
 M. Rozmus, D. Michalak 102

Jaszczyk Ł. Michalak D., Rozmus M., Suiski R.: System interaktywnych instrukcji
obsługi INSTO jako narzędzie wspomagające utrzymanie ruchu maszyn górniczych.
KOMTECH 2011, Innowacyjne techniki i technologie dla górnictwa. Bezpieczeństwo–
Efektywność – Niezawodność, monografia, Gliwice, p. 273-280, 2011.
Michalak D., Jaszczyk Ł.: Narzędzia wspomagające bezpieczne utrzymanie ruchu
maszyn - część 1. Interaktywne instrukcje obsługi, Maszyny Górnicze, No.3, 2014, p.
53-58
Michalak D.: Innowacyjne formy szkolenia pracowników zakładów górniczych.
Edukacja Ustawiczna Dorosłych, No. 2, 2014, p. 66-74, 2014a.
Michalak D.: Metoda diagnozy oraz program ograniczania niepożądanych zjawisk
związanych z użytkowaniem środków technicznych pod ziemią kopalni - projekt
PROFI. Mechanik, No 7, 2014, p. 405-412
Winkler T.: Komputerowo wspomagane projektowanie systemów
antropotechnicznych, Helion, 2005.
Winkler T., Michalak D.: Badanie technologiczności maszyn górniczych w aspekcie
ich montażu. Prace Naukowe - Monografie CMG KOMAG nr 25, CMG KOMAG,
Gliwice, p. 1-88, 2008.
Wołczyk W., Michalak D., Lesisz R.: Gry szkoleniowe, Mechanik No. 7, 2015, pp.
979-986.
www.szenaris.com/305-1-Desktop-VR.html, 2014
Zyda M.: From visual simulation to virtual reality to games, IEEE Computer,
September 2005.

Machine Dynamics Research
2015, Vol. 39, No 1, 103 - 113

Using Similarity of Graphs in Evaluation of Designs

Barbara Strug
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,

e-mail: barbara.strug@uj.edu.pl,

Abstract
This paper deals with evaluating design on the basis of their internal

structures in the form of graphs. A set containing graphs representing solutions of
similar design tasks is used to search for frequently occurring subgraphs. On the
basis of the results of the search the quality of new solutions is evaluated.
Moreover the common subgraphs found are considered to be design patterns
characterizing a given design task solutions. The paper presents the generic concept
of such an approach as well as illustrates it by the small example of floor layout
design.

Keywords: design evaluation, frequent subgraph mining, design similarity,

1. Introduction

The idea of design patterns was introduced by Christopher Alexander in
the domain of architecture and has been later adapted for the use in many other
disciplines, including computer science [Alexander, 1977]. In his concept a pattern
reflects the design decisions taken by many designers in different situations over
the span of many years in order to solve a given problem. Although his work was
based on architecture it can be extended to other domains of design. The use or
lack of particular patterns can be linked to the quality of a given design. In order to
use such an approach in design evaluation there is a need for a formal
representation of the design knowledge, which usually requires the ability to
capture geometric, structural and numerical information. On the basis of such
knowledge representation the processing and evaluation of the designs can be done.

Graphs are considered to be a proven and well defined way of representing
many complex objects in different domains of computer science [Rozenberg, 1997]
such as engineering, system modelling and testing, bioinformatics, chemistry and
other domains of science [Borkowski et al., 2003]. This paper is based one the
generic notion of graphs but there are many different types of graphs extending
simple graphs, for example hypergraphs or hierarchical graphs [Habel, Kreowski,
1987], which can be used in computer-aided design context. Designing new

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/53139167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. Strug 104

artefacts can be thus considered to be equivalent to generating appropriate graphs
representing them. By using such approach we can use any method of graph
generation. There is a number of such methods including those based on formal
languages [Rozenberg, 1997], graph grammars [Borkowski et al., 2003, Grabska et
al., 2004,Nikodem, Strug, 2004], and grammar systems [Csuhaj-Varjú, 2004], but
also evolutionary computations that were used in different domains of design
[Borkowski et al., 2003, Grabska et al., 2004,Nikodem, Strug, 2004].

Each of these generative methods produces a large number of graphs - and
at the same time a large number of designs they represent. Thus, it results in a basic
problem of how to automatically or at least semi-automatically evaluate the quality
of these graphs (where the quality of a graph is understood as the quality of the
design it represents in respect to a given design problem). In many cases the
process of evaluation is based on the use of a human designer who selects best
solution or gives them some numerical values. The need for the human "evaluator"
limits the number of possible solutions that can be analysed as all graphs have to be
interpreted and visualized, what in many design problems can be complex and
time-consuming. While the total elimination of a human evaluator is not the aim of
this research it would be useful to eliminate as many designs as possible on the
basis of their structural or spatial characteristics or on incompatibility with the
design task being solved. Such problems could be found at the level of the
representation without having to visualise all the designs. One of the possible
approaches of eliminating the visualization step is to use the earlier designs, and
their graph representations, for which a quality in respect to a given task is already
known. Such a set of previous designs can be considered as corresponding to the
“knowledge" or "experience" factor used by the human designers. As it can be
observed that designs getting high quality evaluations often are similar in some
way, that is. they share some common elements or patterns. Thus exploring this
fact by finding frequently recurring patterns in graphs is proposed in this paper.
The domain of frequent pattern analysis is well established in computer science and
there is a number of available algorithms that can be used.

The paper is organized in the following way. In the next section a graph
based knowledge representation is presented briefly, then in section 3 the use of
graph patterns is described, including both theoretical information as well as their
application to design evaluation. The approach presented in section 3 is illustrated
with a case study based on the layout design in section 4. Finally in section 5 some
conclusions are drawn as well as possibilities for further research are indicated.
2. Graph-based representations

 There is a number of methods in which a design can be represented in
computer-aided design context. Many of the methods used in CAD problems, like
boundary representations, sweep-volume representation, surface representations or
CSG (constructive solid geometry) [Hoffman, 1989, Mantyla, 1988], allow for the

B. Strug 104

artefacts can be thus considered to be equivalent to generating appropriate graphs
representing them. By using such approach we can use any method of graph
generation. There is a number of such methods including those based on formal
languages [Rozenberg, 1997], graph grammars [Borkowski et al., 2003, Grabska et
al., 2004,Nikodem, Strug, 2004], and grammar systems [Csuhaj-Varjú, 2004], but
also evolutionary computations that were used in different domains of design
[Borkowski et al., 2003, Grabska et al., 2004,Nikodem, Strug, 2004].

Each of these generative methods produces a large number of graphs - and
at the same time a large number of designs they represent. Thus, it results in a basic
problem of how to automatically or at least semi-automatically evaluate the quality
of these graphs (where the quality of a graph is understood as the quality of the
design it represents in respect to a given design problem). In many cases the
process of evaluation is based on the use of a human designer who selects best
solution or gives them some numerical values. The need for the human "evaluator"
limits the number of possible solutions that can be analysed as all graphs have to be
interpreted and visualized, what in many design problems can be complex and
time-consuming. While the total elimination of a human evaluator is not the aim of
this research it would be useful to eliminate as many designs as possible on the
basis of their structural or spatial characteristics or on incompatibility with the
design task being solved. Such problems could be found at the level of the
representation without having to visualise all the designs. One of the possible
approaches of eliminating the visualization step is to use the earlier designs, and
their graph representations, for which a quality in respect to a given task is already
known. Such a set of previous designs can be considered as corresponding to the
“knowledge" or "experience" factor used by the human designers. As it can be
observed that designs getting high quality evaluations often are similar in some
way, that is. they share some common elements or patterns. Thus exploring this
fact by finding frequently recurring patterns in graphs is proposed in this paper.
The domain of frequent pattern analysis is well established in computer science and
there is a number of available algorithms that can be used.

The paper is organized in the following way. In the next section a graph
based knowledge representation is presented briefly, then in section 3 the use of
graph patterns is described, including both theoretical information as well as their
application to design evaluation. The approach presented in section 3 is illustrated
with a case study based on the layout design in section 4. Finally in section 5 some
conclusions are drawn as well as possibilities for further research are indicated.
2. Graph-based representations

 There is a number of methods in which a design can be represented in
computer-aided design context. Many of the methods used in CAD problems, like
boundary representations, sweep-volume representation, surface representations or
CSG (constructive solid geometry) [Hoffman, 1989, Mantyla, 1988], allow for the

Using Similarity of Graphs in Evaluation of Designs 105

geometry of an object being designed to be coded but do not take into account the
inter-related structure of many design objects i.e. the fact that parts of an object can
be related to other parts in different ways. As a result we only have a geometrical
description of the design, while the designer often thinks and reasons rather in
terms of structural properties of the design. Moreover such a representation makes
it more difficult to reuse a selected part or parts of the design. Such a reuse of parts
of earlier designs is very often used by designers to shorten the time needed to
develop solutions to new, but similar design tasks.

 A representation taking into account such a structural properties, in
addition to the geometrical ones, is usually based on some type of graphs. Graphs
consist of nodes and edges (or hyperedges in case of hypergraphs), commonly
denoted as atoms. In simple graphs edges always connect two nodes, in
hypergraphs a hyperedge can connect several nodes. Nodes and edges in graphs
can be labelled and attributed. Labels are assigned to nodes and edges by means of
node and edge labelling functions, respectively, and attributes - by node and edge
attributing functions. Labels usually denote the type of the entity represented by a
given atom or geometrical primitive used. In case of the floor layout problem the
labels can for example denote type of the area (for nodes) or the relation (for
edges) Attributes, on the other hand, represent properties, including all the
geometrical properties, (for example size, position, but also colour or material) of a
component or relation represented by a given atom. Moreover for a graph to
represent one particular design all attributes must be assigned a proper value from
the attribute domain. Such a graph with added labels and attributes represents all
the knowledge about a given design.

 In Fig. 1a an example of the floor layout is depicted and in Fig. 1b a graph
representing such a layout is shown. Here, node labels represent types of spaces
and edge labels represent the relations between the; adj represents the adjacency
and acc - accessibility relation (thus acc is equivalent to the presence of doors in
this example).

a) b)

Fig.1. Example of a flat layout (a) and a graph representing this layout (b)

B. Strug 106

3. Using graph patterns

 In computing frequent graph mining techniques were developed on the
basis of a more general frequent pattern mining. Frequent pattern mining was first
proposed by Agrawal et al. [Agrawal,1993] for market basket analysis in the form
of association rule mining and later extended for other types of applications [Han et
al., 2004, Inokuchi et al., 2000]. In graph mining a subgraph is considered frequent
if its support, i.e. the number of graphs that contain this subgraph, is larger then
some predefined threshold. The support is usually expressed as a percentage of
graphs containing a given subgraph. Two of the most common algorithms are
FFSM and gSpan. Both algorithms can work on undirected graphs with labelled
nodes and edges [Yan et al., 2005]. They perform the analysis of graphs in a depth-
first order and can only find connected subgraphs.

Let D = {G1,...,Gm} be a set of graphs representing designs (depicted on the
right side of Fig.2), P = {p1, ...,pN} be a set of frequent patterns found by the
pattern mining algorithm (depicted in the middle in Fig. 2) and N be the number of
these patterns (subgraphs). Thus it is possible to evaluate a new design, (for
example represented by a graph depicted on the left in Fig. 2), is to calculate the
number of frequent patterns contained in G. Let m1(G) be the a similarity value for
the graph G, calculated as the proportion of frequent patterns that are subgraphs of
G to the total number of frequent patterns. Let P(G) = {pi: pi  G} be the subset of
P consisting of frequent patterns found in G. Thus

N
GP

Gm
)(

)(1  (1)

Thus the more frequent patterns a design contains the better it is
considered. In many cases such approach gives good results as it corresponds to the
fact that in many design tasks we actually construct new designs using “building
blocks” tested and verified in many earlier designs.

Yet, such approach may not always be well suited to the type of designs
analyzed as it only calculates the number of frequent patterns in the new design
without taking into account other characteristics for example how often a given
pattern is present in both the new design and in the designs included in the
database, how large/small a given pattern is or what was the quality value of
designs in which the pattern actually occurred.

Hence in some cases a more interesting results can be obtained for example
by using the average frequency of a pattern in the designs present in the database
and in the graph representing the new design. Let j

Gf denote the number of times
the pattern pj is present in the graph G. Moreover let fq(pj) denote the average
frequency of occurrences of pj in graphs of the database D. Using such a frequency
the difference between the number of occurrences of a given pattern in a given
graph and the average number of its occurrences in the database can be calculated.

B. Strug 106

3. Using graph patterns

 In computing frequent graph mining techniques were developed on the
basis of a more general frequent pattern mining. Frequent pattern mining was first
proposed by Agrawal et al. [Agrawal,1993] for market basket analysis in the form
of association rule mining and later extended for other types of applications [Han et
al., 2004, Inokuchi et al., 2000]. In graph mining a subgraph is considered frequent
if its support, i.e. the number of graphs that contain this subgraph, is larger then
some predefined threshold. The support is usually expressed as a percentage of
graphs containing a given subgraph. Two of the most common algorithms are
FFSM and gSpan. Both algorithms can work on undirected graphs with labelled
nodes and edges [Yan et al., 2005]. They perform the analysis of graphs in a depth-
first order and can only find connected subgraphs.

Let D = {G1,...,Gm} be a set of graphs representing designs (depicted on the
right side of Fig.2), P = {p1, ...,pN} be a set of frequent patterns found by the
pattern mining algorithm (depicted in the middle in Fig. 2) and N be the number of
these patterns (subgraphs). Thus it is possible to evaluate a new design, (for
example represented by a graph depicted on the left in Fig. 2), is to calculate the
number of frequent patterns contained in G. Let m1(G) be the a similarity value for
the graph G, calculated as the proportion of frequent patterns that are subgraphs of
G to the total number of frequent patterns. Let P(G) = {pi: pi  G} be the subset of
P consisting of frequent patterns found in G. Thus

N
GP

Gm
)(

)(1  (1)

Thus the more frequent patterns a design contains the better it is
considered. In many cases such approach gives good results as it corresponds to the
fact that in many design tasks we actually construct new designs using “building
blocks” tested and verified in many earlier designs.

Yet, such approach may not always be well suited to the type of designs
analyzed as it only calculates the number of frequent patterns in the new design
without taking into account other characteristics for example how often a given
pattern is present in both the new design and in the designs included in the
database, how large/small a given pattern is or what was the quality value of
designs in which the pattern actually occurred.

Hence in some cases a more interesting results can be obtained for example
by using the average frequency of a pattern in the designs present in the database
and in the graph representing the new design. Let j

Gf denote the number of times
the pattern pj is present in the graph G. Moreover let fq(pj) denote the average
frequency of occurrences of pj in graphs of the database D. Using such a frequency
the difference between the number of occurrences of a given pattern in a given
graph and the average number of its occurrences in the database can be calculated.

Using Similarity of Graphs in Evaluation of Designs 107

The smaller the difference the more similar is the new design to the designs
represented by the graphs in the database not only in terms of containing the same
patterns but also similar number of the patterns. The difference is calculated
according to equation (2):

 diff(G) = .))((
1




M

i
j

j
G pfqf (2)

This value is higher as the difference is larger, thus to get the higher
suitability score for smaller differences the score is calculated by taking the inverse
of the difference, and setting a special MAX value in case of difference being equal
to 0:

 m2(G) = 0)(
0)(

)(
1











Gdiffif
Gdiffif

MAX
Gdiff (3)

Such a way of evaluating the quality of a given design better reflects the
influence of the number of occurrences of a given pattern in the new design as it
takes into account a typical average number of times a given pattern may occur in
the solutions of a given design task. It has to be observed that the frequency of
occurrences of a given pattern can be calculated either in respect to all graphs in
the database or only to those in which it actually is found thus giving different
results, each of which can be useful in some situations.

The two evaluation methods above use only the number of patterns present
in new design into consideration. They do not take into account any information
about the quality of the design these patterns were mined from even if it is
available. Yet, while the database of the designs used to mine for frequent patterns
contains good, previously realized products there may still be difference in their
quality so it may be useful to give preference to patterns mined from designs
known to be, even slightly, better then other ones.

Thus let P(G) be a set of frequent patterns present in graph G from the
database, let 1jir denote the fact that pattern j belongs to graph Gi in database

and 0jir - that it does not and the same way let r j
G = 1 denotes the fact that

pattern j belongs to graph G and r j
G = 0 - that it does not. Moreover let qi be the

quality of the design represented by graph Gi in the database. Thus q(pj) being the
quality of pattern j is calculated according to the equation (4):

B. Strug 108







 N

i

j
i

N

i

j
ii

j

r

rq
)q(p

1

1 (4)

On the basis of such quality value a quality score for graph G can be
calculated according to the equation (5).

 


M

j

j
Gj)rq(p=(G)m

1
3 (5)

 This evaluation takes into account the quality of design solutions from
which patterns were mined and gives more weight to those coming from better
solutions. It can be seen as a parallel to the behaviour of the human designer who
usually tends to take more “building blocks” from more successful earlier designs
and less from worse.

In general the patterns are used to evaluate new design in the following
way. In the first step the set of known designs/solutions to a given or similar task
are encoded in the form of graphs. Then the frequent pattern searching algorithm is
applied to this set of graphs. Then the set of patterns is used as the basis for the
evaluation of new design(s). The process is schematically depicted in Fig. 2.

The process can be extended by using also the set of negative examples i.e.
examples of bad or incorrect solutions of a given design task. In such a case a
separate frequent patterns set can be generated from the bad designs producing as a
result a set of negative patterns.

B. Strug 108







 N

i

j
i

N

i

j
ii

j

r

rq
)q(p

1

1 (4)

On the basis of such quality value a quality score for graph G can be
calculated according to the equation (5).

 


M

j

j
Gj)rq(p=(G)m

1
3 (5)

 This evaluation takes into account the quality of design solutions from
which patterns were mined and gives more weight to those coming from better
solutions. It can be seen as a parallel to the behaviour of the human designer who
usually tends to take more “building blocks” from more successful earlier designs
and less from worse.

In general the patterns are used to evaluate new design in the following
way. In the first step the set of known designs/solutions to a given or similar task
are encoded in the form of graphs. Then the frequent pattern searching algorithm is
applied to this set of graphs. Then the set of patterns is used as the basis for the
evaluation of new design(s). The process is schematically depicted in Fig. 2.

The process can be extended by using also the set of negative examples i.e.
examples of bad or incorrect solutions of a given design task. In such a case a
separate frequent patterns set can be generated from the bad designs producing as a
result a set of negative patterns.

Using Similarity of Graphs in Evaluation of Designs 109

Fig. 2 Schematic example of the application of patterns to design evaluation

4. Layout design case study

The concept presented in this paper has been implemented and tested on
examples of a floor layout design. The process starts by coding a database of floor
layouts, consisting of a number graphs of size of 20 to 50 atoms, in GraphML
format and importing to the GraphSearcher application [Tomanek, 2009]. Then the
set of frequent patterns is generated and finally these patterns are used to evaluate
new designs. Fig. 3 shows the application window containing one of the graphs
analysed. The frequent design patterns found by the application (subgraphs) are
then used as a basis for the evaluation of other graph representing new solution to
the design task at hand.

B. Strug 110

Fig. 3 GraphSearcher application used for floor layout graphs analysis

Examples of such frequent patterns are depicted in Fig. 4 a and b. They

represent design requirements typical for flat’s floor layout. The pattern depicted in
Fig. 3a represents the existence of the access to some other space from the
entrance, while the one depicted in Fig. 3b represents the existence of the access
between the entrance and the kitchen.

Fig. 5 shows examples of patterns found in the set of bad examples. The
one depicted in Fig. 5a represents the situation in which the bedroom is adjacent to
four other spaces but is not accessible from them (i.e. there exists no door to/from
this room). The pattern in Fig. 5b corresponds to the situation in which there exists
a direct access between kitchen and bathroom which is usually undesirable.

On the basis of patterns found, the evaluation of six new design has been
carried out. The results are gathered in Table 1. The designs G1-G3 are good
designs, M1 and M2 - correct ones and B1 was a specially generated bad design.

Table 1 Evaluation results

 m1 m2 m3

G1 0.92 0.43 0.32
G2 0.83 0.41 0.35
G3 0.91 0.31 0.19
M1 0.55 0.10 0.08
M2 0.62 0.08 0.10
B1 0.24 0.014 0.0012

B. Strug 110

Fig. 3 GraphSearcher application used for floor layout graphs analysis

Examples of such frequent patterns are depicted in Fig. 4 a and b. They

represent design requirements typical for flat’s floor layout. The pattern depicted in
Fig. 3a represents the existence of the access to some other space from the
entrance, while the one depicted in Fig. 3b represents the existence of the access
between the entrance and the kitchen.

Fig. 5 shows examples of patterns found in the set of bad examples. The
one depicted in Fig. 5a represents the situation in which the bedroom is adjacent to
four other spaces but is not accessible from them (i.e. there exists no door to/from
this room). The pattern in Fig. 5b corresponds to the situation in which there exists
a direct access between kitchen and bathroom which is usually undesirable.

On the basis of patterns found, the evaluation of six new design has been
carried out. The results are gathered in Table 1. The designs G1-G3 are good
designs, M1 and M2 - correct ones and B1 was a specially generated bad design.

Table 1 Evaluation results

 m1 m2 m3

G1 0.92 0.43 0.32
G2 0.83 0.41 0.35
G3 0.91 0.31 0.19
M1 0.55 0.10 0.08
M2 0.62 0.08 0.10
B1 0.24 0.014 0.0012

Using Similarity of Graphs in Evaluation of Designs 111

It can be observed that the scores for the designs differ significantly for
different evaluation approaches yet the ranking of them is similar: the better design
obtain consistently better scores than bad ones, although small changes in ranking
among good and medium designs can be observed. Thus the approach and scores
obtained should be used as a ranking tool rather than treated as some absolute
quality values.

It has to be noticed that as the analysis of the new graph involves
determining which/how many frequent patterns it contains we have to deal with the
problem of subgraph isomorphism which is known to be NP hard. As the result of
using node labelling actually complexity of the problem is reduced and can be
tackled in practice.

Fig. 4 Examples of frequent patterns representing design requirements

Fig. 5 Examples of negative patterns

B. Strug 112

5. Conclusions and future work

In this paper a general concept of design evaluation on the basis of design
patterns is presented as well as some possible ways of calculating the quality value.
This approach can be applied to many different types of design tasks in which
some form of design patterns can be determined. Some results of such approach for
different types of graphs were also presented in other works [Strug, Ślusarczyk,
2009, Strug, 20011a, Strug, 2011b, Strug, 2011c].

As noticed above methods of calculating the quality of design presented in
equations (1) and (3) do not exhaust all possibilities. Many other factors are
currently being researched. Some possible directions include considering the size
of the pattern as larger patterns usually are more specific, or the co-occurrence of
design patterns as some patterns can have higher impact on design quality when
they co-occur in a design.
References

Agrawal R., Imielinski T., Swami A. (1993) Mining association, rules between sets
of items in large databases. In: Proc. 1993, ACM-SIGMOD , Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington, D.C.,
May 26-28, 1993. pp 207--216, ACM Press 1993.
Alexander Ch, A Pattern language, Towns, buildings, constructions, Oxford
University Press, ISBN 0-19-501919-9, 1977.
Borkowski A., Grabska E., Nikodem P, Strug B. Searching for Innovative
Structural Layouts by Means of Graph Grammars and Esvolutionary Optimization,
Proc. 2nd ISEC Conf, 2nd International Conference on Structural and Construction
Engineering, Rome, Italy, Sep. 23-26, System-based Vision for strategic and Creative
Design, vols 1-3, pp. 475--480. Rome 2003.
Csuhaj-Varjú E. Grammar systems: A short survey, Proceedings of Grammar
Systems Week 2004: 141-157, Budapest, Hungary, 2004.
Grabska E., Nikodem P., Strug B. Evolutionary Methods and Graph Grammars in
Design and Optimization of Skeletal Structures 11th ICE-, Proceeding of the 11th
Workshop of the European Group of I Intelligent Commputing in Engineering, EG-
ICE11, pp 145-155 Weimar Germany, 2004 .
Habel A., H. J. Kreowski H. J., Some structural aspects of hypergraph languages
generated by hyperedge replacement, Lecture Notes in Computer Science 247, pp. 207-
219, Springer, 1987.
Han J., Pei J., Yin Y, Mao R. Mining Frequent Patterns without Candidate
Generation: A Frequent-pattern Tree Approach. Data Mining and Knowledge
Discovery, 8(1), pp 53-87, Kluver, 2004.
Hoffman C. M.,Geometric and Solid Modeling: An Introduction, Morgan Kaufmann,
San Francisco, CA, 1989.
Inokuchi A., Washio T. Motoda H. A.,An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data, Proc. of PKDD 2000, Proceedings of the 4th

Using Similarity of Graphs in Evaluation of Designs 113

European Conference on Principles and Practice in Knowledge Discovery in databases,
Lyon, France, Sep. 13-16, 2000, pp.87–92, 2000.
Mantyla M., An Introduction To Solid Modeling, Computer Science Press, Rockville,
MD, vol.87, 1988.
Nikodem P., Strug B. Graph Transformations in Evolutionary Design, ICAISC 2004,
Lecture Notes in Computer Science 3070, pp. 456--461, Springer, 2004.
Rozenberg G. Handbook of Graph Grammars and Computing by Graph.
Transformations, vol.1-3, World Scientific London , 1997-99.
Strug B, Ślusarczyk G., Reasoning about designs through frequent patterns mining,
Advanced Engineering Informatics 23, pp. 361--369, 2009.
Strug B., Using graph mining approach to automatic reasoning in design support
systems, Advances in Intelligent and Soft Computing, vol. 95, pp. 489-498, 2011.
Strug B., Genetic Selection of Subgraphs for Automatic Reasoning in Design Systems,
Lecture Notes in Computer Science 6678, pp. 280-287, Springer, 2011.
Strug B., Graph Similarity Measure in Automatic Evaluation of Designs, Advances in
Intelligent and Soft Computing, vol 103, pp. 267-275, 2011.
Tomanek M. Searching for graph patterns and applications. MSc Thesis, Jagiellonian
University (in Polish), 2009.
Yan X., Yu P. S., Han J., Substructure Similarity Search in Graph Databases,
SIGMOD'05, Proceedings of the 2005 ACM SIGMODIinternational Conference on
Management of Data, Baltimore, MD, USA , June 13 - 17, 2005 pp 766-777, 2005.
doi>10.1145/1066157.1066244

B. Strug 112

5. Conclusions and future work

In this paper a general concept of design evaluation on the basis of design
patterns is presented as well as some possible ways of calculating the quality value.
This approach can be applied to many different types of design tasks in which
some form of design patterns can be determined. Some results of such approach for
different types of graphs were also presented in other works [Strug, Ślusarczyk,
2009, Strug, 20011a, Strug, 2011b, Strug, 2011c].

As noticed above methods of calculating the quality of design presented in
equations (1) and (3) do not exhaust all possibilities. Many other factors are
currently being researched. Some possible directions include considering the size
of the pattern as larger patterns usually are more specific, or the co-occurrence of
design patterns as some patterns can have higher impact on design quality when
they co-occur in a design.
References

Agrawal R., Imielinski T., Swami A. (1993) Mining association, rules between sets
of items in large databases. In: Proc. 1993, ACM-SIGMOD , Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington, D.C.,
May 26-28, 1993. pp 207--216, ACM Press 1993.
Alexander Ch, A Pattern language, Towns, buildings, constructions, Oxford
University Press, ISBN 0-19-501919-9, 1977.
Borkowski A., Grabska E., Nikodem P, Strug B. Searching for Innovative
Structural Layouts by Means of Graph Grammars and Esvolutionary Optimization,
Proc. 2nd ISEC Conf, 2nd International Conference on Structural and Construction
Engineering, Rome, Italy, Sep. 23-26, System-based Vision for strategic and Creative
Design, vols 1-3, pp. 475--480. Rome 2003.
Csuhaj-Varjú E. Grammar systems: A short survey, Proceedings of Grammar
Systems Week 2004: 141-157, Budapest, Hungary, 2004.
Grabska E., Nikodem P., Strug B. Evolutionary Methods and Graph Grammars in
Design and Optimization of Skeletal Structures 11th ICE-, Proceeding of the 11th
Workshop of the European Group of I Intelligent Commputing in Engineering, EG-
ICE11, pp 145-155 Weimar Germany, 2004 .
Habel A., H. J. Kreowski H. J., Some structural aspects of hypergraph languages
generated by hyperedge replacement, Lecture Notes in Computer Science 247, pp. 207-
219, Springer, 1987.
Han J., Pei J., Yin Y, Mao R. Mining Frequent Patterns without Candidate
Generation: A Frequent-pattern Tree Approach. Data Mining and Knowledge
Discovery, 8(1), pp 53-87, Kluver, 2004.
Hoffman C. M.,Geometric and Solid Modeling: An Introduction, Morgan Kaufmann,
San Francisco, CA, 1989.
Inokuchi A., Washio T. Motoda H. A.,An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data, Proc. of PKDD 2000, Proceedings of the 4th

Using Similarity of Graphs in Evaluation of Designs 113

European Conference on Principles and Practice in Knowledge Discovery in databases,
Lyon, France, Sep. 13-16, 2000, pp.87–92, 2000.
Mantyla M., An Introduction To Solid Modeling, Computer Science Press, Rockville,
MD, vol.87, 1988.
Nikodem P., Strug B. Graph Transformations in Evolutionary Design, ICAISC 2004,
Lecture Notes in Computer Science 3070, pp. 456--461, Springer, 2004.
Rozenberg G. Handbook of Graph Grammars and Computing by Graph.
Transformations, vol.1-3, World Scientific London , 1997-99.
Strug B, Ślusarczyk G., Reasoning about designs through frequent patterns mining,
Advanced Engineering Informatics 23, pp. 361--369, 2009.
Strug B., Using graph mining approach to automatic reasoning in design support
systems, Advances in Intelligent and Soft Computing, vol. 95, pp. 489-498, 2011.
Strug B., Genetic Selection of Subgraphs for Automatic Reasoning in Design Systems,
Lecture Notes in Computer Science 6678, pp. 280-287, Springer, 2011.
Strug B., Graph Similarity Measure in Automatic Evaluation of Designs, Advances in
Intelligent and Soft Computing, vol 103, pp. 267-275, 2011.
Tomanek M. Searching for graph patterns and applications. MSc Thesis, Jagiellonian
University (in Polish), 2009.
Yan X., Yu P. S., Han J., Substructure Similarity Search in Graph Databases,
SIGMOD'05, Proceedings of the 2005 ACM SIGMODIinternational Conference on
Management of Data, Baltimore, MD, USA , June 13 - 17, 2005 pp 766-777, 2005.
doi>10.1145/1066157.1066244

