
Page 1 of 11

Structure of a Formal User Model for Construction Information
Retrieval

Haiyan Xie, Raja R.A. Issa and William O’Brien, University of Florida, Gainesville, FL 32611-5703,USA

(raymond-issa@ufl.edu)

Summary
Information science researchers and developers have spent many years addressing the problem
of retrieving the exact information needed and using it for analysis purposes. In information-
seeking dialogues, the user, i.e. construction project manager or supplier, often asks questions
about specific aspects of the tasks they want to perform. But most of the time it is difficult for
the software systems to unambiguously understand their overall intentions. The existence of
information tunnels (Tannenbaum 2002) aggravates this phenomenon.

This study includes a detailed case study of the material management process in the
construction industry. Based on this case study, the structure of a formal user model for
information retrieval in construction management is proposed. This prototype user model will
be incorporated into the system design for construction information management and retrieval.
This information retrieval system is a user-centered product based on the development of a user
configurable visitor mechanism for managing and retrieving project information without
worrying too much about the underlying data structure of the database system. An executable
UML model combined with OODB is used to reduce the ambiguity in the user's intentions and
to achieve user satisfaction.

1 Introduction
Information science researchers and developers have spent many years addressing the problem
of retrieving the exact information needed and using it for analysis purposes. In construction
information management context, the users, i.e. construction project managers, superintendents,
or material vendors, often ask questions about specific aspects of the tasks they want to perform
through some information-seeking dialogues. But most of the time it is difficult for the software
systems to unambiguously understand their overall intentions. With the object of design an
effective and efficient information retrieval system, we need to study the users’ needs under that
subject. The users of a construction information system need to manage the vast amount of data
and information documentation related to the construction process. The knowledge embedded in
the design of complex engineered equipments and systems are essential for project performance.
But information loss or data chaos may also happen when there are lots of changes during the
design / construction process of a project. If change logs are not kept up to date reflecting all the
revisions, contractors risk losing time, money and quality on the project. In addition to having
an integrated system storing all the data and information about construction projects, users will
also need to have a system to retrieve the requested information.

A lot of information retrieval techniques, particularly those in DBMS systems, typically require
users to have enough understanding on software system design; or else, users will have to
follow the built-in search and reporting functions the system provides. There should be some
adequate user training to let users get used to new systems. But the clumsy searching process of
a construction information system may cause users to lose patience. In addition, excessive
requirements in terms of the users’ ability to use database query languages will affect the users’
evaluation of the systems. The existence of information tunnels (Tannenbaum 2002) aggravates

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online-Publikationssystem der Bauhaus-Universität Weimar

https://core.ac.uk/display/53139999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 11

the phenomenon because users may have to use multiple information systems or processes to
retrieve some useful information. According to Tannenbaum (2002), information tunnels are
typically based on processing requirements. Even though the same data may be required in more
than one tunnel, it is usually not easy to go from one tunnel to another. In our case, users have to
be able to search for tunnel-resident information from different databases.

The goal of this study is to help project participants in creating a more suitable tool to discover
the intended information. To address this problem for the construction domain, the structure of a
formal user model for information retrieval in construction management needs to be developed.
The information retrieval system explored in this study is a user-centered product based on a
user configurable visitor mechanism for managing and retrieving project information without
worrying too much about the underlying data structure of the database system.

2 Literature Review
One of the approaches that software developers hope will help people out of the information
retrieval confusion is through the design of a user-friendly interface. To reach this goal, several
approaches were suggested and some have even been implemented with some success (Johnson
2000; Rudisill et al. 1996). Software Agent technology is one of these approaches. By
Microsoft’s definition, Software Agent technology is a set of software services that can easily
enhance the user interface of applications and Web pages with interactive personalities in the
form of animated characters (Microsoft 2003). For example, when a MS Word user types in
“Attn:” in a letter, the software agent running in the background reasons automatically that the
user wants to insert an address next and it pops up the address searching interface for the user.
According to Wooldridge and Jennings (1995), an agent should be able to perceive the
environment (which may be the physical world, a user via a graphical user interface, a
collection of other agents, the INTERNET, or perhaps all of these combined), and respond in a
timely fashion to changes that occur in it. Although developers are enriching the abilities of
Software Agents, such as by adding Artificial Intelligence (AI) to them, Software Agents still
cannot replace human decisions. In addition, the design of the Software Agents is based on
modeling the users’ behaviors and needs.

A fundamental objective of human-computer interaction research is to provide users with
experiences fitting their specific background knowledge and objectives. It is called customized
software design. The challenge in an information-rich world is not only to make information
available to people at any time, at any place, and in any form, but specifically to say the right
thing at the right time in the right way. User Modeling is a technology that addresses the need to
personalize information services in a computer system. As Kobsa (2000) pointed out, research
on user modeling is usually traced back to the works of Allen, Cohen and Perrault, e.g. (Allen
1979; Cohen and Perrault 1979; Perrault et al. 1978) and Elaine Rich (Rich 1979a; Rich 1979b).
Ten years after this seminal research, numerous application systems for user modeling were
developed. These models collected different types of information about their current users and
exhibited different kinds of adaptation to those users.

Kobsa (2000) has divided user modeling research into three stages. The earliest stage occurred
before the mid-1980s, and user modeling during that stage was performed by application
systems. No clear distinction could be made between the system components that served user
modeling purposes and those that performed other tasks. From the mid-1980s to mid-1990s,
such a separation was increasingly made, e.g. (Sleeman 1985), but no efforts have been reported
on rendering the user modeling component reusable for the development of future user-adaptive
systems. Past work in the area lacks a robustly defined and generally applicable system design
that will enable end-users to access personalized information. Since mid-1990s till now, to

Page 3 of 11

address the issues of reusable components and robustly defined system design, current user
modeling research has focused on user-adaptive systems. User modeling, software reuse, and
organizational memories and organizational learning (e.g., creating socio-technical
environments that help to transcend the limitation of the individual human mind) are some of
the approaches that combine computer techniques with natural and/or social issues.

Many researches have been done on how to do user research and user modeling. Fischer (2000)
addressed the difficulties in user modeling and mentioned the following three categories of user
modeling research with high-functionality and usable.

1. Exploring different domains such as: natural language dialog, human computer interaction,
intelligent assistants, information retrieval, and high-functionality applications;

2. Identifying important distinctions such as: adaptive versus adaptable components, explicit
versus implicit modeling techniques, user models versus task models, canonical versus
individual models, and long-term versus short-term models;

3. Creating a number of challenging research problems, such as how to:

• Integrate different modeling techniques

• Capture the larger (often unarticulated) context and what users are doing especially
beyond the direct interaction with the computer system)

• Identify user goals from low-level interactions

• Reduce information overload by making information relevant to the task at hand

• Support differential descriptions by relating new information to known information
and concepts; and

• Reach a better balance for task distributions between systems and users.

Cooper (2003) discussed user interface design essentials in his book -- “About Face 2.0: The
Essentials of Interaction Design”. The user interface design belongs to the first category of user
modeling – human computer interaction, as grouped by Fischer (2000). Cooper concluded that
while technology frees us to perform great feats of invention, it also simultaneously ties us to
ways of thinking that are contrary to the natural expression of human behavior. Cooper defined
the user model design as: “Understanding the user’s wants, needs, motivations, and contexts;
Understanding business, technical, and domain requirements and constraints; Translating this
knowledge into plans for artifacts (or artifacts themselves) whose form, contents, and behavior
is useful, usable, and desirable, as well as economically viable and technically feasible” (Cooper
2003). Information retrieval research has close relationship with user modeling. The general
area of information access and retrieval aims at modeling, designing and implementing systems
able to provide fast and effective content-based access to a large amount of information. The
purpose of Information Retrieval (IR) is to find the information according to requestors’ needs
and user modeling servers to find out the right ways to response to these needs (Fischer 1993).

When a system plays the role of a consultant in information-seeking dialogues, the extent to
which it provides cooperative responses is directly related to its ability to understand the user's
plans and goals (Allen 1983). In such kind of dialogues, the determination of the user's
intentions is generally quite difficult not only because the inexplicit statement of the questions,
but also because some users do not even know exactly what their questions are. In such cases,
the user would ask general questions or questions about particular aspects of the tasks. So, in
order to reduce the number of hypotheses on their intentions, several sources of information
must be exploited, such as domain knowledge; knowledge about the user; and knowledge
extracted from the preceding parts of the dialogue. For all the domain knowledge, user

Page 4 of 11

knowledge, and dialogue knowledge collected either from surveys or other methods, there must
be some tools to manage the knowledge and use the knowledge to help the system in making
default choices among the possible hypotheses on the user's intentions. The User Model (UM)
is one such tool that can extract general information about the user from prototypical
information, and with some user model acquisition rules, UM can be enhanced by inferring new
intentions from the system's hypotheses on the user's plans as well. For example, UM can be
enhanced from inferring the user's beliefs and goals from the sentences s/he utters (e.g. through
the recognition of presuppositions in the user's utterances) and from her/his reactions to the
answers from the system (e.g. if the system uses a certain word and the user does not ask for
clarification, the system infers that s/he understands its meaning (Chin 1989)).

3 Problem Statement
The goal of this study is to improve the level of satisfactory results obtained from a
conventional information retrieval (IR) system by modeling the user’s information retrieval
approach and leveraging the user model into structured knowledge. We analyze the users’ needs
and model them by the “use case” modeling method (Mellor and Balcer 2002), and then exploit
the relationships in the use case to address the IR system with a more relevant request. The Use
Case model is about capturing user requirements and describing what the proposed system will
do at a high-level and with a user focus for the purpose of scoping the project and giving the
application some structure. The Use Cases are the smallest unit of delivery. Each increment that
is planned and delivered is described in terms of the Use Cases that will be delivered in that
increment. Use Cases are not intended to capture all of the system requirements. Use Cases do
not capture how the system will do anything - nor do they capture anything the actor does that
does not involve the system. For example, in the Construction Material Purchase Order process,
when a project manager calls a vendor for some materials’ prices, this activity will not be
included in the system.

It is notable that in restricted search domains the original query from the user may omit terms
that precisely describe the sought topic; only to describe it partially; or the user may lack the
vocabulary needed to search a narrow domain effectively. Therefore, this study will concentrate
on the user modeling approach to appropriately reflect the users’ needs, thereby retrieving more
relevant documents. The methods used and their results are described below.

It is not hard for the system developer to retrieve the needed information successfully, but for
the ordinary user to figure out how to retrieve the information or even to learn the advanced
usage of information management tools is not easy. In this study we proposed to conduct a
detailed case study of the material management process in a construction company. Based on
the case study, a formal user model will be to reflect the material management process. The
proposed user model in this research is based on the implementation of user research in software
development, to be specific, the Unified Modeling Language (UML) can be implemented to
build up a formal user model to generate a fast and smooth transient from user needs to the
software products. Further more, the object-oriented languages, such as Java, can help to build
up a configurable visitor pattern to retrieve information. As a design consideration, user
metadata is helpful in generating information on demand for Database Management System
(DBMS) implementation. The proposed approach will help the user in retrieving information
according to their needs, and in reducing the ambiguity in their intentions.

For many construction companies, material purchase is a daily task. The purchaser will need to
retrieve information about the price of the material, its inventory information and any other
information needed to make decisions and write up a final purchase order. This study proposes
an information retrieval UM for material management. Through the analysis of the material
management Use Case, a User Model with embedded domain knowledge will be built. It is

Page 5 of 11

proposed that this UM be incorporated into a Data Base Management System (DBMS) to
achieve better performance and user satisfaction.

4 Material Management Use Case
The first step in our research is to build up the use case of a specific area. The use case diagram
is a model of the system’s intended functions and its environment that supports the business
process. This model serves as a contract between the customer and the developer. As mentioned
before, the material management process was chosen for the use case example because it
happens with high frequency in a lot of construction companies. The main scenario for a
material management use case is as shown in Table 1. The Project Manager is responsible for
checking the storage of materials, placing the purchase order, and the maintenance of the
material record database.

Table 1 reflects the Project Manager’s view of the material management process. A more
detailed model of the whole purchasing process is shown in Table 2. A detailed explanation of
the functions involved in Table 2 is shown in Table 3. Although the use case presented in
Tables 1-3 is not a full-fledged material management business scenario, the idea behind doing
this scenario is to start with the modeling of the users doing the information retrieval task and
then incorporating the user model into software development.

Table 1 Material management business use case

Project Manager Doing Material Handling Order
1. Project Manager requests a new Material Handling Order (MHO) number.
2. The system prepares a blank MHO form and pulls in a list of available materials in the

warehouse from the Material Catalog System.
3. Project Manager selects primary and alternate materials.
4. For each material, the system verifies that the Project Manager has the necessary

authorization and adds the material to the MHO form, marking the material with the
project job number.

5. When the Project Manager indicates the MHO form is complete, the system saves the
form.

Extensions: (The first number indicates the corresponding item above)
 1a. Material Catalog System does not respond.
 The system notifies the Project Manager and terminates the use case.
 1b. Project Manager already has a MHO form:

System brings up the current version of the Project Manager’s MHO form for
editing instead of creating a new one.

 4a. That material is not enough for the quantity the Project Manager specified.
 System notifies the Project Manager and asks whether to continue or exit.

4a-1. If the Project Manager wants to continue
 System adds the material to the schedule using the existing amount
4a-2. If the Project Manager does not want to continue
 System disables selection of that material and notifies the Project Manager.

Table 2 Formal Use Case for modeling material management purchasing process users

Purchase Material or Products
Primary Actor: Project Manager
Goal in Context: Project Manager buys material through the system, gets it. Does not include
paying for it.
Scope: Business – The overall purchasing mechanism, electronic and non-electronic, as seen by

Page 6 of 11

the people in the company.
Level: Summary
Stakeholders and Interests

Project Manager: Wants what he/she ordered and an easy way to do that.
Senior Project Manager: Wants to control cost but allow needed purchases.
Vendor: Wants to get paid for any goods delivered.

Precondition: None
Minimal Guarantees: Every order sent out has been approved by a valid authorizer – Senior
Project Manager or President of the company.
Trigger: Project Manager decides to buy something because s/he finds the requirements of the
materials on the drawings or gets the requests from project superintendent for the materials.
Main Success Scenario:

1. Superintendent / Project Manager (Requestor): initiate a request.
2. Senior Project Manager (Approver): Check money in the budget, check price of

products, complete request for submission.
3. Project Manager (Buyer): Check contents of storage, find best vendor for products.

Validate Approver’s signature. Complete request for ordering. Initiate Purchase Order
with Vendor.

4. Vendor: Deliver products to jobsite. Get receipt for delivery (Most of the times, Vendor
prepared the receipt and requests the jobsite superintendent to sign it. This is out of
scope of system under design).

5. Jobsite superintendent (Receiver): Sign the receipt. Send a copy of receipt to Project
Manager.

6. Superintendent / Project Manager (Requestor): Mark request delivered.
Extensions

• 1a. Requestor does not know vendor or price: leave those parts blank and continue
• 1b. Prior to receiving goods, Requestor can change or cancel the request.
 Canceling it removes it from any active processing. (Delete from the system)
 Reducing price leaves it intact in process.
 Raising price sends it back to Approver.
• 2a. Senior Project Manager does not know vendor or price: Leave blank and let Project Manager

filling in or call back.
• 2b. Senior Project Manager is not Requestor’s manager: Still okay, as long as Senior Project

Manager approves.
• 2c. Approver declines: Send back to Requestor for change or deletion.
• 3a. Project Manager finds goods in storage: Send those up, reduce request by that amount and

carry on.
• 3b. Project Manager fills in Vendor and price, which were missing: Request gets re-sent to

Senior Project Manager.
• 3c. Request involves multiple vendors: Project Manager generates multiple POs.
• 3d. Project Manager merges multiple requests: Same process, but mark PO with the requests

being merged.
• 4a. Vendor does not deliver on time: System does alert of non-delivery.
• 5a. Partial delivery: Receiver marks partial delivery on PO and continues.
• 5b. Partial delivery of multiple-request PO: Receiver assigns quantities to requests and

continues.
• 5c. Products are incorrect or improper quality: Requestor refuses delivered goods.

Technology and Data Variations List: None
Priority: Various
Release: Several
Response Time: Various
Channel to Primary Actor: Internet browser, mail system, or equivalent
Channels to Secondary Actors: Fax, phone, paper proposal

Page 7 of 11

Open Issues:
 When is a canceled request deleted from the system?
 What authorization is needed to cancel a request?
 Who can alter a request’s contents?

Table 3 Description of some of the related functions in the use case

Actor Description
Project Manager Person monitoring and controlling construction project
Use Case Description
Login Log Project Manager into system
Logout Log Project Manager out of system
Set Monitor Parameters Allow Project Manager to specify boundaries and precision of

items being monitored
Display Results Display the results that the user selected according to the

specified preferences.

5 UML Implementation Of Information Retrieval User Model For
Material Management
The introduction of new technologies has led to a range of customized products with complex
and embedded functionality. Increasingly products are being designed to handle a number of
complex tasks. Such products incorporate the functionalities with which the user can interact
only indirectly through an interface. As a consequence, users often struggle with the complexity
of the interface instead of interacting with the content, which is what the user is actually most
interested in.

The goal of designing user-centered products is to establish ways in which a product may
increase the ease with which a user communicates with that product. The design concepts and
prototypes should demonstrate the overall user experience and quality interaction. User-product
communication design concepts should be as far reaching as possible towards exploring new
paradigms of user-product interaction. What is proposed in the rest of the paper is to incorporate
the information retrieval user model into the software system design. After satisfying the
information needs of the users as defined in the user model and building up the prototype of a
system, developers should go back to the expected users and listen to their opinions, and then
make changes to the original user model and re-evaluate it again. In the material handling use
case, we have already analyzed the PM’s information needs and the different relationships
involved in the Material Handling System (MHS). Figure 1 translates the use case in Tables 1-3
into a typical software developer’s view. For the example described in Tables 1-3 and Figure 1,
the possible Java class for MHS is as shown in Figure 2.

Figure 3 shows the system design process. In our illustrated use case, the material management
process, we have finished Use Case Analysis, built up a formal user model for the use case, and
derived the software functionality and specifications. The User Model between the Graphical
User Interface (GUI) and Code shown in Figure 3 has different meaning from the formal user
model (which was used to build up the Code). It stores all the user preferences. When the user
logs in, it will know which user class this user belongs to, i.e. project manager or
superintendent. Then it will choose the presentation format of the system operation result for the
user. To fit the various requests from users, we propose to use a configurable visitor pattern.
After the formal user model for material handling in a construction company is built, the next
step is to proceed with this user-centered design to link the functions of the Java class (shown in
Figure 2, for example) with the DBMS. At this point the use of a configurable visitor design
pattern is proposed.

Page 8 of 11

M H S L o g
d a te : D a te
t im e : S t r in g
a u th e n t iV io la t io n : S tr in g
* p r in tL o g ()
* a d d V io la t io n ()

M H S M o n i to r
n e w M H S 1 : I n te g e r = 8
n e w M H S 2 : I n te g e r = 3 2
s c h e d u le R u n T im e : S t r in g
u p d a te 1 : I n te g e r = 6 0
u p d a te 1 : I n te g e r = 3 6 5
* c h e c k M H S V io la t io n ()
* lo g V io la t io n ()
* c h e c k U p d a te V io la t io n ()

W rite s

< < B u s in e s s E n t i ty > >
M H S

c re a te D a te : D a te
m a te r ia l ID : In te g e r
la s tU p d a te : D a te
o th e rM H ID : In te g e r
* lo c k ()
* u n lo c k ()
* o p e n ()
* c lo s e ()
* s a v e ()
* s e a rc h ()
* u n d o ()
* h e lp ()
* l in k T o O th e rM H S ()

M o n ito rs

< < B u s in e s s W o rk e r> >
P ro je c t M a n a g e r

w o rk e r ID : In te g e r
p ro je c tID : In te g e r
* lo g In ()
* lo g O u t()

C re a te

< < B u s in e s s E n t i ty > >
M a te r ia l R e c o rd s

m a te r ia l ID : In te g e r
m a te r ia lN a m e : S t r in g
m a te r ia lP ro d u c to r : S tr in g
m a te r ia lD e s c r ip t io n : S t r in g
m a te r ia lL o c a t io n : S tr in g
m a te r ia lP r ic e : D o u b le
* a d d M H S ()
* f in d M H S ()
* u p d a te M H S ()
* d e le te M H S ()

R e v
ie w

< < B u s in e s s A c to r> >
V e n d o r

v e n d o rN a m e : S t r in g
v e n d o r ID : I n te g e r
v e n d o rR e g N u m : In te g e r
v e n d o r In s u ra n c e : In te g e r
c o n ta c tP e rs o n : S t r in g
te le p h o n e N u m : S t r in g
fa x N u m : S t r in g
a d d re s s : S t r in g

B u y

M o n ito rs

1

0 . . n

1 1

1

1

0 . . n

0 . . n

0 . . n

0 . . n

0 . . n

0 . . n

 Note: # -- means the item after it is a parameter of the object.
 * -- means the item after it is a function / method of the object.
 1 / (0..n) --> 1/ (0..n) – means the relationship is 1 to 1, 1 to many, many to 1, or many to many.

Figure 1 Formal Class Diagram for Detailed Use Case Analysis

public class MaterialHandling extends StateMachine {
 private StateMachineState currentState;
 private Date createDate;
 private Integer materialID;
 private Date lastUpdate;
 private Integer otherMHID;
 .
 .
 protected void lock() throws Exception;
 protected void unlock() throws Exception;
 . . .
 }

Figure 2 Java Class Created by Applying Tables 1-3 and Figure 1

Grand (2002) discussed the visitor pattern and the possible ways to implement this pattern in his
book--“Patterns in Java.” A visitor pattern allows the client object to be closely coupled to the
construction of the new complex object. Instead of describing the content of the objects to be
built through a series of method calls, the information is presented in bulk as a complex data
structure. A visitor pattern can be used to encapsulate operations in a single class that would
otherwise be spread across multiple classes. It also allows encapsulating the logic for simple
manipulations of a parse tree in a single class. Grand mentioned, “One way to implement an
operation that involves the objects in a complex structure is to provide logic in each of their
classes to support the operation. The Visitor pattern provides an alternate way to implement
such operations that avoids complicating the classes of the objects in the structure by putting all
the necessary logic in a separate class. The Visitor pattern also allows the logic to be varied by
using different Visitor classes” (Grand 2002).

Page 9 of 11

U s e C a s e
A n a l y s i s

S o f t w a r e
F u n c t i o n a l i t y &
S p e c i f i c a t i o n s

U s e r
M o d e l

C o d e D a t a
b a s e

G U I

U s e r
M o d e l

S y s t e m
D e s i g n

P r o c e s s

R e p o r t
G e n e r a t o r

D a t a F l o w

R e q u e s t

D e s i g n P r o c e s s
Figure 3 Proposed Prototype Formal User Model System

In the proposed system, implementation of the following visitor classes is planned:
1 InformationSearcher. This class starts the entire visitor process and the information

retrieval task.

2 ProjectVisitor. This is an abstract class and provides logic for its subclasses. Its subclasses
explore the objects that constitute the entire data structure, a construction project tree, on
which we have organized all the information regarding a construction project. The concept
is that instances of subclasses of the ProjectVisitor class visit the objects and gather
information from each object, and then operate on the information.

3 TOCVisitor. This is a subclass of the ProjectVisitor class. It is responsible for
generating a table of contents. It works by examining each Division object directly
owned by a ConstructionProject object. When it finds a Division object with a style that is
in the internal TOC table, it generates a corresponding TOC entry. The TOCVisitor may go
very deep down to the leaf node of the tree data structure. From a parent node, when
TOCVisitor finds the child node object match with the searching condition, it will use the
child node to replace the existing TOC entry.

4 ReportVisitor. This subclass of the ProjectVisitor class is responsible for reporting
back to ReportManager process. It begins by being told to look for sub-nodes that
correspond to certain levels of organization in a ConstructionProject object. It finds those
levels of organization in the internal TOC table. It fetches the styles associated with those
levels of organization from the table. It then follows the pointers and looks for objects that
have the styles it fetched from the table. When it finds an object with one of those styles, it
creates a new ConstructionProject object. It writes the new ConstructionProject object and
all the objects associated with it to a file. Besides the pointers to the project data tree, the
TOC table also stores the pointers to Inlist and Outlist. When the ReportVisitor writes the
new ConstructionProject object and the associated objects into a file, it will store the pointer
address in the TOC table. After all the requested new ConstructionProject objects are stored
into their specific files and the addresses of the files are saved in the TOC table, the
ReportVisitor will call the ReportManager to let the ReportManager access the TOC table
and retrieve the files. Subsequently, when new addresses replace the old addresses in the

Page 10 of 11

Inlist column of the TOC table, the “kicked-out” addresses will be saved in the “pointers to
the Outlist” column. Once the capability limitation of the TOC table is reached, the first
saved address in the “pointer to Outlist” column will be deleted.

6 Conclusions And Future Work
User model acquisition is a difficult problem. In Machine Learning, the information available to
a user modeling system is often limited, and it is hard to infer assumptions about the user that
are strong enough to justify non-trivial conclusions. In Information Retrieval, user models have
been limited to lists of terms relevant to an information need. In the proposed research, the user
model will be built based on interviews with prospective users, case studies found in literature
and personal industry experience. Through the analysis of the use case of material handling
process, the feasibility of involving users in the life cycle of software system development will
be explored. The final Java classes are built up based on the use case user model Java
code evolvement. The users could evaluate the temporary result system and according based on
their feedback, the use case and user model could be changed and so would the software system.
The next step in this research will include doing user evaluation of the prototype system and
adjusting the system based on their comments. In the future, research on the executable user
model with semantics for actions will also be explored.

7 References

Allen, J. (1983). Recognizing intentions from natural language utterances, MIT Press.

Allen, J. F. (1979). A Plan-based approach to speech act recognition. 131/79, Dept. of Computer
Science, University of Toronto, Canada.

Chin, D. (1989). KNOME: Modeling what the user knows in UC, Springer Verlag, Berlin.

Cohen, P. R., and Perrault, C. R. (1979). Elements of a Plan-based theory of speech acts.
Cognitive Science, 3, 177-212.

Cooper, A. (2003). About Face 2.0: The Essentials of Interaction Design, Wiley Publishing,
Inc., Indianapolis, IN.

Fischer, G. (1993). Shared Knowledge in Cooperative Problem-Solving Systems - Integrating
Adaptive and Adaptable Components, Elsevier Science Publishers, Amsterdam.

Fischer, G. (2000). User Modeling in Human-Computer Interaction. UMUAI 10th Anniversary
Issue.

Grand, M. (2002). Patterns in Java: a catalog of reusable design patterns illustrated with UML,
Wiley Pub., Indianapolis, Ind.

Johnson, J. (2000). GUI Bloopers: Don'ts and Do's for Software Developers and Web
Designers, Academic Press, San Diego, CA.

Kobsa, A. (2000). Generic User Modeling Systems.User Modeling and User-Adapted
Interaction 11, 49-63.

Mellor, S. J., and Balcer, M. J. (2002). Executable UML: A Foundation for Model-Driven
Architecture, Addison-Wesley, Boston.

Microsoft. (2003). <http://www.microsoft.com/msagent/default.asp> (April 16 2004).

Page 11 of 11

Perrault, C. R., Allen, J. F., and Cohen, P. R. (1978). Speech acts as a basis for understanding
dialogue coherence. 78-5, Department of Computer Science, University of Toronto, Canada.

Rich, E. (1979a). Building and Exploiting User Models, Ph.D. Thesis, Carnegie-Mellon
University, Pittsburgh, PA.

Rich, E. (1979b). User modeling via stereotypes. Cognitive Science, 3, 329-354.

Rudisill, M., Lewis, C., Polson, P., and McKay, T. (1996). Human-Computer Interface Design :
Success Cases, Emerging Methods and Real-World Context, Morgan Kaufmann Publishers,
Inc., San Francisco, CA.

Sleeman, D. (1985). UMFE: A user modeling front-end subsystem. International Journal of
Man-Machine Studies, 23, 71-88.

Tannenbaum, A. (2002). Metadata Solutions: Using Metamodels, Repositories, XML, and
Enterprise Portals to Generate Information on Demand, Addison-Wesley, Boston.

Wooldridge, M., and Jennings, N. R. (1995). Agent Theories, Architectures, and Languages: a
Survey, Springer-Verlag, Berlin.

