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Summary
This paper presents the combination of two different parallelization environments, OpenMP and
MPI, in one numerical simulation tool. The computation of the system matrices and vectors is
parallelized with OpenMP and the solution of the system of equations is done with the MPI-
based solver MUMPS. The efficiency of both algorithms is shown on several linear and non-
linear examples using the Finite Element Method and a meshless discretization technique.

1 Introduction
In the last two decades Galerkin Methods like the Finite Element Method have become popular
tools to handle large mechanical problems numerically. Constitutive models can be used to si-
mulate the nonlinear material behavior, e.g. cracking or plasticity. Due to the application of this
material models the system of equations becomes nonlinear and an iterative solution scheme is
required. The Newton-Raphson iteration procedure is the usually used tool to solve nonlinear
quasi-static problems. In this method the external load will be applied incrementally, whereby
for each increment the nodal displacement vector is iterated as long as internal and external for-
ces become equilibrated. In each iteration step a linear system of equations has to be solved.

If we use standard single processor computers for nonlinear calculations with a large number of
degrees of freedom (e.g. 610  to 710  d.o.f.), the computational time can easily increase to some
hours or days. For this reason the parallelization of the calculation can be useful. In general two
different standard parallelization environments are available for Unix-like computer systems.
The first one is the MPI (Message Passing Interface) environment (Gropp 1996), which can be
used on distributed and on shared memory systems. The other standard tool is OpenMP
(OpenMP 2002) which can be utilized only on shared memory multiprocessor computers. The
computation of the stiffness matrices and internal force vectors, which is done via numerical
integration over integration cells, is parallelized directly with this tool due to the straightforward
application of OpenMP to loops. The duplication of memory entries, in these cases the calcula-
ted matrices and vectors, which is necessary for MPI, is a disadvantage of the environment, thus
it is not applied for this purpose.

The solution of the system of equations can be parallelized by using a domain decomposition
method (Patzak and Bittnar 2001) or a multifrontal direct solving algorithm (Amestoy et al.
2000). In the World Wide Web many implementations of such solvers are available. Some
examples are PSPASES, PIM and MUMPS. The authors decided to use one of these libraries
instead of implementing a parallel algorithm themselves. One of the best documented and most
efficient direct solver is the so-called “MUltifrontal Massively Parallel Solver” (MUMPS)
(Amestoy et al. 2003) which is applied by the authors.

In this paper the parallelization of the numerical computation of the stiffness matrix and the
internal force vector using OpenMP and the integration of the external MPI-based library
MUMPS into the SLang Software package (Bucher et al. 2002) is presented. The efficiency and
scalability of both algorithms will be shown first on different linear benchmark calculations.
The applicability for nonlinear problems will be verified on a mesoscale fracture analysis of a
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concrete specimen using a smeared crack model (Eckardt et al. 2004) and on a simulation of a
plastification process using a meshless discretization. For this purpose a rotating crack model
within the Finite Element Method and an adapted Natural Element Method (Unger 2004) are
used, respectively.

2 Treatment of nonlinear mechanical problems
Most quasi-static mechanical problems can be solved sufficiently accurate within a Galerkin
method by using a linearization of the system equations. The solution is obtained directly from
the following equation

FKd = (1)

where K is the tangential symmetric stiffness matrix of the assumed system model, d contains
the unknown nodal displacements and F is the external load vector. Nonlinear structural beha-
vior caused by path dependent geometrical or material nonlinearities, which has to be consid-
ered for stability, fracture or plasticity analyses, can be investigated incrementally. An iteration
procedure like the Newton-Raphson method (Bathe 1996) can be applied to obtain the nodal
displacements at the end of the load increment n+1 under the condition that the external and
internal forces extF  and intF  are in equilibrium

1ext,1,int ++ = nn FF (2)

This procedure approximates the unknown internal forces as
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taking into account the initial conditions for each incremental step

nn dd =+ 0,1 , n,n KK =+ 01 , nn int,0,1int, FF =+ (5)

until Eq. (2) is fulfilled with a given accuracy. Within this iteration the incremental linear sys-
tem of equations in Eq. (4) can be solved similarly to Eq. (1). For larger systems the stiffness
matrix K has sparse character due to the limited number of interacting nodes per integration
cell. Standard procedures for the efficient solution are given in (Bathe 1996) by the TLDL  and
the Cholesky factorization ( TLL~~ ) of the matrix K, where L and L~  are triangular matrices and D
has diagonal form. The solution itself is obtained after the factorization via Gauss elimination.

3 Solution of large systems of equations with sequential solvers
In this section different sequential sparse matrix solvers will be presented very briefly. The tra-
ditional solver which is available in the applied program system SLang uses the already men-
tioned TLDL  factorization technique with following Gauss elimination. The necessary compu-
ting time for this method depends mainly on the structure of the stiffness matrix. A reduction of
the matrix band width can lead to a much more efficient solution process then using the unstruc-
tured matrix. A simple ordering algorithm is given with the geometrical band width reduction
(e.g. Bucher et al. 2002), where the nodes will be renumbered along a straight line given by two
structural nodes. Another preconditioner available in SLang is a spectral reduction technique
(Barnand et.al. 1993) which uses a nodal connectivity matrix to obtain the optimal node num-
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bering. Within this method the computation of the second eigenvector of the stiffness matrix is
necessary, which leads to some more computational costs. Due to the fact, that the preconditio-
ner has to be applied only once at the beginning of a nonlinear calculation (if the discretization
will not change during the simulation), these costs remain very small compared to the savings
which can be obtained in solving the equation system in many load increments and iteration
steps. Another sequential solver which is available in SLang is a sparse direct solver based on

TLDL  factorization (Vondracek 2003). The sparsity of the final matrix L is ensured by initial
approximate minimum degree ordering (Davis et al. 1994). This solver uses in contrast to the
above mentioned a compressed column storage instead of the skyline format. The sequential
solvers will be used for comparison with the MUMPS solver in the examples in section 6.

4 Implementation of the Multifrontal Massively Parallel Solver
The multifrontal method for the solution of sparse linear equations is a direct method based on
the LU factorization of the matrix, which is analyzed first to determine an ordering that sparsity
in the factors will preserved. MUMPS offers several built-in ordering algorithms, like an appro-
ximate minimum degree ordering and an approximate minimum fill-in ordering, and further-
more an interface to some external ordering packages such as PORD (Schulze 2001) and
METIS (Karypis and Kumar 1998). Within the analysis an ordering and an assembly tree is pro-
duced. The assembly tree is then used to organize the subsequent numerical factorization and
solution phases on the different processors. The solution is obtained by using the distributed fac-
tors of the frontal matrices on the different processors and their results are assembled at the host.
For details of the theoretical background the reader is referred to (Amestoy2000). MUMPS uses
the MPI message passing and requires the BLAS, BLACS and ScaLAPACK libraries. Within
the downloadable parallel MUMPS source code package a sequential version is also available
which only requires the standard BLAS library.

The integration of the sequential MUMPS version in SLang was done directly by linking the
compiled library to the other required SLang libraries. Some more effort had to be spend to
implement the parallel solver: Due to the fact, that SLang is an interactive structural language,
controlled via a text based input file with flow control such as loops and conditional jumps and
with an graphical user interface, it was not reasonable to transform the SLang main routine to a
MPI routine, which is executed by all processors simultaneously with CPU identity based con-
trolling. A more efficient possibility was chosen, by calling the parallel MUMPS solver as an
external executable, which is a full MPI application. The required input and output data for and
from the solver are stored in binary files on the local hard disk of the corresponding platform.
By using this method a hybrid parallelization in combination with OpenMP is possible, due to
the fact that the slave processors will only be used if the solver is called and released afterwards
(analogous to OpenMP). The time required for writing and reading the data did not exceed 2 %
of the total solver time for one CPU for all investigated examples. This can be tolerated com-
pared to the performance increase due to the parallelization. In (Schrader 2004) a detailed des-
cription of the implementation of the sequential and the parallel version in SLang and the gen-
eration of the required libraries BLACS and ScaLAPACK can be found. Investigations in
(Schrader 2004) and by the authors have shown, that the PORD and METIS ordering algorithms
lead to the most efficient solving. For this reason only the results obtained with these algorithms
will be presented for the numerical examples. The sequential MUMPS solver is used in the
same section to point out how small the additional time requirement is, due to the data storage
concept for the external solver.
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5 Parallel computation of system matrices and vectors using OpenMP
By using OpenMP (OpenMP 2002) , which can only be applied on shared memory systems,
time consuming loops can be parallelized with little programming effort. The computation of
the stiffness matrices and internal force vectors of finite elements is realized in SLang indepen-
dently for each element and the resulting arrays are stored in the element structure. Therewith
the main loop summing up all element contributions can be easily parallelized. OpenMP simply
needs the following parallel construct for ANSI-C programming directly in front of the loop:
#pragma omp parallel shared(counter, error, ...) private(...)
#pragma omp for schedule(dynamic,1) nowait

for(counter = 0; counter < element_number; counter ++)
{

/* compute single finite element matrix */
...

}

The loop counter, an error identifier and other controlling variables are defined as shared vari-
ables for all processors. Private variables are these, which have to be a local copy for each pro-
cessor. The dynamic schedule type enables OpenMP to choose the optimal processor usage.
During the meshless calculations done by the authors the stiffness matrix and internal force vec-
tor are computed via numerical integration over triangular integration cells (Most and Bucher
2003). In general the domain is discretized with a few meshless zones, each containing a large
number of nodes and integration cells. The resulting objects are stored in compact form for each
meshless zone. This means that the parallelization of the loop over the integration cells can not
be done independently as for finite elements. The problem can be solved by defining a critical
region, where the local stiffness matrix of one integration cell is transferred onto the stiffness
matrix of the meshless zone, so that only one processor executes this part in a given time:
#pragma omp parallel shared(counter, error, ...) private(...)
#pragma omp for schedule(dynamic,1) nowait

for(counter = 0; counter < triangle_number; counter ++)
{

/* compute local matrix of integration cell*/
...
#pragma omp critical
{

/* transfer integration cell matrix to matrix of meshless zone */
...

}
}

6 Examples
To analyze the efficiency of the presented hybrid parallelization technique several numerical
examples have been investigated on two different hardware configurations. The first platform
was a Pentium 4 based 32-bit Linux cluster with three nodes, each having two CPUs with 2.4
GHz and 4 GB shared memory, connected via a Gigabit Ethernet switch. The second system
was the Altix 3000 super computer manufactured from SGI with 40 Itanium II processors (64
bit) with 900 MHz, connected with high speed Numa Link and 40 GB shared memory. The
calculations have been carried out on the first system by using up to 4 processors for the MPI
solver and the 2 processors of one node for the OpenMP parallelized system matrix computation
and on the second system with up to 32 processors for both parallel algorithms.

As comparison to the efficiency of the parallel solver the above mentioned sequential solvers
with TLDL  factorization and geometrical (Geom.) and spectral (Spect.) band width reduction
and approximate minimum degree ordering (Vondr.) are used.
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6.1 Linear finite element analysis of three-dimensional problems
6.1.1 Cantilever subjected to a single load
This example investigates the scalability of the presented parallel solver and the parallel finite
element matrix and vector computation by studying a simple cantilever with a length of m1 and
a quadratic cross section of mm 1.01.0 × . Material properties are assumed as 26 /102 mNE ⋅=
for the Young’s modulus and 3.0=ν  for the Poisson’s ratio. The cantilever is loaded by a point
load of N1  as shown in Figure 1. Due to the slenderness of the system the application of the
preconditioning algorithms lead to a stiffness matrix with small band width as illustrated in
Figure 2. Two different finite element models have been investigated: first a discretization with
640 27-node hexahedral elements and 6561 nodes, resulting in 19612 degrees of freedom, and
another model using 5120 27-node elements with 46529 nodes and 139516 degrees of freedom.

Figure 1: Cantilever finite element model with load
and boundary conditions for 640 elements

Figure 2: Optimized stiffness matrix by using
spectral reduction

The scalability of the parallel algorithms was investigated first on the Altix 3000 computer for
both models. In Figure 3 the computing time required for a single factorization and solution step
is shown as a function of the applied number of processors. For this analysis the external order-
ing algorithms PORD and METIS have been used and are compared to the theoretical ideal line
obtained from the computational time by using one processor. Both algorithms lead to a very
good speed-up for the larger model. For the smaller model a good efficiency up to 4 CPUs can
be seen. In Figure 4 the scalability of the stiffness matrix computation is shown, which
corresponds to an almost perfect speed-up until 16 processors.

Figure 3: Computational time for one factorization
and solution step on the Altix 3000

Figure 4: Computational time for the stiffness matrix
calculation on the Altix 3000

In Table 1 a detailed list of the computing time for one solver call is given for all presented se-
quential and parallel solvers. It is distinguished between the time needed for the factorization
and the solution and the preconditioning and the solver handling, such as the storage of the data
and the call of the MPI environment for the external MPI solver. The empty fields indicate that
the calculation for this configuration was stopped because of limited memory. It can be seen that
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the sequential MUMPS solver is already faster than all the other presented solvers. The scalabil-
ity of the parallel solver for the larger model on the Altix 3000 is almost ideal and on the Linux
Cluster it is about ( )n2log5.1  which is still a very good speed-up, in consideration of the required
communication between the Cluster CPUs. The solver handling for the MPI version takes on the
Altix 3000 nearly 1.5 %  for the smaller and 0.2 % for the larger model and on the Cluster near-
ly 8 % and 1 %, respectively, which shows that the presented external concept does not lead to
remarkable higher computational costs. Table 2 shows the efficiency of the OpenMP paral-
lelized stiffness matrix and internal force vector computations. As already mentioned in Figure
3 the speed-up on the Altix 3000 platform is almost ideal, which corresponds to the results ob-
tained on the Linux Cluster, by using both processors of one cluster node. This example shows
that the independent usage of MPI and OpenMP parallelization techniques does increase the
efficiency of the presented numerical simulation on both platforms as expected.

Table 1: Comparison of computational time in seconds for the different matrix solvers
(a: time for factorization and solution, b: time for preconditioning and solver handling)

DOFs Geom. Spect. Vondr. MUMPS seq. MUMPS parallel
Metis Pord Metis Pord

1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU
Linux Cluster

19612 a) 29.21 24.11 4.87 5.33 4.49 5.36 3.17 3.24 4.65 3.50 5.37

19612 b) 0.07 2.44 0.21 1.12 0.62 1.43 1.46 1.62 0.98 1.01 1.08

139516 a) - - 399.44 268.00 207.94 276.66 183.93 118.63 203.47 - 122.29

139516 b) - - 16.88 13.09 6.86 15.39 15.11 15.06 9.01 - 8.96

Altix 3000

19612 a) 21.66 14.86 15.72 9.46 7.49 9.47 5.35 3.16 7.50 5.50 4.66

19612 b) 0.12 8.72 0.35 1.68 1.06 1.83 1.88 1.89 1.18 1.27 1.35

139516 a) 4665.0 3200.5 3028.9 449.08 379.84 449.05 232.57 127.13 378.84 210.91 93.08

139516 b) 1.93 300.40 52.13 19.27 11.54 19.95 20.42 20.45 12.36 12.80 13.05

Table 2: Comparison of computational time in seconds for the system matrix and vector calculation

DOFs Linux Cluster Altix 3000
Stiffness matrix Internal forces Stiffness matrix Internal forces
1 CPU 2 CPU 1 CPU 2 CPU 1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU

19612 2.06 1.04 0.48 0.24 2.06 1.05 0.54 0.81 0.44 0.23

139516 17.13 8.36 3.76 1.94 16.52 8.54 4.30 6.68 3.67 1.89

6.1.2 Investigation of a compact 3D block
This example is used to present the efficiency of the parallel solver on a compact 3D structure
with observable higher band width of the stiffness matrix than in the previous example. For this
purpose a cubic block with m1  edge length is investigated by using two finite element models
with 512 elements, 4913 nodes and 14739 degrees of freedom and with 4096 elements, 35937
nodes and 106928 degrees of freedom, respectively. 27-node hexahedral finite elements have
been used again. The load and boundary conditions are shown for the smaller model in Figure 5.
The displayed linear distributed load is assumed to be 16 mN / . The Young’s modulus and
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Poisson’s ratio have been taken as 23 /100.1 mNE ⋅=  and 3.0=ν , respectively. Figure 6 shows
the optimized stiffness matrix, which is much more compact than in the previous example.

Figure 5: Compact block model with load and
boundary conditions for 512 elements

Figure 6: Optimized stiffness matrix by using
spectral reduction

In Figures 7 and 8 as well as in Tables 3 and 4 the obtained numerical results are shown analo-
gous to the previous example. It can be concluded, that the scalability for the solver and the
matrix computation is very good again. The application of the presented parallel solver leads to
a significant efficiency increase compared to the other solvers. Both numerical examples in
section 6.1 verify the applicability of the hybrid parallelization technique for linear problems.

Figure 7: Computational time for one factorization
and solution step on the Altix 3000

Figure 8: Computational time for the stiffness matrix
calculation on the Altix 3000

Table 3: Comparison of computational time in seconds for the different matrix solvers
(a: time for factorization and solution, b: time for preconditioning and solver handling)

DOFs Geom. Spect. Vondr. MUMPS seq. MUMPS parallel
Metis Pord Metis Pord

1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU
Linux Cluster

14739 a) 210.40 160.36 9.73 7.19 10.34 8.15 4.79 3.28 11.12 7.56 7.04

14739 b) 0.19 1.69 1.12 1.52 1.19 1.87 1.80 1.85 1.45 1.52 1.55

106928 a) - - - 679.28 1278.2 689.26 582.64 221.35 1300.8 - -

106928 b) - - - 16.53   15.00 18.27 17.27 17.27 16.87 - -

Altix 3000

14739 a) 293.85 219.30 37.28 11.95 16.82 11.95 7.04 3.25 16.80 8.91 4.35

14739 b) 0.37 3.75 2.56 2.09 1.97 2.19 2.25 2.29 2.10 2.15 2.16

106928 a) 81305 107746 41647 873.17 1446.3 878.07 544.91 298.29 1448.1 727.63 318.41

106928 b) 11.7 76.8 47.51 24.06 26.33 26.35 24.46 24.83 26.81 27.23 27.35
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Table 4: Comparison of computational time in seconds for the system matrix and vector calculation

DOFs Linux Cluster Altix 3000
Stiffness matrix Internal forces Stiffness matrix Internal forces
1 CPU 2 CPU 1 CPU 2 CPU 1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU

14739 1.65 0.83 0.37 0.18 1.62 0.85 0.43 0.64 0.36 0.20

106928 13.78 6.96 3.01 1.52 12.77 6.69 3.40 5.10 2.89 1.49

6.2 Mesoscale fracture analysis of concrete with finite elements and
rotating crack model

In this example the applicability of the parallelization techniques to simulations of concrete
structures at the mesoscale is shown. At this length scale the material structure is explicitly re-
presented by the numerical model, e.g. concrete is separated into three main components: the
homogeneous mortar matrix, the aggregates and interfacial zone between them. A finite element
discretization, which explicitly represents the boundary between aggregates and matrix, is used
for numerical simulations. Linear elastic material behavior is assumed for the aggregates and the
standard rotating crack model (Jirásek and Zimmermann 1998) is applied to the mortar matrix
to simulate tensile failure. Rigid bond between the constituents is assumed. A detailed descrip-
tion of this mesoscale model for concrete, e.g. the geometry generation, the applied material
models and the numerical simulations, is given in (Eckardt et al. 2004). The resolution of the
material structure depends on the number of finite elements. Numerical models for the simula-
tion of concrete at the mesoscale with aggregates from a diameter of 2 mm normally have a
large number of degrees of freedom. Due to the applied nonlinear material law an iterative so-
lution scheme is required. The numerical effort increases with the number of degrees of freedom
and the number of cracked elements. The use of parallel solvers and parallel computation of sys-
tem matrices is required to reduce the time effort of the simulation.

In Figure 9 the specimen geometry, material parameters and the distribution of the aggregates is
illustrated. A constant displacement yu  is applied in increments along the upper edge. For the

two dimensional simulation plane stress is assumed. The thickness of the specimen is 1 mm.
Two triangular finite element meshes, with different element sizes, are used to show the scal-
ability of the parallelization techniques. The coarse model has 92506 degrees of freedom, 91906
elements and 46354 nodes, and the fine mesh consists of 367624 elements and 184613 nodes
and has 368824 degrees of freedom. In Figure 10 the first principal stress within the mortar
matrix under uniaxial tension is plotted immediately after first cracks initiate. It shows the in-
homogeneous stress distribution in the material structure under uniform loading conditions.

material parameters:

• mortar matrix
Ec = 34 000 N/mm²
νc = 0.18
fct = 4.0 N/mm²
Gfc = 0.200 Nmm/mm²

• aggregates
Ea = 90 000 N/mm²
νa = 0.22

Figure 9: uniaxial tension test - concrete specimen, particle dis-
tribution, dimensions, material properties

Figure 10: principal stress σ11 [N/mm²]
in the mortar matrix
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In Table 5 the time effort for the computation of the stiffness matrix and the internal force vec-
tor is given. The usage of two processors significantly reduces the computational time compared
to one CPU. Due to the simplicity of the material law and the small number of cracked ele-
ments, the utilization of more than two processors does not improve the efficiency of the
computation any further.

Table 5: Comparison of computational time in seconds for the system matrix and vector calculation

DOFs Linux Cluster Altix 3000
Stiffness matrix Internal forces Stiffness matrix Internal forces
1 CPU 2 CPU 1 CPU 2 CPU 1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU

92 506 3.63 2.04 2.88 1.52 5.45 3.14 3.01 4.39 2.66 2.45

368 824 14.42 8.95 11.45 6.42 21.91 12.59 11.95 17.40 10.41 8.37

The time for the factorization and the solution step is illustrated in Table 6. The computational
effort and the memory supply of the Vondrá ek solver is significantly larger compared to the
MUMPS package. Two preconditioner METIS and PORD are analyzed for MUMPS. The diffe-
rence in the computational time for solving is negligible. For preconditioning METIS normally
requires less time than PORD. For the fine finite element mesh a good scalability of the solver
is observed up to 8 CPUs.  On the shared memory system Altix 3000 the usage of 4 processors
decreases the computational time nearly by a factor of 4 compared to 1 CPU. The time for pre-
conditioning becomes eminent. An application of a parallel preconditioner would be reasonable.
The example shows that the utilization of the parallel MUMPS package can significantly reduce
the computing time for mesoscale simulations.

Table 6: Comparison of computational time in seconds for the different matrix solvers
(a: time for factorization and solution, b: time for preconditioning and solver handling)

DOFs Vondr. MUMPS seq. MUMPS parallel
Metis Pord Metis Pord

1 CPU 2 CPU 4 CPU 8CPU 1 CPU 2 CPU 4 CPU 8 CPU
Linux Cluster

92 506 a) 71.14 3.09 3.22 3.12 1.83 1.69 - 3.26 2.14 1.89 -

92 506 b) - 1.03 1.50 1.20 1.30 1.45 - 1.69 1.78 1.92 -

368 824 a) - 23.18 24.25 23.02 12.84 8.73 - 23.99 13.84 13.01 -

368 824 b) - 5.44 6.76 5.95 6.27 6.85 - 7.26 7.14 7.68 -

Altix 3000

92 506 a) 306.31 5.23 5.52 5.32 2.92 1.80 1.49 5.68 3.40 1.97 1.69

92 506 b) - 1.33 1.96 1.43 1.63 1.65 1.74 2.04 2.25 2.30 2.49

368 824 a) 9790.38 39.32 41.90 41.62 22.99 10.63 6.12 42.24 19.01 10.44 6.59

368 824 b) - 6.84 9.13 7.15 7.82 7.98 8.28 9.42 10.30 10.46 10.75

6.3 Simulation of a plastification process using a 2D meshless dicretization
of the domain

Within this example the presented parallelization techniques will be verified for a nonlinear
simulation of a plastification process by using a meshless discretization. The standard v. Mises
yield criterion with linear hardening and associated flow rule is used in the material model. As
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meshless method an adapted version of the “Natural Element Method” (Unger 2004) is applied.
The system with loading and boundary conditions is shown in Figure 11. The edge length and
the thickness of the quadratic panel are m1 , respectively. The material is assumed to be homo-
geneous with 210 /103 mNE ⋅=  for the Young’s modulus, 3.0=ν  for the Poisson’s ratio,

Yσ 26 /102 mN⋅=  for the yield stress and 210 /101 mNH ⋅=  for the plastic hardening modulus.
Due to the loading and boundary conditions a uniaxial stress state is implied within the struc-
ture. Two models with 427 nodes / 8319 degrees of freedom and 16643 nodes / 33023 degrees
of freedom have been analyzed for a complete linear and for a complete plastified material state.
The numerical effort for the stress integration on the integration point level is much higher for
the plastic state than for the linear state. This can be seen in Figure 12, where the required time
for the stiffness matrix computation of the larger model on the Altix 3000 platform is shown for
both cases as a function of the CPU number.

Figure 11: Quadratical panel with load and boundary
conditions

Figure 12: Computational time requirement for
stiffness matrix calculation

The figure indicates a good scalability for the plastified state up to 16 processors. For the linear
model a speed-up slightly below ( )n2log5.1  can be seen until 4 CPUs. The influence of the critical
region in the OpenMP parallelized loop, mentioned in section 5 is much higher for the linear
state. By using more than 4 CPUs, this critical region results in a decrease of the efficiency due
to the interference of the processors. If the material is completely plastified, this influence
remains small enough to obtain an almost ideal scalability because of the time consuming stress
integration. In Table 7 a detailed list of the determined computing times for the calculation of
the stiffness matrix and the internal force vector is given for the Altix 3000 and the Linux
Cluster platform.

Table 7: Comparison of computational time in seconds for the system matrix and vector calculation
(a: material complete linear, b: material complete plastified)

DOFs Linux Cluster Altix 3000
Stiffness matrix Internal forces Stiffness matrix Internal forces
1 CPU 2 CPU 1 CPU 2 CPU 1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU

8319 a) 0.66 0.43 0.33 0.22 1.52 1.02 1.03 1.13 0.64 0.45

8319 b) 14.09 7.56 13.43 7.10 16.48 8.10 4.14 15.82 7.69 3.74

33023 a) 2.48 1.64 1.27 0.91 6.25 4.43 3.89 4.57 2.88 1.76

33023 b) 56.23 32.00 57.38 30.66 87.85 46.46 27.10 86.28 44.67 24.29

In Table 8 the time for a single factorization and solution step for the different solvers is shown
for linear and plastified material. All solvers need the same time for both states, which shows
that they perform independently from the material state and the stiffness matrix computation.
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This example points out, that the presented hybrid parallelization technique can be successfully
applied for nonlinear problems.

Table 8: Comparison of computational time in seconds needed for factorization and solution
(a: material complete linear, b: material complete plastified)

DOFs Geom. Spect. Vondr. MUMPS seq. MUMPS parallel
Metis Pord Metis Pord

1 CPU 2 CPU 4 CPU 1 CPU 2 CPU 4 CPU
Linux Cluster

8319 a) 4.08 3.33 1.75 0.67 0.64 0.68 0.40 0.37 0.66 0.45 0.52

8319 b) 4.08 3.34 1.80 0.67 0.65 0.68 0.36 0.38 0.66 0.44 0.53

33023 a) 65.57 50.97 15.57 5.12 6.08 5.14 2.97 2.35 5.99 3.66 3.20

33023 b) 66.14 50.99 15.92 5.13 6.12 5.15 3.02 2.34 6.01 3.64 3.14

Altix 3000

8319 a) 2.17 1.77 5.06 1.15 1.12 1.15 0.64 0.44 1.12 0.72 0.51

8319 b) 2.17 1.76 5.29 1.14 1.11 1.15 0.64 0.44 1.12 0.73 0.52

33023 a) 60.78 46.59 55.88 8.97 10.16 8.97 4.96 2.74 10.15 5.55 2.93

33023 b) 60.76 46.52 57.24 8.95 10.14 8.95 4.95 2.74 10.14 5.52 2.97

7 Conclusions
In this paper a hybrid parallelization technique using OpenMP and MPI is presented. OpenMP
is used to parallelize the computation of the stiffness matrices and internal force vectors of the
integration cells. If a finite element discretization is used, this cells coincide with the elements
and the main loop can directly be parallelized. For a meshless discretization the loop over the
triangle integration zones is taken. There a critical region has to be defined for the transfer of the
local matrices of the cells to the matrix of the meshless zone. The solution of the systems of
equations is obtained by calling the MPI-based MUMPS solver as an external application. The
interaction between SLang and the solver is realized via an input and output binary file. The
MPI-used processors will be released after each solver call and can be used for OpenMP in the
next iteration step.

The presented algorithms have been verified for linear simulations for two examples using
three-dimensional finite element models. The parallel solver and the computation of the system
matrices and vectors show a very good scalability for large system sizes. The usage of the paral-
lel solver on a distributed memory system is less efficient than on a shared memory computer,
because of the additional network communication between the cluster nodes. For nonlinear
applications the authors performed two further examples. The first one investigated the meso-
scale fracture behavior of concrete with finite elements and a rotating crack model and the
second example was the simulation of a plastification process, using a meshless dicretization
based on the Natural Element Method. Both examples could verify the independency of the
OpenMP and MPI parallelized SLang commands and the applicability of the hybrid method for
nonlinear simulations.
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