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Summary 

In this paper we present a computer aided method supporting co-operation between different 
project partners, such as architects and engineers, on the basis of strictly three-dimensional 
models.  The center of our software architecture is a product model, described by the Industry 
Foundation Classes (IFC) of the International Alliance for Interoperability (IAI). From this a 
geometrical model is extracted and automatically transferred to a computational model serving 
as a basis for various simulation tasks. In this paper the focus is set on the advantage of the fully 
three-dimensional structural analysis performed by p-version of the finite element analysis. 
Other simulation methods are discussed in a separate contribution of this Volume (Treeck 
2004). The validity of this approach will be shown in a complex example. 

1 Introduction 

A strictly three-dimensional modelling technique is considered as a basis for a structural 
simulation using high order solid finite element analysis. This approach is part of an advanced 
framework which serves as a preprocessor based on three-dimensional models for general 
numerical simulations. Besides the structural analysis, the framework currently supports indoor 
air flow modelling, combined with a multi-zone network model for the building energy 
simulation. Using the Eurostep IFC Toolbox (Eurostep 2000), being an object oriented C++ 
implementation of IFC scheme representations and providing interface functionalities to access 
and manage instances of a product model, we derive an intermediate geometric model from the 
various geometric representations contained within the IFC building product model data. Since, 
among others, each IFC object contains its individual BRep representation, we create a 
'consistent' (e.g. free from gaps) and 'corrected' (e.g. due to intersections) geometric model 
based on the ACIS geometric kernel (ACIS 2004). In a next step, this geometric model is 
decomposed into a so-called connection model, which consists of ACIS bodies and faces. 
Having this specific set of geometric objects, the numerical discretization of the geometry is 
initiated. For the structural analysis with the p-version of the finite element method, we present 
the automatic generation of a mesh with hexahedral elements based on the original IFC data set. 
Thereby the hexahedral geometric objects inherit all attributes from their parents, information 
about their generation history and their neighborhood. 

The outline of the paper is as follows: In the next section we give a very short introduction into 
the basic ideas and advantages of the p-version of the finite element method. Section 3 describes 
the algorithms transferring the architectural model to a three-dimensional finite element model 
and in Section 4 a complex example is discussed. 

2 A high order solid finite element formulation 

In principle, the classical finite element method (h-version) is well suited to simulate 1-, 2- and 
3-dimensional structural problems. Yet, it demands for element shapes having an aspect ratio 
not far from one, meaning that, for example, three-dimensional elements should have element 
edges of more or less equal size. If this restriction is violated, low accuracy or 'locking' may 
occur. As a consequence, a discretisation of thin-walled structures like slabs, plates or shells 
with hexahedral tri-linear elements would demand for a very large number of degrees of 
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freedom, as the size of  the elements would be limited by their (small) thickness. Therefore, 
dimensionally reduced models like Reissner-Mindlin-plates or Naghdi-shells are used in most 
practical applications. As, on the other hand, slabs or plates are strictly three-dimensional 
geometrical objects in an architectural building model, a transfer from the architectural to the 
classical structural model requires reduction of dimension, being error-prone and (to the 
knowledge of the authors) not being performable automatically in general. 

As an alternative to dimensionally reduced formulations for an approximation of thin-walled 
structures, we apply a strictly three-dimensional continuum approach of high order. The p-
version of the FEM (Szabó 1991) offers a consistent and accurate way to implement solid 
elements having a very large aspect ratio (up to a few hundred). Due to the use of the blending-
function method (Szabó 1991), the geometry of the structure may be accurately discretized. The 
implementation is based on a hexahedral element, allowing for an anisotropic Ansatz of the 
displacement field. The polynomial degree of each separate component of the displacement 
field can be chosen individually and may also be varied in the three local directions of the 
element. This anisotropic Ansatz allows the efficient computation of three-dimensional plate- 
and shell-like structures. A transition from thin- to thick-walled constructions is thus possible 
without the necessity to couple models of differing dimensions and without imposing any 
restrictions on the (three-dimensional) kinematics of the structure. The underlying hierarchic 
finite element concept has several advantages over classical dimensionally reduced approaches. 
The assumptions of the displacement field in thickness direction are introduced during the 
discretization and not prior to that as it is done in the semi-discretization of classical shell 
elements. Therefore the model error, related to every plate or shell theory, turns into the 
discretization error of the strictly three-dimensional approach, which can even be controlled by 
adaptively increasing the polynomial degree in thickness direction. In a similar way, the 
polynomial degree in in-plane can be adaptively controlled (Rank 2004). 

The element formulation used here also allows for nonlinear computations. Different model 
problems, like linear elasticity (Düster 2001, Szabó 2003), thermoelastic problems (Düster 
2002/2), elastoplasticity (Düster 2002/1) and also hyperelasticity (Düster 2003) have been 
considered. 

3 From geometric models to the finite element analysis 

3.1 Model transformation 
Exchange of building model data in the construction and facility management industries is 
standardized by the International Alliance for Interoperability (IAI), providing its Industry 
Foundation Classes (IFC). The goal of this product model standard is to define an integral, 
object-oriented and semantical model of all components, attributes, properties and relationships 
of and within a building model. The IFC product model is specified using the modeling 
language EXPRESS, which has been used to define STEP based product models within ISO 
10303 before. Since 2002, the current release IFC 2.x is certified as ISO/PAS 16739 standard. 
For further information refer to (IAI 2003) and the references therein.  

Although this building model stores the complete geometry of a construction, it is not directly 
adequate for numerical simulation, as it only implicitly describes the topology and the mutual 
connections of different structural components. The IFC-standard, for example, allows to define 
a room by its floor plan and corresponding heights, and openings for windows in a wall by their 
relative position to an 'anchor point'. To make the topology and the connections explicit, we 
therefore define further representations of the building's geometry. First we derive from the 
building model (IFC) a boundary representation model (BRep-model) with attributed objects. 
This is done by using the IFC-Eurostep Toolbox (Eurostep 2000) in combination with the 
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geometric modeler ACIS from Spatial Corp. (ACIS 2004) to perform the transformation into the 
BRep-model. As a second step, the geometric model is decomposed into a so-called 'connection 
model'. This consists of coupling objects, being bodies at all location where structural 
components are in plane contact, and difference objects only being in contact with other 
difference objects at nodes or along common edges. 

We assume that after decomposition, coupling objects possess hexahedral structure while 
difference objects can be described by sweeping of a planar polygonal domain. It should be 
mentioned that this approach does not aim at meshing general spatial structure into hexahedral 
elements but is capable of decomposing objects being related to typical building elements, like 
plates, beams, columns and slabs. 

3.2 Connection model definition 
Consider a consistent geometric building model 

�
 �  � ³ as a set of one or more BRep bodies. 

Without given a precise definition of consistency, we assume that the building model is free 
from 'gaps' and there are no 'overlaps' of building elements. We distinguish between the 
following types of intersection of objects (Figure 1): 

• Type NEF. The intersection of objects with adjacent faces consists of nodes, 
edges and faces. 

• Type NE. The intersection of objects with adjacent edges consists of nodes and 
edges. 

• Type N. The intersection of objects with adjacent nodes consists of nodes only. 

Objects can thus be characterized according to their intersections with other objects. Based on 
their different semantics, they are partitioned into a set of coupling objects MK and into the set 
of difference objects MD (Figure 2). 

Each coupling and difference object is itself a closed BRep object being described by nodes, 
edges and faces. Intersection between difference objects are of type N or NE, between coupling 
objects of type N, NE or NEF and between difference and coupling objects of type N, NE or 
NEF. 

The set of coupling objects MK are further partitioned into the set of coupling objects of the 
original model MK1 and the set of coupling objects of the connection model MK2. The 
decomposed geometric model, the connection model, contains the aggregated set of objects MC. 
We define: 

MK1, MK2 �  MK,   MK1 �   MK2 = �    and  MK1 �  MK2 = MK �  MC (1) 

MK �  MD = � ,   MK �  MD = MC (2) 



Page 4 of 9 

 

           

Figure 1: Intersection types N, NE and NEF 

 

          
Figure 2: Connection model with coupling and difference objects 

3.3 Decomposition algorithm 

We consider a geometric building model 
�

 �  � ³ consisting of a set of n BRep-objects � k: 

�
k 

�
 � ,    k = 1, …,n  and (3) 

�
   �

k = � . (4) 
 

 

 

Figure 3: Intersection face fi ,j with normal vector ni ,j of two objects � i and � j 

According to Figure 3, for each pair of objects � i and � j of this set, for which an intersection 

face exist, we run the following algorithm using the Boolean operations intersection  � b  and 
difference  \b  resulting in the connection model with the above described objects: 

 

Type N Type NE Type NEF 

coupling object 

difference objects 

k=1,…,n 

�
i 

�
j 

fi,j 

ni,j 
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1.  Create imprint face fi,j 

2.  Create normal vector ni,j 

3.  Create copy � í of � i 

4.  Move � í  along –ni,j by � d 

5.  Create copy � j́ of � j  

6.  a1 := � í   � b  � j́   �   MK1 

7. d1 := � i   �   MD  

8. d2 := � j   \b  a1  �   MD 

 

After decomposition, coupling objects possess hexahedral structure while difference objects are 
assumed to be obtained from sweeping two-dimensional polygonal domains. 

 

Example: To demonstrate the basic idea, Figure 4 to Figure 6 show a set of objects and their 
decomposition into a connection model. Knowing about all object relations, for each pair of 
objects imprint-faces are generated and the model is decomposed. Accordingly, the algorithm is 
continued recursively. 

 

Figure 4: Configuration �  with the objects � 1, � 2 and � 3 

       
Figure 5: Recursive application of the algorithm 

 

Figure 6: Connection model with coupling objects a1, a2, a3, b1 and difference objects d1, d2, d3 

_______ 

�
1 

�
2 

�
3 

d1 

d3 

d2 

a3 
b1 

a2 

a1 
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3.4 Automatic mesh generation with hexahedral elements 

Initial point of the mesh generation is a model which is decomposed by applying the algorithm 
of the preceding section. Coupling and difference objects are meshed in an explicitly given 
sequence and with type sensitive meshing algorithms. We use either elementary three-
dimensional meshing macros or hexahedral meshes obtained by sweeping 2D quadrilateral 
meshes. In a first run (steps 1 and 2), a reasonably refined mesh for each (separate) difference 
object is defined. Most crucial in meshing is yet the question of generation of compatible 
elements. This demands for a 'second run' in the following steps 3 to 8. Only when the position 
of nodes, edges and faces of hexahedra on coupling objects is inherited to their adjacent 
difference objects, elements without hanging nodes can be guaranteed. 

 The meshing process is executed in the following steps: 

1. Definition of refinement-macro around columns (see 'office tower' in the following 
section). 

2. Meshing of objects dk of MD with a 2D quadrilateral mesh generator. Afterwards 
extrusion of the 2D elements in the third direction. 

3. Assignment of  the discretization of objects dk to the adjacent objects ai via common 
faces. 

4. Refinement of the objects bj of MK2 of reentrant corner. 

5. Refinement of object ai of MK1. This has to be done under consideration of the first 
meshes of all adjacent objects dk for a compatible discretization. 

6. Deletion of first meshes for all dk. 

7. Assignment of the discretization of objects ai to the adjacent objects dk. 

8. Second run of meshing for all objects dk, but now with regard to the already given 
discretization of the region boundary. 

As an example for the meshing algorithm, the following sequence of Figures shows the major 
steps for a simple box model. 

        

Figure 7: Model with free-meshed difference objects dk (left-hand side) and refined coupling objects bj (right-hand 
side) 
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Figure 8: Model with refined coupling objects ai (left-hand side) and assigned discretization onto the difference 
objects dk (right-hand side) 

       

Figure 9: Model with refined coupling objects ai (left-hand side) and aggregated hexahedral objects (right-hand side) 

4 A complex example 

Figure 10 shows a realistic office building with the dimensions of 40 × 30 meters in the ground 
view. The building is constructed by reinforced concrete and consists of two massive inlying 
building cores, six floor plates and supporting columns. For the structural analysis, the curtain 
wall is not considered. Dead load, a vertical live load and horizontal wind load being imposed 
via the curtain wall onto the faces of the slabs is taken into account. 

On the right-hand side of Figure 10 the decomposed structure without the curtain wall is shown. 
On the top of the building the position of the coupling objects being generated because of the 
connection of the inlying building cores and the top level slab as well as the coupling objects 
caused by the connection to the columns can be identified. Figure 11 shows on the left the 
meshed structure consisting of hexahedral elements only and on the right a displacement plot 
after the structural analysis with the p-version of the finite element method. 

5 Conclusion 

We have presented an approach, simplifying the transfer from the product model to the finite 
element analysis model. This approach allows to model civil engineering constructions in a 
strictly three-dimensional setting. It releases the engineer from the task to transfer three-
dimensional design models to dimensionally reduced finite element discretizations. The whole 
iterative design process is therefore carried out in three dimensions and both design and analysis 
are based on the same geometrical model, reducing  sources of inconsistencies considerably. 
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Figure 10: Model of the office building (left-hand side) and the decomposed model (right-hand side) 

 

                    
Figure 11: Meshed structure of the office building (left-hand side) and the plot of vertical displacements (right-hand 

side) 
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