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1. Introduction

The paper deals with the problem of minimizing the duration of a project subject to time

constraints (prescribed minimal and maximal time lags between the activities of the project)

and resource constraints (limited availability of renewable resources). This problem is also

called RCPSP/max (Resource Constrained Project Scheduling Problem with minimal and

maximal time lags).

Exact algorithms of the branch-and-bound type for RCPSP/max have been devised by

Bartusch et al. (1988) and De Reyck & Herroelen (1996). Heuristic procedures for

RCPSP/max represent either priority-rule methods or truncated branch-and-bound methods.

Priority-rule methods for RCPSP/max have been proposed by Zhan (1994) and Neumann &

Zhan (1995) and truncated branch-and-bound methods by Brinkmann & Neumann (1996).

In this paper, we give an overview of heuristic procedures for RCPSP/max, where we restrict

ourselves to priority-rule methods, which generally outperform truncated branch-and-bound

methods. We also report on some results from an experimental performance analysis.

2. Cyclic Activity-on-Node networks

Suppose that the project under consideration consists of n activities 1, ..., n, which are to be

carried out without interruption. In addition, we introduce the fictitious activities 0 and n+1,

which represent the beginning and completion of the project, respectively. Let     D i ∈ Z +  be the

duration and     S i ∈ Z +  be the start time of activity i (i = 0, 1, ..., n+1) where   D 0 = D n + 1 = 0  and

  S 0 : = 0 . Then   S n + 1  represents the project duration. We assign the nodes 0, 1, ..., n+1 of a

directed graph to the activities 0, 1, ..., n+1.

If there is a minimal time lag   T ij
min   _ 0 between the start of activities i and j, i.e.

  S j − S i  _   T ij
min  , we introduce an arc <i,j> with weight   b ij : =   − T ij

min  . If there is a maximal time

lag   T ij
max  _ 0 between the start of activities i and j, i.e.   S j − S i   _   T ij

max  , we introduce a

backward arc <j,i> with weight   b ji  : =   − T ij
max .
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The resulting weighted directed graph with node set V = {0, 1, ..., n+1}, arc set E, and

weights   b ij , where   S j − S i  _   b ij  (<i,j>∈ E), represents the project network N. In general,  N

contains cycles of nonpositive length. Note that arcs with negative weight may occur inside

and outside of cycles. A detailed description of the construction and properties of project

network N can be found in Neumann & Schwindt (1997).

The heuristic procedures for RCPSP/max require some strict order   p  in the node set V. A

cycle structure in N is a strong component which contains at least two nodes. For

  i , j ∈ V , i ≠ j , we then define i   p  j exactly if (a) there is a path in N from i to j in case that i

and j do not belong to one and the same cycle structure or (b) there is a path from i to j of

positive length in case that i and j belong to one and the same cycle structure.

In literature, maximal time lags between activities are discussed extremely rarely although

they occur in practice very often. Some examples are:

(i) Several activities have to be begun or have to be completed exactly at the same point in

time.

(ii) Several activities have to be carried out one after another without any delay.

(iii) There are prescribed deadlines or time windows for certain activities.

(iv) Scheduling of make-to-order production where customer orders and precribed delivery

dates have to be met and the overlapping of operations is permitted without interrupting

any jobs (cf. Neumann & Schwindt, 1997).

3. Resource-Constrained Project Scheduling

Assume that the renewable resources 1, ..., K are required for carrying out the project. Let

  R κ  > 0 be the capacity of resource κ  available and let   r i κ  be the amount of resource κ  used

by activity i (κ  = 1, ..., K;   i ∈ V ) where 0 _   r i κ ≤ R κ  and   r 0 , κ = r n + 1 , κ = 0 . For simplicity,   R κ 

and   r i κ  are assumed to be constant. Let

    A ( t ) : = { i ∈ V | t − D i < S i ≤ t } 

be the set of activities in progress at time t (or in time interval [t, t+1[, respectively), also

called the active set. Moreover, let

    
r κ ( t ) : = r i κ 

i ∈ A ( t ) 
∑ 



be the amount of resource κ  used at time t. The RCPSP/max for project network N, also

denoted by (N), can then be formulated as follows:

Min.   S n + 1 

s.t.   r κ ( t ) ≤ R κ ( κ = 1 , ... , K ; t = 0 , 1 , ... , T − 1 )            (1)

    

S j − S i ≥ b ij ( < i , j > ∈ E ) 

S 0 = 0 
S i ∈ Z + ( i ∈ V ) 

Activity splitting is not allowed 

 

 
 

 
 

( 2 ) 

where

  
T : = max ( D i , 

i ∈ V 
∑ max 

< i , j > ∈ E 
b ij ) 

is an upper bound on the project duration.

For each cycle structure C of N treated as a separate subproject and started at time 0, a

project-scheduling problem (C) corresponding to (N) can be formulated. A sequence

  ( S 0 , S 1 , ... , S n + 1 )  which satisfies (2) is termed a schedule. A schedule that satisfies (1) is called

a feasible schedule. Analogously, the concept of a (feasible) subschedule for a subproject

corresponding to a cycle structure C is defined. A sequence   ( S i ) i ∈ ′ V  where   ′ V ⊆ V  is not

necessarily the node set of a cycle structure C is called a partial schedule.The next theorem

(cf. Bartusch et al., 1988) is important for the heuristic procedures for solving (N):

Theorem 1. There is a feasible schedule for (N) exactly if, for each cycle structure C of N,

there is a feasible subschedule for (C).

4. Overview of Heuristics for RCPSP/max

Three different sets of activities are used in a heuristic procedure for (approximately) solving

problem (N). The activities completed up to the current schedule time form the complete set

C. The activities in progress (i.e. started but not yet completed) constitute the active set A.

C ∪  A is the set of the scheduled activities. The decision set D is the set of the unscheduled

activities all of whose predecessors (with respect to the underlying strict order   p ) belong to C.



At the beginning of a heuristic, a temporal analysis for N is performed, that is, the earliest and

latest start times   ESi  and   LSi ( i ∈ V )  are computed. The heuristic then constructs a sequence

of partial schedules until a feasible schedule for (N) is attained. We distinguish between a

serial and a parallel generation scheme for schedules.

A serial generation scheme consists of |V| stages. At each stage, one activity i is selected

from D according to some priority rule and scheduled at the earliest time   τ ≥ ESi � such that

the resource constraints are satisfied� If �   τ > LSi , a backward scheduling process is started

which results in an appropriate right-shift of some activities already scheduled such that

  τ new ≤ LSi 
new  . For each successor j of i,   ESj  has to be updated if   τ > ESi  , and   LSj  has to be

updated if   τ < LSi . After that, activity i is deleted from D and inserted in C. The unscheduled

activities all of whose predecessors now belong to C are added to D.

A parallel generation scheme consists of at most |V| stages. At each stage, a schedule time τ 

is determined, which equals the earliest completion time of any activity from A observing

possible minimal time lags. Activities from A completed at time τ  are deleted from A and

inserted in C. Unscheduled activities all of whose predecessors now belong to C are again

added to D. Moreover, the activities     i ∈ D  are selected successively according to some

priority rule and scheduled at time τ  (i.e. removed from D and added to A) in case that the

resource constraints are satisfied. The backward scheduling process and updating of the
quantities   ESj  and   LSj  for the successors j of i are performed in the same way as in the serial

procedure.

We note that if the project network is acyclic, the serial generation scheme constructs active

schedules whereas the parallel procedure constructs non-delay schedules (cf. Kolisch 1995).

Two kinds of heuristic methods are proposed. The sequential or direct method processes the

activities or respectively nodes of the project network one after another without considering

the cycle structures separately. The contraction method uses a bottom-up technique

exploiting Theorem 1. In Step 1, a feasible subschedule is determined for each cycle structure.

In Step 2, each cycle structure is replaced by a single node and the resulting acyclic network

is treated by the direct method. For the contraction method, the generation schemes (serial or

parallel) used in the two steps may be different.

5. Experimental Performance Analysis



The heuristics have been tested using a test set of about 1500 project networks generated by

the new network generator ProGen/max developed by Schwindt (1996). Each project has

100 activities and requires from 5 to 8 renewable resources. Different values of several

network parameters (such as resource factor, resource strength, and restrictiveness) have been

considered. The following main results have been obtained:

(a) The best priority rules are LST (Latest Start Time) and WCS (Worst Case Slack). The

latter priority rule was proposed by Kolisch (1995).

(b) In general, the direct method provides better feasible schedules than the contraction

method. However, the direct method requires much more computing time because a

significantly larger number of backward scheduling steps are necessary.

(c) In the contraction method, the parallel or serial generation scheme can be used for

evaluating the cycles structures. The resulting acyclic network should be evaluated

using the serial scheme.
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