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Abstract 
This paper deals with evaluating design on the basis of their internal 

structures in the form of graphs. A set containing graphs representing solutions of 
similar design tasks is used to search for frequently occurring subgraphs. On the 
basis of the results of the search the quality of new solutions is evaluated. 
Moreover the common subgraphs found are considered to be design patterns 
characterizing a given design task solutions. The paper presents the generic concept 
of such an approach as well as illustrates it by the small example of floor layout 
design. 
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1. Introduction 

The idea of design patterns was introduced by  Christopher Alexander in 
the domain of architecture and has been later adapted for the use in many other 
disciplines, including computer science [Alexander, 1977]. In his concept a pattern 
reflects the design decisions taken by many designers in different situations over 
the span of many years in order to solve a given problem. Although his work was 
based on architecture it can be extended to other domains of design. The use or 
lack of particular patterns can be linked to the quality of a given design.  In order to 
use such an approach in design evaluation there is a need for a formal 
representation of the design knowledge, which usually requires the ability to 
capture geometric,  structural and numerical information. On the basis of such 
knowledge representation the processing and evaluation of the designs can be done.  

Graphs are considered to be a proven and well defined way of representing 
many complex objects in different domains of computer science [Rozenberg, 1997] 
such as engineering, system modelling and testing, bioinformatics, chemistry and 
other domains of science [Borkowski et al., 2003 ]. This paper is based one the 
generic notion of graphs but there are many different types of graphs extending  
simple graphs, for example hypergraphs or hierarchical graphs [Habel, Kreowski, 
1987], which can be used in computer-aided design context. Designing new 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/53139167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B. Strug 104 

artefacts can be thus considered to be equivalent to generating appropriate graphs 
representing them. By using such approach we can use any method of graph 
generation. There is a number of such methods including those based on formal 
languages [Rozenberg, 1997], graph grammars [Borkowski et al., 2003, Grabska et 
al., 2004,Nikodem, Strug, 2004], and grammar systems [Csuhaj-Varjú, 2004], but 
also evolutionary computations that were used in different domains of design 
[Borkowski et al., 2003, Grabska et al., 2004,Nikodem, Strug, 2004].   

Each of these generative methods produces  a large number of graphs - and 
at the same time a large number of designs they represent. Thus, it results in a basic 
problem of how to automatically or at least semi-automatically evaluate the quality 
of these graphs (where the quality of a graph is  understood as the quality of the 
design it represents in respect to a given design problem). In many cases the 
process of evaluation is based on the use of a human designer who selects best 
solution or gives them some numerical values. The need for the human "evaluator"  
limits the number of possible solutions that can be analysed as all graphs have to be 
interpreted and visualized, what in many design problems can be complex and 
time-consuming. While the total elimination of a human evaluator is not the aim of 
this research it would be useful to eliminate as many designs as possible on the 
basis of their structural or spatial characteristics or on incompatibility with the 
design task being solved. Such problems could be found at the level of the 
representation without having to visualise all the designs. One of the possible 
approaches  of eliminating the visualization step is to use the earlier designs, and 
their graph representations, for which a quality in respect to a given task is already 
known. Such a set of previous designs can be considered as corresponding to the  
“knowledge" or "experience" factor used by the human designers. As it can be 
observed that designs getting high quality evaluations often are similar in some 
way, that is. they share some common elements or patterns. Thus exploring this 
fact by finding frequently recurring patterns in graphs is proposed in this paper. 
The domain of frequent pattern analysis is well established in computer science and 
there is a number of available algorithms that can be used.  

The paper is organized in the following way. In the next section a graph 
based knowledge representation is presented briefly, then in section 3 the use of 
graph patterns is described, including both theoretical information as well as their 
application to design evaluation. The approach presented in section 3 is illustrated 
with a case study based on the layout design in section 4. Finally in section 5 some 
conclusions are drawn as well as possibilities for further research are indicated. 
2. Graph-based representations 

 There is a number of methods in which a design can be represented in 
computer-aided design context. Many of the methods used in CAD problems, like 
boundary representations, sweep-volume representation, surface representations or 
CSG (constructive solid geometry) [Hoffman, 1989, Mantyla, 1988], allow for the 
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geometry of an object being designed to be coded but do not take into account the 
inter-related structure of many design objects i.e. the fact that parts of an object can 
be related to other parts in different ways. As a result we only have a geometrical 
description of the design, while the designer often thinks and reasons rather in 
terms of structural properties of the design. Moreover such a representation makes 
it more difficult to reuse a selected part or parts of the design. Such a reuse of parts 
of earlier designs is very often used by designers to shorten the time needed to 
develop solutions to new, but similar design tasks.  

 A representation taking into account such a structural properties, in 
addition to the geometrical ones, is usually based on some type of graphs. Graphs 
consist of nodes and edges (or hyperedges in case of hypergraphs), commonly 
denoted as atoms. In simple graphs edges always connect two nodes, in 
hypergraphs a hyperedge can connect several nodes. Nodes and edges in graphs 
can be labelled and attributed. Labels are assigned to nodes and edges by means of 
node and edge labelling functions, respectively, and attributes - by node and edge 
attributing functions. Labels usually denote the type of the entity represented by a 
given atom or geometrical primitive used. In case of the floor layout problem the 
labels can for example denote type of the area (for nodes) or the relation (for 
edges) Attributes, on the other hand, represent properties, including all the 
geometrical properties, (for example size, position, but also colour or material) of a 
component or relation represented by a given atom. Moreover for a graph to 
represent one particular design all attributes must be assigned a proper value from 
the attribute domain. Such a graph with added labels and attributes represents all 
the knowledge about a given design.  

 In Fig. 1a an example of the floor layout is depicted and in Fig. 1b a graph 
representing such a layout is shown. Here, node labels represent types of spaces 
and edge labels represent the relations between the; adj represents the adjacency 
and acc - accessibility relation (thus acc is equivalent to the presence of doors in 
this example). 

a)                                                          b)         

             
                                                                                                                

Fig.1.  Example of a flat layout (a) and a graph representing this layout (b) 
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3.  Using graph patterns 

 In computing frequent graph mining techniques were developed on the 
basis of a more general frequent pattern mining. Frequent pattern mining was first 
proposed by Agrawal et al. [Agrawal,1993] for market basket analysis in the form 
of association rule mining and later extended for other types of applications [Han et 
al., 2004, Inokuchi et al., 2000]. In graph mining a subgraph is considered frequent 
if its support, i.e. the number of graphs that contain this subgraph, is larger then 
some predefined threshold. The support is usually expressed as a percentage of 
graphs containing a given subgraph. Two of the most common algorithms are 
FFSM and gSpan. Both algorithms can work on undirected graphs with labelled 
nodes and edges [Yan et al., 2005]. They perform the analysis of graphs in a depth-
first order and can only find connected subgraphs.  

Let D = {G1,...,Gm} be a set of graphs representing designs (depicted on the 
right side of Fig.2), P = {p1, ...,pN} be a set of frequent patterns found by the 
pattern mining algorithm (depicted in the middle in Fig. 2)  and N be the number of 
these patterns (subgraphs). Thus it is possible to  evaluate a new design, (for 
example represented by a graph depicted on the left in Fig. 2), is to calculate the 
number of frequent patterns contained in G.  Let m1(G) be the a similarity value for 
the graph G, calculated as the proportion of frequent patterns that are subgraphs of 
G to the total number of frequent patterns. Let P(G) = {pi: pi  G} be the subset of 
P consisting of frequent patterns found in G. Thus  

                                                   
N
GP

Gm
)(

)(1                                                (1) 

Thus the more frequent patterns a design contains the better it is 
considered. In many cases such approach gives good results as it corresponds to the 
fact that in many design tasks we actually construct new designs using “building 
blocks” tested and verified in many earlier designs.  

Yet, such approach may not always be well suited to the type of designs 
analyzed  as it only calculates the number of frequent patterns in the new design 
without taking into account other characteristics for example how often a given 
pattern is present in both the new design and in the designs included in the 
database, how large/small a given pattern is or what was the quality value of 
designs in which the pattern actually occurred.  

Hence in some cases a more interesting results can be obtained for example 
by using the average frequency of a pattern in the designs present in the database 
and in the graph representing the new design. Let j

Gf denote the number of times 
the pattern pj is present in the graph G. Moreover let fq(pj) denote the average 
frequency of occurrences of pj in graphs of the database D. Using such a frequency 
the difference between the number of occurrences of a given pattern in a given 
graph and the average number of its occurrences in the database can be calculated. 
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The smaller the difference the more similar is the new design to the designs 
represented by the graphs in the database not only in terms of containing the same 
patterns but also similar number of the patterns. The difference is calculated 
according to  equation (2): 

                                diff(G) = .))((
1




M

i
j

j
G pfqf                                        (2) 

This value is higher as the difference is larger, thus to get the higher 
suitability score for smaller differences the score is calculated by taking the inverse 
of the difference, and setting a special MAX value in case of difference being equal 
to 0: 

                              m2(G) = 0)(
0)(
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Such a way of evaluating the quality of a given design better reflects the 
influence of the number of occurrences of a given pattern in the new design as it 
takes into account a typical average number of times a given pattern may occur in 
the solutions of a given design task. It has to be observed that the frequency of 
occurrences of a given pattern can be calculated either in respect to all graphs in 
the database or only to those in which it actually is found thus giving different 
results, each of which can be useful in some situations. 

The two evaluation methods above use only the number of patterns present 
in new design into consideration. They do not take into account any information 
about the quality of the design these patterns were mined from even if it is 
available. Yet, while the database of the designs used to mine for frequent patterns 
contains good, previously realized products there may still be difference in their 
quality so it may be useful to give preference to patterns mined from designs 
known to be, even slightly, better then other ones.  

Thus let P(G) be a set of frequent patterns present in graph G from the 
database, let   1jir  denote the fact that pattern j belongs to graph Gi in database 

and 0jir   - that it does not and the same way let r j
G = 1 denotes the fact that 

pattern j belongs to graph G and r j
G = 0 - that it does not. Moreover let qi be the 

quality of the design represented by graph Gi in the database. Thus q(pj) being the 
quality of pattern j is calculated according to the equation (4):  
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On the basis of such quality value a quality score for graph G can be 
calculated according to the equation (5). 
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 This evaluation takes into account the quality of design solutions from 
which patterns were mined and gives more weight to those coming from better 
solutions. It can be seen as a parallel to the behaviour of the human designer who 
usually tends to take more “building blocks” from more successful earlier designs 
and less from worse.  

In general the patterns are used to evaluate new design in the following 
way. In the first step the set of known designs/solutions to a given or similar task 
are encoded in the form of graphs. Then the frequent pattern searching algorithm is 
applied to this set of graphs. Then the set of patterns is used as the basis for the 
evaluation of new design(s). The process is schematically depicted in Fig. 2.  

The process can be extended by using also the set of negative examples i.e. 
examples of bad or incorrect solutions of a given design task. In such a case a 
separate frequent patterns set can be generated from the bad designs producing as a 
result a set of negative patterns.  
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Fig. 2 Schematic example of the application of patterns to design evaluation 

4. Layout design case study 

The concept presented in this paper has been implemented and tested on 
examples of a floor layout design. The process  starts by coding a database of floor 
layouts, consisting of a number graphs of size of 20 to 50 atoms, in GraphML 
format and importing to the GraphSearcher  application [Tomanek, 2009]. Then the 
set of frequent patterns is generated and finally these patterns are used to evaluate 
new designs. Fig. 3 shows the application window containing one of the graphs 
analysed. The frequent design patterns found by the application (subgraphs) are 
then used as a basis for the evaluation of other graph representing new solution to 
the design task at hand.  



B. Strug 110 

 
Fig. 3 GraphSearcher application used for floor layout graphs analysis 

 
Examples of such frequent patterns are depicted in Fig. 4 a and b. They 

represent design requirements typical for flat’s floor layout. The pattern depicted in 
Fig. 3a represents the existence of the access to some other space from the 
entrance, while the one depicted in Fig. 3b represents the existence of the access 
between the entrance and the kitchen. 

Fig. 5 shows examples of patterns found in the set of bad examples. The 
one depicted in Fig. 5a  represents the situation in which the bedroom is adjacent to 
four other spaces but is not accessible from them (i.e. there exists no door to/from 
this room). The pattern in Fig. 5b corresponds to the situation in which there exists 
a direct access between kitchen and bathroom which is usually undesirable. 

On the basis of patterns found, the evaluation of six new design has been 
carried out. The results are gathered in Table 1. The designs G1-G3 are good 
designs, M1 and M2 -  correct ones and B1 was a specially generated bad design. 

Table 1 Evaluation results        

 m1 m2 m3 

G1 0.92 0.43 0.32 
G2 0.83 0.41 0.35 
G3 0.91 0.31 0.19 
M1 0.55 0.10 0.08 
M2 0.62 0.08 0.10 
B1 0.24 0.014 0.0012 
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It can be observed that the scores for the designs differ significantly for 
different evaluation approaches yet the ranking of them is similar: the better design 
obtain consistently better scores than bad ones, although small changes in ranking 
among good and medium designs can be observed. Thus the approach and scores 
obtained should be used as a ranking tool rather than treated as some absolute 
quality values.  

It has to be noticed that as the analysis of the new graph involves 
determining which/how many frequent patterns it contains we have to deal with the 
problem of subgraph isomorphism which is known to be NP hard. As the result of 
using node labelling actually complexity of the problem is reduced and can be 
tackled in practice.  
 

 
 

Fig. 4 Examples of frequent patterns representing design requirements 
 

 
 

Fig. 5 Examples of negative patterns 
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5. Conclusions and future work 

In this paper a general concept of design evaluation on the basis of design 
patterns is presented as well as some possible ways of calculating the quality value. 
This approach can be applied to many different types of design tasks in which 
some form of design patterns can be determined. Some results of such approach for  
different types of graphs were also presented in other works [Strug, Ślusarczyk, 
2009, Strug, 20011a, Strug, 2011b, Strug, 2011c]. 

As noticed above methods of calculating the quality of design presented in 
equations (1) and (3) do not exhaust all possibilities. Many other factors are 
currently being researched. Some possible directions include considering the size 
of the pattern as larger patterns usually are more specific, or the co-occurrence of 
design patterns as some patterns can have higher impact on design quality when 
they co-occur in a design. 
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5. Conclusions and future work 

In this paper a general concept of design evaluation on the basis of design 
patterns is presented as well as some possible ways of calculating the quality value. 
This approach can be applied to many different types of design tasks in which 
some form of design patterns can be determined. Some results of such approach for  
different types of graphs were also presented in other works [Strug, Ślusarczyk, 
2009, Strug, 20011a, Strug, 2011b, Strug, 2011c]. 

As noticed above methods of calculating the quality of design presented in 
equations (1) and (3) do not exhaust all possibilities. Many other factors are 
currently being researched. Some possible directions include considering the size 
of the pattern as larger patterns usually are more specific, or the co-occurrence of 
design patterns as some patterns can have higher impact on design quality when 
they co-occur in a design. 
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