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Summary 
The paper investigates accuracy of deflection predictions made by the finite element package 
ATENA and design code methods ACI and EC2. Deflections have been calculated for a large 
number of experimental reinforced concrete beams reported by three investigators. Statistical 
parameters have been established for each of the technique at different load levels, separately 
for the beams with small and moderate reinforcement ratio. 

1 Introduction 
Civil engineers for analysis of reinforced concrete structures can choose between traditional 
design code methods and numerical techniques. Although design code methods ensure safe 
design, they do not reveal the actual stress-strain state of cracked structures and often lack 
physical interpretation. Numerical methods which were rapidly progressing within last decades 
are based on universal principles and can include all possible effects such as material 
nonlinearities, concrete cracking, creep and shrinkage, reinforcement slip, etc, being responsible 
for complexity of this material. In order to choose a particular calculation method, engineers 
should be aware of accuracy of different techniques. 

This paper investigates accuracy of deflection predictions made by the finite element package 
ATENA and the design code methods ACI and EC2. Deflections have been calculated for a 
large number of experimental reinforced concrete beams reported by three investigators. 
Statistical parameters have been established for each of the technique at different load levels, 
separately for the beams with small and moderate reinforcement ratio. 

2 Deflection calculation methods of design codes 
In this section, two design code deflection calculation techniques, i.e. the ACI (ACI Committee 
318 1989) and the EC2 (ENV 1992-1-1 1992) methods are briefly described. 

2.1 Deflection analysis by ACI method 
The curvature of a reinforced concrete member is determined by the classical expression 
κ=M/EcI where EcI is the flexural stiffness. Constant modulus of elasticity of concrete, Ec, was 
offered for all loading stages, but moment of inertia, I, is varying (Branson 1977). Thus, for the 
elastic stage, Ig is written as for the gross concrete section ignoring reinforcement and for the 
load corresponding to the steel yielding Icr is calculated as for the cracked section. For loading 
points between the concrete cracking and yielding of the steel, the following equation was 
derived to express the transition from Ig to Icr that was observed in experimental data (Branson 
1977): 
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Here M is the external moment; Mcr=frIg/yt is the cracking moment; fr=0.643(fc΄)0.5 [Mpa] is the 
modulus of rupture; yt is the distance from centroid to extreme tension fibre; fc΄ is the 
compressive concrete cylinder strength. Deflection for simple beams can be assessed from 

 2
of s lκ=  (2) 

where s is the factor depending on a loading case and supporting conditions; κ is the curvature 
corresponding to the maximum moment, and l0 is the beam span. 

2.2 Deflection analysis by EC2 method 
In the EC2 model, a reinforced concrete member is divided into two regions: region I, 
uncracked, and region II, fully cracked. In region I, both the concrete and steel behave 
elastically, while in region II the reinforcing steel carries all the tensile force on the member 
after cracking. Average curvature is expressed as 

 
1 2(1 )κ ξ κ ξκ= − +  (3) 

where κ1 and κ2 correspond to the curvatures in regions II, and I respectively. A distribution 
coefficient ξ indicates how close the stress-strain state is to the condition causing cracking. It 
takes a value of zero at the cracking moment and approaches unity as the loading increases 
above the cracking moment. The relation gives it 

 2
1 2 ( / )sr sξ β β σ σ=  (4) 

where β1 is a coefficient taking into account the bond properties of the reinforcement, it is taken 
1 for deformed bars and 0.5 for plain (smooth) bars; β2 is a coefficient assessing the duration 
and nature of the loading, it takes a value of 1 for short-term loads and 0.5 for sustained or 
cyclic loads; σsr and σs are the stresses in the tension steel calculated on the basis of a fully 
cracked section respectively under the cracking load and the load considered. 

3 Finite element package ATENA 
The formulation of constitutive relations in FE package ATENA is considered in the plane 
stress state. A smeared approach is used to model the material properties, such as cracks. 
Material properties defined for a point are valid within a certain material volume associated with 
the entire finite element (Červenka, Jendele and Červenka 2003). 

The concrete model used in the analysis has included the following effects of concrete 
behaviour: non-linear behaviour in compression including hardening and softening; fracture of 
concrete in tension based on the nonlinear fracture mechanics; biaxial strength failure criterion, 
reduction of compressive strength after cracking; tension stiffening effect; reduction of the shear 
stiffness after cracking (variable shear retention); fixed direction crack model. 

A fictitious crack model based both on the fracture energy and the exponential crack-opening 
law (Hordijk 1991) was used as the softening model of concrete. 

4 Experimental data employed for comparative deflection analysis 
Present analysis employs experimental data of 49 reinforced concrete beams reported by three 
investigators (Figarovskij 1962, Artemjev 1959, Gushcha 1968). The experimental specimens 
can be categorized as the beams with small and medium reinforcement ratio. Only five beams 
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had reinforcement ratio above 1% (and below 1.3%) and 22 beams had it below 0.7% taken as a 
limit of lightly reinforced beams. 
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Cross-sections and loading of test beams 

All the beams were tested under a four-point bending scheme. Most of the beams had a 
rectangular, but some an inverted T section. Six beams were reinforced with plain bars 
(Figarovskij 1962) while the remaining beams were reinforced with deformed bars. 

l0 Height Width p fcu Author Beams 
m mm mm % MPa 

Figarovskij 30 3.0 248-254 179-181 0.20-1.26 10.5-36.0 
Artemjev 15 3.0 250-264 176-187 0.80-0.91 18.8-53.4 
Gushcha 4 3.6 306-312 133-162 0.28-0.97 30.0-40.8 

 
Main characteristics of the experimental beams employed in the analysis 

p,  %

N
, b

ea
m

s

0

6 (12.2%)

17 (33.8%)

21 (43.5%)

4 (8.4%)

1 (2.1%) 0
0

20

40

60

80

100

120

<= 0.2
(0.2; 0.4]

(0.4; 0.7]
(0.7; 1.0]

(1.0; 1.2]
(1.2; 1.3]

> 1.3

 
Number of beams of different reinforcement ratio intervals 

Experimental mid-span deflections were compared with the ones predicted by all techniques. If 
available, deflections were taken at five load, F, levels, i.e. 40, 55, 60, 70 and 80 % of the 
theoretical ultimate load, Fult, expressed in terms of relative load F̃. 

 ultF F F=%  (5) 
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The experimental points below the cracking limit were excluded from the analysis. This was 
due to two reasons: 1) tests of some beams, particularly those later on subjected to long-term 
loading, were terminated prior to load 0.8Fult; 2) for some beams, particularly those with very 
small reinforcement ratios, the experimental cracking load has exceeded 0.4Fult. Therefore, for 
these beams the load intervals were widened and covered the range of 30 to 90 % of Fult. Still no 
more than five experimental points were taken for each of the beam. 

5 Statistical analysis of deflections predicted by different methods 
This section statistically compares mid-span deflections of the test beams with predictions of the 
design code methods ACI and EC2 and FE package ATENA. Accuracy of a prediction at a 
point has been estimated by means of a relative error taken as 

 cal obsf f∆ =  (6) 

where fobs and fcal are the experimental and the calculated deflections, respectively. 

In the ideal case of infinite amount of experimental data, ∆ as a random variable would follow 
the normal probability distribution law characterized by mean, µ∆, and variance, σ∆² (or standard 
deviation, σ∆). For limited amount of experimental data (as in case of present analysis), the 
corresponding characteristics, i.e. mean, m∆, and variance, s∆², as point estimates can be defined. 
Based on the obtained values for m∆ and s∆, confidence intervals with a given confidence 
probability can be established for mean µ∆ and standard deviation σ∆. In the ideal case when the 
model is fully adequate to experimental results, µ∆=1 and σ∆=0. The postulate of minimum 
variance (σ∆²→0) is decisive in terms of model accuracy (Zarubin and Krischenko 2001). Mean, 
µ∆, is a consistency parameter of a method. Although real fixed values of µ∆ and σ∆ cannot be 
determined, they can be statistically estimated and compared for different calculation methods. 

The statistical analysis has been carried out in the following steps (Neter, Wasserman and Kutner 
1990): the test for outliers; the test for constancy of variance, σ∆²; the test of the relative error ∆ 
for normality; statistical analysis of variance, σ∆², (ANOVA) and mean, µ∆, for different 
deflection prediction methods. The first three steps are to be carried out for validation of the 
statistical analysis whereas the last step covers the statistical analysis itself. Below each of the 
steps is described. 

5.1 The test for outliers 
Inaccurate experimental points called the outliers may violate consistency of the experimental 
data. If possible, such experimental points should be excluded from the statistical analysis; 
otherwise it might be inaccurate or even erroneous. In the present analysis, only one such point 
has been excluded. 

5.2 The test for constancy of variance, σ∆² 
Statistical analysis results characterized by large standard deviation should be carefully dealt 
with. In such case care should be taken to make sure that the obtained results can be grouped 
around one center characterized by the same or similar variance, σ∆². 

In the first statistical analysis carried out for the total experimental data (number of points 
Np=237), large standard deviations were obtained for all three methods: 0.246 for the ACI, 
0.294 for the EC2 and 0.244 for ATENA. This suggested splitting the experimental data into 
two groups based on reinforcement ratio (p≤0.70% and p>0.70%). Further analysis has shown 
that such grouping was not sufficient as standard deviation varied significantly for different load 
intervals. Therefore, the data within the two large groups was divided according to the level of 
the relative load F̃. The following six intervals of relative load have been distinguished: 
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Fourteen experimental points outside the relative load interval [0.30; 0.90] where excluded from 
the analysis. 

Under the assumption of normal probability distribution of the relative error, ∆, basic statistical 
parameters such as mean, m∆, and standard deviation, s∆, as point estimates of mean, µ∆, and 
standard deviation, σ∆, have been calculated for each load, F̃, interval. If standard deviation, σ∆, 
and mean, µ∆, under confidence level γ=0.10 were assumed to be equal for the adjacent load 
intervals, those intervals were combined into one. 

 Reinforcement ratio p<=0.70% Reinforcement ratio p>0.70% 
Intervals I-II III I II III-IV 

Points 49 21 21 24 41 
Estimates m∆ s∆ m∆ s∆ m∆ s∆ m∆ s∆ m∆ s∆ 
ATENA 1.440 0.259 1.184 0.179 1.076 0.212 1.027 0.122 0.990 0.078

ACI 1.188 0.301 0.995 0.239 1.224 0.271 1.073 0.134 0.966 0.055
EC2 1.454 0.304 1.165 0.202 1.116 0.239 0.984 0.128 0.900 0.060

Intervals IV V-VI V VI   
Points 16 17 17 16   

Estimates m∆ s∆ m∆ s∆ m∆ s∆ m∆ s∆   
ATENA 1.073 0.113 1.028 0.090 0.992 0.061 1.003 0.097   

ACI 0.949 0.159 0.868 0.105 0.903 0.040 0.867 0.055   
EC2 1.076 0.163 0.989 0.148 0.851 0.041 0.818 0.057    

Mean and standard deviation for different load and reinforcement ratio intervals 

5.3 The test of the relative error ∆ for normality 
Validation of the normal distribution law has been carried out for each of the methods using 
statistical procedures (the chi-square, the Kolmogorov-Smirnov, and Shapiro-Wilk tests), but is 
not presented herein. It can be concluded that the probability distribution of the relative error ∆ 
practically follows the normal law with mean, µ∆, and standard deviation, σ∆. Therefore, further 
analysis employs the normal law of the probability distribution with the previously estimated 
characteristics: mean, m∆, and standard deviation, s∆. 

5.4 Statistical analysis of variance, σ∆² (ANOVA), and mean, µ∆ 
The minimum of variance, σ∆², was taken as the accuracy criteria of the calculation techniques. 
Although real fixed values of σ∆² cannot be defined, σ∆² for different methods can be compared 
with each other using statistical procedures. Comparison of each technique with the remaining 
two in terms of σ∆² has been carried out for different p and relative load intervals. 

σ²-test Reinforcement ratio p<=0.70% Reinforcement ratio p>0.70% 
Intervals I-II III IV V-VI I II III-IV V VI 

ATENA-ACI = = = = = = > > > 
ATENA-EC2 = = < < = = > > > 

ACI-EC2 = = = < = = = = =  
Test for variance, σ∆², under assumed probability P=1-α=0.90 

As noted previously, mean, µ∆, as the parameter characterizing consistency of a calculation 
method, ideally should be equal to unity. This as a two-sided test (alternatives: H0: µ∆=1, and 
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Ha: µ∆≠1) has been statistically verified for all the calculation techniques with the assumed 
probability P=1-α=0.90 where α (taken as 0.10) is a risk of making a Type I error (discarding 
true hypothesis) (Zarubin and Krischenko 2001). 

µ-test Reinforcement ratio p<=0.70% Reinforcement ratio p>0.70% 
Intervals I-II III IV V-VI I II III-IV V VI 
ATENA Ha Ha Ha H0 H0 H0 H0 H0 H0 

ACI Ha H0 H0 Ha Ha Ha Ha Ha Ha 
EC2 Ha Ha Ha H0 Ha H0 Ha Ha Ha  

Test for mean, µ∆, under assumed probability P=1-α=0.90 

Reinforcement ratio p<=0.70% Reinforcement ratio p>0.70% 
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Confidence intervals of mean, µ∆, and standard deviation, σ∆, under confidence probability γ=0.90 

Confidence intervals under given probability γ=0.90 have been established for mean, µ∆, and 
standard deviation, σ∆. Graphical presentation of the confidence intervals serves as an 
illustrative tool of the prediction errors for different reinforcement ratio and load levels. If these 
diagrams concerning variation of σ∆ are intended for more qualitative observation of prediction 
differences of the calculation techniques, the test for consistency can be visually checked: 
alternative H0 can be accepted, if unity is within the confidence intervals. 

A combined estimation of standard deviation and mean, can be expressed in terms of coefficient 
of variation: 

 s m∆ ∆ ∆δ =  (8) 
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Reinforcement ratio p<=0.70% Reinforcement ratio p>0.70% 
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Cofficient of variation δ∆ for the methods uder investigation at different load and reinforcement ratio intervals 

6 Results and conclusions 
Comparative statistical analysis of deflections calculated by the ACI and EC2 design codes and 
finite element software package ATENA has been carried out for 49 experimental reinforced 
concrete beams reported by three investigators. Deflections were calculated at four or five 
loading levels for each of the beam within load interval ranging from 30 to 90% of the 
theoretical ultimate load. The data points corresponding to the loads smaller than the cracking 
load were excluded from the analysis. Accuracy of the predictions has been assessed by 
statistical parameters such as mean and standard deviation calculated for relative deflections, 
∆=fcal/fobs. The following conclusions can be drawn: 

Lightly reinforced members can be considered as a particular case of deflection analysis as the 
stress-strain state and curvatures are significantly influenced by the effects of cracked tensile 
concrete. Since tensile strength of concrete is a highly dispersed value, far less accurate 
deflection predictions (in terms of standard deviations) have been made by all the methods for 
the lightly reinforced beams in comparison to the beams with moderate reinforcement ratios. 

Standard deviations varied with change of load. The largest errors were obtained for the 
smallest loads, i.e. the loads close to the cracking ones. The errors have decreased with increase 
of load. 

For the lightly reinforced beams, the ACI method and ATENA have provided similar accuracy 
in terms of variance under given probability, P=0.90. Less reliable predictions where made by 
the EC2 method for the load exceeding 60% of the ultimate load. 

In most cases deflections were overestimated at the initial load intervals close to the cracking 
load. Justification for that were large standard deviations. Excepting the predictions by ATENA 
for the beams with moderate reinforcement ratio, there was a tendency of reduction of mean 
value with increasing load. At higher loads mean is well below unity for the ACI and EC2 
methods. It can be explained by the effect of plastic strains in the compressive concrete at the 
advanced stress-strain states which is not assessed by the design code methods. Although the 
effect of plastic strains is less significant for underreinforced members, deflections are 
underestimated by the ACI method at large loads. This is not the case for the EC2 which for 
lightly reinforced beams has given very similar mean relative deflections to ATENA 
predictions. 
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For the beams with moderate reinforcement ratio (p>0.70%), all the methods have predicted 
deflections with similar accuracy excepting the load interval 0.50≤F̃<0.70 where predictions by 
the ACI and EC2 methods were more accurate in respect to ATENA. In fact, the above load 
interval covers the service load. Accurate prediction of deflections at service loads has been of 
prime importance to the design code methods. 

In a combined estimation of standard deviation and mean, for lightly reinforced members 
ATENA has produced the most accurate estimates in terms of coefficient of variation. 
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