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Summary 
Communication software and distributed applications for control and building performance 
simulation software must be reliable, efficient, flexible, and reusable. This paper reports on 
progress of a project, which aims to achieve better integrated building and systems control 
modeling in building performance simulation by run-time coupling of distributed computer 
programs. These requirements motivate the use of the Common Object Request Broker 
Architecture (CORBA), which offers sufficient advantage than communication within simple 
abstraction. However, set up highly available applications with CORBA is hard. Neither control 
modeling software nor building performance environments have simple interface with CORBA 
objects. Therefore, this paper describes an architectural solution to distributed control and 
building performance software tools with CORBA objects. Then, it explains how much the 
developement of CORBA based distributed building control simulation applications is difficult. 
The paper finishes by giving some recommendations. 

1 Introduction 
With the increasing importance of integrated building simulation environments into the 
concurrent building design, the demand on model complexity and interdisciplinary led to a 
growing number of difficulties between the various environments. A particular alternative may 
reduce some complexities by integrating an existing tool (codes) as a part of the building 
simulation environment. Although, such integration consists in developing a framework that is 
in charge of calling the different simulation codes in a specific order and to let them exchange 
their simulation results. An object-oriented approach is well suited for the development of a 
framework requiring that each of those simulation codes to be an object. Indeed, the use of 
distributed objects allows a transparent communication.   However, distributed object 
technologies have to be adapted in the context of high-performance computing by tacking into 
account that a distributed objects can be used to implement parallel-programming paradigms 
(e.g. two running applications share or exchange the same data). 

In this paper, we relate our experience that was aimed at run-time coupling of control and 
building performance simulation software to perform a distributed simulation. The run-time 
coupling is base on the use of CORBA (Common Object Request Broker Architecture) as 
communication architecture. 

The current situation is that there exists domain independent software that is very advanced in 
control modeling and simulation features, but doesn’t have any building performance simulation 
concepts (e.g. Matlab / Simulink). On the other hand, domain specific software for building 
performance simulation (ESP-r, TRNSYS, etc) is usually relatively basic in terms of control 
modeling and simulation capabilities. Marrying the two approaches by run-time coupling 
building simulation environments and control modeling software would potentially enable 
integrated performance assessment by predicting the overall effect of innovative control 
strategies for integrated building systems. 

Our approach is built around the notion of run-time coupling between building simulation 
environments and control modelling software that would potentially enable integrated 
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performance assessment by predicting the overall effect of innovative control strategies for 
integrated building systems. The consistency specification would depend on the requirements of 
the physical process being simulated and the accuracy desired. The important requirement 
would be an exchange data when one of the processes is called at every another process time-
step. 

In this paper, we have related our experience that aimed in run-time coupling control software 
with building performance environments using CORBA as communication architecture. The 
coupling is based on a schematic approach to interface distributed simulation with CORBA 
objects.  

This paper is organized as follow: section 2 describes run-time approach. Section 3 gives a short 
overview of CORBA. In section 4, we sketch the architectural solution of IDL to ESP-r and 
Matlab compiler. Section 5 illustrates an example of the encapsulation FORTRAN code to 
CORBA object. Section 6 discusses some recommendations. Finally, we sum up some remarks 
in section 6.  

2 Run-time coupling Approach 
The coupling of tools requires an underlying communication mechanism to allow the transfer of 
both data and control between codes. The data transfer correspond to the sending of the results 
calculated by one of the process and receiving by another process whereas the transfer of 
control is the execution of one particular function to be performed remotely in another process. 
Most of attempts to couple codes together rely on the use of shared file system, which is not 
efficient to exchange data at an adequate level of abstraction (Hughes and Hughes 2003, 
Ranganathan et al. 1996).  

While, the aim of the current work is to establish better control modelling in building 
performance simulation by integrating distributed computer programs. Indeed, communication 
can be viewed at different levels of abstraction. At higher level, it appears as an exchange of 
information between processes. These processes are either contained in a single parallel or 
distributed application, or may otherwise belong to different application that needs to 
communicate. At low level, communication appears as the mere traffic of bits from one address 
space to another. Distributed applications require support for expressing communication at a 
high level of abstraction. In (Yahiaoui et al. 2003), various options for inter-application data 
transfer facilities are described and compared. Moreover, it might have noted that a return value 
between processes requires the use of IPC (Inter-Process Communication) techniques.   

Since we envisage that the different software modules may run simultaneous on a 
heterogeneous network (e.g. Unix, Windows) and we, potentially, also would like to be able to 
run-time couple with e.g. a building energy management system, a test-rig for a controller 
(hard-ware testing in the loop), or even a building emulator, the inter-process communication 
needs to be platform independent. 

In our case, the run-time coupling should support asynchronous events that occur when the time 
step of one process is different from another process; and synchronous events that occur when 
the two processes are synchronizing with the same defined time in execution. The exchange can 
be either unidirectional (data send in one-way) or bi-directional (the data alter from the first 
process to the second and from the second require passing back to the first, using client/server 
technique). The data structure can be transferred in the form of data files or data types, having a 
common format so that processes running in two different operating systems can translate them 
as well as the underlying communication protocols. 

We have advocated an approach, in (Yahiaoui et al. 2003), like others (Keahey and Gannon 
1998), that consists in implementing communication paradigm in coherent way. This approach 
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is based on the use of CORBA-based integration framework for run-time coupling building 
simulation environment with control modeling software, as shown in figure 1. 

 
Figure 1 Implementation of distributed control and building  

Performance simulation software through ORB. 

3 Overview of CORBA 
CORBA is the acronym for the Common Object Request Broker Architecture, which defined by 
the Object Management Group (OMG) and specifies how to define interfaces, and how to pass 
requests between remote systems (Omg 2003). CORBA is an infrastructure for communicating 
distributed objects and heterogeneous systems (e.g. Windows and Unix). The CORBA was 
designed to allow intelligent software components to discover each other and interoperate on an 
object bus called Object Request Broker (ORB). The ORB is a server application that functions 
like a network switch. Any client object can make a request to a local or remote server object 
through an ORB. The server also responds through it. Being language-independent, CORBA 
introduces an Interface Definition Language (IDL) to provide an interface inheritance so that 
services can be extended easily. 

The CORBA specification has several components: ORB Core, Interface Definition Language 
(IDL), Dynamic Invocation/Skeleton Interface (DII/DSI), Internet Inter ORB Protocol (IIOR), 
General Inter-ORB Protocol (GIOP), Object Adapters (OA) and Interface Repository. It is 
necessary to ensure the inter-ORB interoperability of ORB specifications supplied by different 
vendors (Omg 2003). 

The core communication of the CORBA architecture is the ORB core. The CORBA is a 
distributed client/server platform with an object Oriented spin, in the IONA’s words (Iona 
2001). When a client invokes a metnod of a remote object, communication between the client 
and the server is performed through the ORB (see figure 1). The client is connected to the ORB 
through a stub whereas the server uses skeleton. Stubs and Skeletons are generated a number of 
4 files after compiling the IDL file.  Although, stubs take the requests of the client and marshal 
data (format typed data into packet-level representation) to the server. And skeletons on the 
server side demarshal or unmarshal (deformat the packet-level representation back into typed 
data) and pass the request to the server so that it can serviced.   CORBA uses an ORB as the 
middleware layer that etablishes a client/server relationships between the components. This 
layer allows  distributed objects to communicate over network to each other without knowing 
their location and the programming language and operating system are used (Baker 1997). 

Referring to figure 2, it indicates that object request semantics are handled via CORBA IDL. 
For transfer and message syntax, CORBA specifies its GIOP which specifies a set of message 
formats and common data representations for communications between ORBs. The GIOP was 
specifically included in the specification to address ORB-to-ORB interactions. It is designed to 
work directly over any connection-oriented transport protocol. To facilitate interoperability 
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between different ORB implementations, the IIOP specifies how GIOP messages are exchanged 
over a TCP/IP network.  
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Figure 2 CORBA Internet Inter-ORB Protocol Architecture 

4 Distributed Simulation 
The main idea to integrate the ESP-r and Matlab tools in a combined simulation environment is 
to identify the specific components that should be coupled to ensure a distributed simulation. 
The CORBA standard (Omg 2003) and its IDL provides an easy and efficient way to define 
interfaces for distributed components written in programming languages (like C, C++, 
JAVA, …) for which so-called mappings are defined. Since such mappings are available, 
applications can be coupled via CORBA. 

Conversely ESP-r is written in FORTRAN for which no IDL mapping is defined whereas for 
Matlab/Simulink, the COM (Common object model) standard mechanism is supported. In this 
case, the DCOM (Distributed Component Object Model) is used as well. The usual way of 
interfacing such tools into CORBA objects is to adapt a schematic approach of IDL to ESP-r 
and Matlab compiler, as shown in figure 3. In that case, ESP-r is used as a client/master and 
Matlab as a server/slave in order that Matlab can be launched at every ESP-r time-step as a 
separate process. With such an approach, a run-time coupling should support loosely coupled 
processes which can run concurrently and exchange data through ORB.  

 
Figure 3 Architectural solution of IDL to ESP-r and Matlab compiler 

A prototype IDL file has been created that can be configuired to create stubs and skeletons in 
both of ESP-r and Matlab. For ESP-r side, a C++ glue code is required to interoperate programs 
between languages. A (memory) mapped file is used for Matlab side to interact with ORB. C++ 
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Stub and Skeleton codes can be generated by CORBA IDL compiler, such as ORBacus (Iona 
2004.), for distributed applications.  

The benefit to use ORB is to reduce the communication overhead. But, using this approach the 
overhead can be important. Much of the perceived overhead in this approach is inherent in a 
distributed environment and can mediate data representations. However, there is no solution to 
avoid undesirable overhead for FORTRAN part because of the intermidiate C++ glue.  

In Matlab side, COM object can be developped to wrap up the CORBA IDL interfaces and 
structures necessary to access data services.  A MEX file is a DLL that exports a standard entry 
point that MATLAB uses when a function call is invoked. This type of interface might 
introduce serious synchronisation issues because the implementation of CORBA-COM gateway, 
or bridge (Geraghty et al. 1999), is not an easy solution. Sometimes, it can also become the 
bottleneck for large data transfers, which isn’t suitable for distributed simulations that use large 
amount of data per transfer. (MathWorks 2004).  

4.1 IDL to ESP-r binding 
Ideally, the IDL to ESP-r bindings should be F77 bindings as ESP-r is a legacy FORTRAN 
codes. However, a direct mapping from IDL to FORTRAN is not available. One solution could 
be to map IDL to C++ and then convert the C++ code to FORTRAN; this is an area where more 
work is necessary because of a lack of a formal conversion from F77 to C++ codes and 
precision issues. Another option that is more promising to use the defined IDL-to-C++ 
mappings and wrap the FORTRAN applications in C++ codes.  

The integrated C++ wrapper approach avoids the overhead mentioned above. With this 
alternative solution, a C++ wrapper incorporating the CORBA implementation is linked to 
conserve and decompose the codes into functions modules and wrap each module into a 
distributed object, as described and called f2CORBA conversion tool in (Follan et al. 2001). 
The objective to use this current approach is keep modification of ESP-r source codes to the 
minimum.  Moreover this f2CORBA converter isn’t available as it was developed for NASA 
Glenn Research Center (Sang et al. 2000, Sang et al. 2001, Follan et al. 2001). Therefore, the 
only possibility to use such a converter is to redevelop the approach, which is not evident in 
terms of time and profitability of research efficiency.  

There is a simple example of the different steps that shows a mapping structure from IDL to 
FORTRAN code in Section 5. 

4.2 IDL to Matlab binding 
The IDL to Matlab bindings are somehow simpler than F77 bindings since a COM standard is 
supported on the Windows platform, which is necessary to wrap the data from the application 
into a form that COM can marshal to MATLAB.  MATLAB then unwraps the data from the 
COM data type and converts it into the MATLAB data type. This marshalling and transferring 
of data is necessary for isolating the two applications, but becomes a bottleneck when working 
with large data sets. A more detail description of Matlab COM integration can be found in 
(MathWorks 2004). Some bridges for inter-working between the COM and CORBA are 
available, like (OrbixCOMet 2000) and (COM2CORBA 2002). But the bridge is necessary to 
be adapted to the schematic approach described above. A client accesses COM interface when a 
call is performed, the proxy object maps all in-parameters from CORBA to COM, invokes the 
COM function, maps all out-parameters from COM to CORBA, and returns to the client. 

5 Example 
This section gives an example that encapsulates a very simple arithmetic operation written in 
FORTRAN code to CORBA IDL. This example is used to bind from IDL to ESP-r code. The 
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present development process from IDL to implementation consists of writing the IDL file, 
implementing a client and a server, and developing a server implementation file. Three example 
programs are given below.  

Here is a sample of the IDL specification of a very simple interface: 
// Implementation of the mult operation 
interface Mult { 
  long step(in long y1, in long y2);  
}; 

Let’s assume that in FORTRAN program, a simple function is as follow: 
integer  function multiple (x1, x2)  
integer x1, x2 
multiple = x1*x2 
end 

The function multiple should be declared as a multiple class implementation, in the server 
implementation file, which itself call the existing FORTRAN function multiple. The form of 
this part file might depend on data type calling form the C++ to FORTRAN and some special 
points when passing parameters between those languages. A simple example to illustrate this 
part file can be in the following structure:   
… 
extern “C” long multiple_ (long&, long&); 
long mult_srv::step(long y1, long y2, CORBA::Environment &IT_env) 
{ 
long mult; 
mult = multiple_(y1, y2); 
return mult; 
} … 

The rest of the application (client and server codes) can be implemented using the basic nature 
of the CORBA specification used. Many studies in developing CORBA applications can be 
found in (Omg 2004). This topic is beyond the scope of this paper. 

By using the above encapsulation approach, it is possible to build several applications, but 
becomes very complicated when working with legacy scientific codes. Therefore this approach 
isn’t suitable for the applications underlying mathematical equations, as a critical point for their 
simulation efficiency is to avoid any data copying. 

6 Discussion  
It was stated above that the use of CORBA-based integration of control modelling software and 
building performance environments by run-time coupling is efficient and flexible as data 
movement between applications do not have to be hand coded. Although, CORBA facilitates 
interconnection between heterogeneous systems since we envisage that ESP-r runs under Unix 
and Matlab may run in Windows. Moreover, its communication part is responsive to exchange 
data between ESP-r and Matlab via IDL links and its data exchanged between these 
environments is performed at high-level of abstraction. For those reasons, the motivation to use 
CORBA for the current work was highly supported. But, the adoption of CORBA for 
distributed control and building performance simulation by run-time coupling raises difficulties 
mainly when dealing with the interfacing of ESP-r and Matlab tools. The usual approach, as 
described above, is not efficient in terms of the communication overhead that can mediate data 
structures because of using C++ glue code. However, the CORBA-based distributed ESP-r and 
Matlab simulation could be much useful if the approach of f2CORBA converter (Follan et al. 
2001) can be used. Then the problem is not the implementation of IDL ESP-r interface, but 
rather the performance of the implementation of CORBA-COM gateway that matches the 
interoperability between the COM and CORBA with the Matlab interface.  
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In different way of thinking, it might be conceivable to develop another approach prototype, if 
the f2CORBA converter is used, that consists to generate the IDL interface for every tool used 
in distributed simulation. This approach would be based on the use of two CORBA servers that 
ensures Matlab and ESP-r tools running concurrently and exchanging data through ORB 
protocol. The CORBA client, here, constitutes a distributed control software and building 
performance environments that uses their IDL interfaces with the intention to coordinate the 
exchanged data between them. Nevertheless, CORBA is difficult because distributed object-
oriented programming is inherently complex. 

7 Conclusions  
Communication at high-level network programming interfaces, like CORBA, has many 
advantages over communication at low-level of abstraction, which is non-typesafe programming 
intefaces (Fatoohi 1996), such as sockets. For that purpose, the use of CORBA for distributing 
simulation tasks can assemble the simulation environment in confortable way and increase the 
computoing performance as weel. But, CORBA, in particular, is difficult to grasp due to its 
concept of middleware.  

In this paper, we have presented an approach to interface ESP-r and Matlab applicatios with 
CORBA baded on IDL techniques. Issues and strategies regrading the encapsulation method of 
Fortran codes into CORBA objects and the interfacing Matlab function with CORBA IDL have 
been discussed. We have also developped a method which encapsule a program written in 
Fortran code with CORBA stuff. Although we have potentialy considered the use of CORBA-
based development integration of control software and building performance environments by 
run-time coupling. Using such an approach, it requires much time and extra materials to develop 
it in perferble way. At this time, we think that it is promissing to use applications within simple 
abstractions such as pipes, sockets and shared memory segments to exchange data between 
address spaces. 
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