0[ M] _
J op W TALSY TSRO rel2 N,



The dependencies (9) are valid if the equations of fredlatens have as solutions a single
eigenvalue.
The iteration process stops when the condition

o ({t})-o6
6

(10) 100%< A%

is satisfied, wherel is the criterion of precision specified by the designer.
The plate has reached the resonance state arfdrthef forced resonance akations is very
close to the resonance natural fofn, } .

After that the maximum of the optimal state criterion is searched
N
(11) 3=d6({o8)= 5 56(o1) = 9 8%

where: 6G, is a weight change affinite element;{g} ={ ¢,..., ¢,..., & }' - a vector of weight
coefficients of finite elementsg( = pgA, where A is the area of-finite element). It expresses the
plate weight change and can be easily presented in the kind of

N N
— Os d/\J — T
12 J=+ o ——E ot, —=-—{ot} LI\ ot

r=
r#s

r#s

ot,
where DJ({ 5t}) is the optimal state criterion vectgradient in regards to thesetor components
{t} . The optimal state criteriofi1) depends dactly on the resonance natural frequengy and the
resonance natural forgy;} .

The dependencg8) is used again adl —1 numbers of vector componen{dt} take values
proportional to the reggtive components of theactor-gradiemDJ({ 6t}). The componendt, of the
last finite element is determined by the condition
(13) a({aty) =0,
where oA, is the eigenvalueA;, change obtained after a linear approximation of non-linear
dependencw ({t}).

The optimization process stops when
(14) | 0 (to1) <

where ¢ is the criterion of precision specified by the designer too.
In both iteration processes if the ltations in(1) are vichtedfor any component of theeetor
{t} the thickness takes respectively the value of

(15) t =t- or t =tV
and after that the processes continue.

Numerical Results
The primary design of optimized squaratplis with sized =1mand thickness‘® =0,05m.

The plate is made of steel with adule of linear elastic deformatiors=2,110" N/ nf, material

density p =7,8.10 kg/ n’ and Poisson's coefficient=0,3. The plate weight i$6'® =3,826.10 N.
A harmonious dynamic load with a frequenéyis evenly distributed over the plateiniitations



t" =0,03m andt” =0,07m, criteria of precisenesd =0,5% and £ =0,0005 and the requirement of

plate operation in resonance state with=0 are specified.

The plate is optnized by the wrked out programme module with three ways of its supporting -
restrained, freely supported, restrained along two opposite sides and freely supported along the oth
two sides. Only one fourth of thegpé is examinetbr the symmetry of geometry, boundary conditions
and mass distribution. It is presented with sixty-four finite elements with equal sizes. An incompatible
square plate finite element with twelve degrees of freedom is used. To reduce the number of variab

thickness
Plate 6,s* G N GfG_f G’ %
‘ 2710 | 291116 239
m 1510 | 301310 21,2
- 2,210° | 2,856 10 253

of finite elements the last ones aregrouped into
four as one thicknesst, (r =1,2,...,16) is
common for the whole group.

According to the boundary conditions
some data laout the mterial eonomy of the
whole plate is given in the table. The comparison
is made to the weight 06" of the same plate
with frequency8 but with a constant thickness.

The optimal plate designs with the three
ways of its support are shown in fig. 1-3 and its
resonance natural forms respectively in fig. 4-6.

Fig. 4



Fig. 2 Fig. 5

Fig. 3 Fig. 6

Conclusion

The obtained optimal plate designs give a pdiggitto make the following most iportant
conclusions:

1. A part of the plate material is concentrated in a definite zones with significantly greater
bending stiffness, that is a plate with uneven thickness is adapted better to oscillation conditions.

2. To make better the preciseion of the analgsiblem it is ecessary to compare the finite
elements network system as at the same time by their grouping the number of design variables shot
be reduced aiming at reasonable technology plate making.

3. With the introducedimitations of plate thickness theamwmy of the raterial exceed20%

as over75%of the plate area are with the specified minimal thicknéess



4. Making of optimal plate designs in practice isremmically justifiable because the jump-like
thickness change facilitates its constmicti e.g. by putting additional linings, strengthening ribs or
smooth turning of machine elements.
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