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A note on Seshadri constants of line bundles on hyperelliptic
surfaces
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Abstract. We study the Seshadri constants of ample line bundles on hy-
perelliptic surfaces. We obtain new lower bounds and compute the exact
values of the Seshadri constants in some cases. Our approach uses results
of Serrano (Math. Z. 203:527–533, 1990), Harbourne and Roé (J. Pure
Appl. Alg. 212:616–627, 2008), Bastianelli (Manuscripta Math. 130:113–
120, 2009), Knutsen, Syzdek and Szemberg (Math. Res. Lett. 16:711–719,
2009).
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1. Introduction. Seshadri constants measure how positive a line bundle is.
They were introduced in 1992 by Demailly [9] as an attempt to tackle the
famous Fujita conjecture. The conjecture has not been proven but Seshadri
constants soon became an object of study on their own.

Giving exact values or just estimating Seshadri constants is very hard,
even in case of line bundles on algebraic surfaces, see, e.g., [4]. There exists an
upper bound for the Seshadri constant of a line bundle at points x1, . . ., xr on a

smooth projective n-dimensional variety X, namely ε(L, x1, . . . , xr) ≤ n

√
Ln

r .
Regarding lower bounds, there are examples due to Miranda and Viehweg
which show that the Seshadri constants of an ample line bundle can attain
arbitrarily small positive values.

Let us now recall some results concerning Seshadri constants on surfaces
with Kodaira dimension zero. In the appendix to [3], Bauer and Szemberg give
an upper bound for the global Seshadri constant of an ample line bundle on
an abelian surface and as a corollary they obtain that the Seshadri constant
of such a line bundle is always rational. In [2] Bauer computes the Seshadri
constants on all K3 surfaces of degree 4. This result is extended by Galati and
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Knutsen [11] who computed the Seshadri constants on K3 surfaces of degrees 6
and 8. Earlier in [14] Knutsen estimates the Seshadri constants on K3 surfaces
with Picard number 1. Szemberg [18] proves that the global Seshadri constants
on Enriques surfaces are always rational and also provides the lower bound for
Seshadri constant at an arbitrary point.

Our main result (Theorems 3.4 and 3.5), giving an estimate on the global
Seshadri constant of an ample line bundle on a hyperelliptic surface, is the
following

Main Theorem. Let S be a hyperelliptic surface. Let L be an ample line bundle
of type (a, b) on S. Then

ε(L) ≥ min{a, b}.

Moreover, if S is a hyperelliptic surface of type 1, then ε(L) = min{a, b}.

The paper is organised in the following way: in Theorem 3.1 we compute
the global Seshadri constant of a line bundle of type (1,1) on a hyperelliptic
surface of an arbitrary type. In Proposition 3.3 we point out a hyperelliptic
surface type and a point at which the Seshadri constant of a line bundle of type
(1,1) is strictly greater than 1. In Theorem 3.4 we compute the global Seshadri
constant of an arbitrary ample line bundle on a hyperelliptic surface of type 1,
and in Theorem 3.5 we provide a lower bound for the global Seshadri constant
on hyperelliptic surfaces of types 2–7. Finally, in Theorem 3.6 we estimate
from below the multi-point Seshadri constant of an ample line bundle at r
very general points on hyperelliptic surfaces.

2. Notation and auxiliary results. Let us set up the notation and basic defi-
nitions. Our surfaces are always smooth irreducible projective varieties of di-
mension 2 defined over the field of complex numbers C, curves are irreducible
subvarieties of dimension 1. By D1 ≡ D2 we denote the numerical equivalence
of divisors D1 and D2. We use the notation as in [16].

2.1. Seshadri constants. Let X be a smooth projective variety and L a nef
line bundle on X. We recall the definition of the Seshadri constant.

Definition 2.1. (1) The Seshadri constant of L at a given point x ∈ X is the
real number

ε(L, x) = inf
{

LC

multx C
: C � x

}
,

where the infimum is taken over all curves C ⊂ X passing through x.
(2) The global Seshadri constant of L is defined to be

ε(L) = inf
x∈X

ε(L, x).

Let x1, . . ., xr be pairwise distinct points. The notion of the Seshadri con-
stant of a line bundle at a point may be generalised to r points in the following
way:
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Definition 2.2. The multi-point Seshadri constant of L at x1, . . ., xr is the real
number

ε(L, x1, . . . , xr) = inf
{

LC∑r
i=1 multxi

C
: {x1, . . . , xr} ∩ C 	= ∅

}
,

where the infimum is taken over all curves C ⊂ X passing through at least
one of the points x1, . . ., xr.

For a fixed line bundle L, the function (x1, . . . , xr) �→ ε(L, x1, . . . , xr) is
constant for points in very general position; moreover, its value for points in
very general position is equal to sup{ε(L, x1, . . . , xr)} where the supremum is
taken over all choices of r distinct points x1, . . . , xr ∈ X (see [16, Example
5.1.11]). We denote the Seshadri constant of L at r points in very general
position by ε(L, r).

Let α0(L,m1, . . . ,mr) be the least degree LC of a curve C passing through r
points in general position with multiplicities m1, . . . ,mr. Let m[l]

= (m, . . . ,m)︸ ︷︷ ︸
l times

. Then the following theorem holds:

Theorem 2.3 (Harbourne, Roé, [13, Theorem 1.2.1]). Let L be a big and nef
line bundle on a smooth projective surface. Let r ∈ N, r ≥ 2, let μ ∈ R, μ ≥ 1.
If

(1) for every m ∈ N such that 1 ≤ m < μ, we have α0(L,m[r])

≥ m

√
L2

(
r − 1

μ

)
, and

(2) for every m ∈ N such that 1 ≤ m < μ
r−1 and if for every k ∈ Z

such that k2 < r
r−1 min{m,m + k} we have α0(L,m[r−1],m + k) ≥

mr+k
r

√
L2

(
r − 1

μ

)
, then

ε(L, r) ≥
√

L2

r

√
1 − 1

rμ
.

For background on Seshadri constants, we refer to an interesting overview
[5].

2.2. Hyperelliptic surfaces. Let us start with recalling the definition of a hy-
perelliptic surface.

Definition 2.4. A hyperelliptic surface S (sometimes called bielliptic) is a sur-
face with Kodaira dimension equal to 0 and irregularity q(S) = 1.

Alternatively ([7, Definition VI.19]), a surface S is hyperelliptic if S ∼=
(A × B)/G, where A and B are elliptic curves, and G is an abelian group
acting on A by translation and acting on B, such that A/G is an elliptic curve
and B/G ∼= P

1; G acts on A × B coordinatewise. Hence we have the following
situation:
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S ∼= (A × B)/G
Φ−−−−→ A/G

Ψ

⏐⏐�
B/G ∼= P

1

where Φ and Ψ are the natural projections.
Hyperelliptic surfaces were classified at the beginning of the 20th century

by Bagnera and de Franchis [8], and independently by Enriques and Severi
[10]. They showed that there are seven non-isomorphic types of hyperelliptic
surfaces. These types are characterised by the action of G on B ∼= C/(Zω ⊕Z)
(for details see, e.g., [7, VI.20]). The canonical divisor KS of each hyperelliptic
surface is numerically trivial.

In 1990 Serrano [17] characterised the group Num(S) for each type of sur-
face:

Theorem 2.5 (Serrano). A basis of the group of classes of numerically equiv-
alent divisors Num(S) for each of type of surface and the multiplicities of the
singular fibres in each case are the following:

Type of a hyperelliptic surface G m1, . . . ,ms Basis of Num(S)
1 Z2 2, 2, 2, 2 A/2, B
2 Z2 × Z2 2, 2, 2, 2 A/2, B/2
3 Z4 2, 4, 4 A/4, B
4 Z4 × Z2 2, 4, 4 A/4, B/2
5 Z3 3, 3, 3 A/3, B
6 Z3 × Z3 3, 3, 3 A/3, B/3
7 Z6 2, 3, 6 A/6, B

Let μ = lcm{m1, . . . ,ms} and let γ = |G|. Notice that a basis of Num(S)
consists of divisors A/μ and (μ/γ) B.

Definition 2.6. We say that L is a line bundle of type (a, b) on a hyperelliptic
surface, or L ≡ (a, b) for short, if L ≡ a · A/μ + b · (μ/γ)B.

In Num(S) we have A2 = 0, B2 = 0, AB = γ. Due to [1, Proposition 5.2],
we have a criterion for effectiveness of a divisor of type (0, b), i.e. a divisor
numerically equivalent to b · (μ/γ) B, namely

Lemma 2.7. Let D be a divisor of type (0, b), b ∈ Z, on a hyperelliptic surface
S. Then

D is effective if and only if b · (μ/γ) ∈ N.

The following proposition holds:

Proposition 2.8 (see [17, Lemma 1.3]). Let D be a divisor of type (a, b) on a
hyperelliptic surface S. Then

1. χ(D) = ab;
2. D is ample if and only if a > 0 and b > 0;
3. If D is ample, then h0(D) = χ(D) = ab.
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2.3. Bounds on the self-intersection of curves. The adjunction formula, ap-
plied to the normalisation of a curve, implies the following bound for the
self-intersection of a curve:

Remark 2.9 (Genus formula, [12, Lemma, p. 505]). Let C be a curve on a
surface S, passing through x1, . . ., xr with multiplicities, respectively, m1, . . .,
mr. Let g(C) denote the genus of the normalisation of C. Then

g(C) ≤ C2 + C.KS

2
+ 1 −

r∑
i=1

mi(mi − 1)
2

.

Note that:

Remark 2.10. Each curve C on a hyperelliptic surface has genus at least 1.
Otherwise the normalisation of C, of genus zero, would be a covering (via Φ)
of the elliptic curve A/G. This contradicts the Riemann–Hurwitz formula.

For families of curves, we have a Xu-type lemma. The original version of
this lemma was proved by Xu [19]. We will use the generalisation of Xu’s
Lemma obtained by Knutsen, Syzdek, Szemberg [15], and independently by
Bastianelli [6]. Let gon(C) denote the gonality of a smooth curve C, i.e. the
minimal degree of a covering C → P

1.

Lemma 2.11 (Bastianelli, [6, Lemma 2.2]; Knutsen–Syzdek–Szemberg, [15,
Theorem A]). Let S be a smooth projective surface. Let U be a smooth va-
riety. Consider a nontrivial family {(Cu, xu)}u∈U where xu is a very general
point of S and Cu is a curve satisfying the condition multxu

Cu ≥ m for every
u ∈ U and for some integer m ≥ 2. Then for a general curve C of this family

C2 ≥ m(m − 1) + gon(C̃).

Applying the Xu-type lemma to a family C of curves passing through x1,
. . ., xr with multiplicities, respectively, m1, . . ., mr, where m1 ≥ 2, on a blow-
up at x2, . . ., xr, we have the following multi-point version of the Xu-type
lemma.

Lemma 2.12. For a general curve C of the family C as above, we have

C2 ≥
(

r∑
i=1

m2
i

)
− m1 + gon(C̃).

By Remark 2.10 there are no rational curves on a hyperelliptic surface S

hence for every curve C ⊂ S on we have gon(C̃) ≥ 2.

3. Main results.

3.1. Seshadri constants of ample line bundles on hyperelliptic surfaces. We
start with computing the global Seshadri constant in the simplest case of an
ample line bundle on a hyperelliptic surface, i.e. for a line bundle of type (1, 1).

Theorem 3.1. Let S be a hyperelliptic surface. Let L be a line bundle of type
(1, 1) on S. Then

ε(L) = 1.



232 �L. Farnik Arch. Math.

Proof. Let C ≡ (α, β) denote a curve passing through a point x ∈ S with
multiplicity m, m ≥ 1. We estimate the value of LC

m from below.
Depending on the position of the point x and on the type of the hyperelliptic

surface, we have the following possibilities for C to be a curve:

(1) C ≡ B ≡ (0, k) and x is an arbitrary point, where k = 1 for a hyperelliptic
surface of an odd type; k = 2 for a hyperelliptic surface of type 2 and 4;
k = 3 for a hyperelliptic surface of type 6 (for admissible values of k see
Theorem 2.5 and Lemma 2.7). Then

LC

m
=

k

1
≥ 1.

(2) C ≡ nA/μ ≡ (n, 0) and the point x lies on a fibre nA/μ, where n ∈ {1, 2}
for a hyperelliptic surface of type 1 and 2; n ∈ {1, 2, 4} for type 3 and
4; n ∈ {1, 3} for type 5 and 6; n ∈ {1, 2, 3, 6} for type 7 (for admissible
values of n see Theorem 2.5). Then

LC

m
=

n

1
≥ 1.

(3) C ≡ (α, β), where α > 0 and β > 0, and x is an arbitrary point. Then by
Bézout’s theorem, intersecting C with a fibre B and with an appropriate
fibre nA/μ depending on the position of the point x, we get:

LC

m
=

α + β

m
≥

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 in case of a hyperelliptic surface of type 1, 3, 5, 7;
1
2 + 1

2 in case of a hyperelliptic surface of type 2;
1
2 + 1

4 in case of a hyperelliptic surface of type 4;
1
3 + 1

3 in case of a hyperelliptic surface of type 6.

Therefore LC
m ≥ 1 for a hyperelliptic surface of type 1, 2, 3, 5, and 7.

Now let S be a surface of type 4 or 6. We consider two cases. If
m = 1, then LC

m = α+β
m ≥ 2

1 > 1. If m ≥ 2, then by the genus formula
C2 ≥ m2 − m, by the Hodge index theorem (LC)2 ≥ L2C2 = 2C2 ≥
2(m2 − m), and therefore LC

m ≥
√

2(m2−m)
m2 =

√
2 − 2

m ≥ 1.
Hence, independently of the type of the hyperelliptic surface, we

have ε(L, x) ≥ 1. Moreover, for each hyperelliptic type of surface, ε(L, x)
= 1 for a point x on a fibre A/μ. Therefore ε(L) = 1. �

From the proof of Theorem 3.1, we immediately obtain the following corol-
lary:

Corollary 3.2. Let S be a hyperelliptic surface of an odd type. Let L be a line
bundle of type (1, 1) on S. Then the Seshadri constant of L at any x ∈ S is
computed by a fibre B, hence

ε(L, x) = 1 for any x ∈ S.

On the other hand, it is not true that on each hyperelliptic surface the
equality ε(L, x) = 1 holds for every x ∈ S.
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Proposition 3.3. There exists a hyperelliptic surface S such that for a line
bundle L of type (1, 1)

ε(L, 1) > 1.

Proof. Let S be a hyperelliptic surface of type 2, and let L be a line bundle
of type (1, 1) on S. Let x be a very general point on S. We will prove that
ε(L, x) ≥ 4

3 .
Let C ≡ (α, β) be a curve passing through x with multiplicity m, m ≥ 1.
Let m = 1. Assume that LC

m < 4
3 . Then LC < 4

3 , hence α + β < 4
3

and thus, as α and β are nonnegative integers, α + β ≤ 1. Therefore either
(α, β) ≡ (1, 0) ≡ A/2 or (α, β) ≡ (0, 1) ≡ B/2. Since x is a very general
point, it does not lie on a singular fibre A/2; a divisor B/2 is not effective on
a hyperelliptic surface of type 2 (see Lemma 2.7), a contradiction.

Now let m ≥ 2. We have to prove that LC
m ≥ 4

3 . Both sides are nonnegative,
hence equivalently (LC)2 ≥ 16

9 m2. By the Hodge index theorem, it is enough
to show that L2C2 ≥ 16

9 m2. By the Xu-type lemma (Lemma 2.11), we have
C2 ≥ m2 − m + 2. Hence it is enough to prove that 2m2 − 2m + 4 ≥ 16

9 m2.
Equivalently (m − 3)(m − 6) ≥ 0. The inequality is satisfied for m 	= 4, 5. We
consider these two cases separately.

Let m = 4. Suppose that LC
4 < 4

3 . Hence LC < 16
3 , so α + β ≤ 5. On

the other hand, by the Xu-type lemma 2αβ = C2 ≥ m2 − m + 2 = 14, a
contradiction.

For m = 5, if LC
5 < 4

3 , then α + β ≤ 6. By the Xu-type lemma αβ ≥ 11, a
contradiction. This completes the proof. �

Using the same method as presented in Proposition 3.3, one can show that
for a very general point x on a hyperelliptic surface of type 2 and for L of type
(1, 1), the Seshadri constant of L at x is greater than a constant slightly bigger
than 4

3 . The proof splits into a large number of cases, and therefore we have
decided to not present it here. However, precise study of this example might
support the idea that this Seshadri constant is irrational.

Now we will prove a lower bound for the global Seshadri constant of an
arbitrary ample line bundle on hyperelliptic surface of type 1.

Theorem 3.4. Let S be a hyperelliptic surface of type 1. Let L be an ample line
bundle of type (a, b) on S. Then

ε(L) = min{a, b}.

Proof. Let S be a hyperelliptic surface of type 1, let L ≡ (a, b). Let C ≡ (α, β)
denote a curve passing through a given point x with multiplicity m, m ≥ 1.
Using Bézout’s theorem, we obtain

LC

m
=

aβ + bα

m
≥

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a if C ≡ B and x is an arbitrary point;
b if C ≡ A/2 and x lies on a singular fibre A/2;
2b if C ≡ A and x lies on a fibre A;
a + b if C ≡ (α, β) and x lies on one of singular fibres A/2;
a
2 + b if C ≡ (α, β) and x lies on one of the fibres A.
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Hence if x lies on a singular fibre A/2, then ε(L, x) = min{a, b, a + b} =
min{a, b}, and if x does not lie on any singular fibre A/2, then ε(L, x) =
min{a, 2b, a

2 +b} = min{a, 2b}. Since L ·(A/2) > 0, the assertion is proved. �

By the theorem above we see that on a hyperelliptic surface of type 1 the
global Seshadri constant of an ample line bundle L is always submaximal, i.e.
smaller than

√
L2.

Note that the method used in Theorem 3.4 does not work on hyperelliptic
surfaces of other types. For hyperelliptic surfaces of type 1, the lower bound
of LC

m , where a curve C is not a fibre, is always greater than the value of LC
m

for some fibre C. It is also easy to show for which fibre and for which point
position the global Seshadri constant is actually reached. This is not the case
for hyperelliptic surfaces of types 2–7.

For hyperelliptic surfaces of types 2–7, we have the following lower bound
for the global Seshadri constant

Theorem 3.5. Let S be a hyperelliptic surface of type greater than 1. Let L be
an ample line bundle of type (a, b) on S. Then

ε(L) ≥ min{a, b}.

Proof. We have that L ≡ (a, b) ≡ min{a, b} · M + N , where M ≡ (1, 1) and N
is nef. By the definition of the Seshadri constant, for every x ∈ S

ε(L, x) ≥ min{a, b} · ε(M,x) + ε(N,x) ≥ min{a, b} · ε(M,x).

Hence by Theorem 3.1

ε(L) ≥ min{a, b} · ε(M) = min{a, b}. �

3.2. Multi-point Seshadri constants of ample line bundles on non-rational sur-
faces. In this section we present a lower bound for Seshadri constant at r points
in very general position on hyperelliptic surfaces.

The lower bound for multi-point Seshadri constants obtained in Theorem
3.6 is not far from the upper bound. As mentioned before, it is well known (see,

e.g., [5, Proposition 2.1.1]) that for smooth projective surfaces ε(L, r) ≤
√

L2

r .
The Biran–Nagata–Szemberg conjecture says that for any algebraic surface
there exists r0 > 0 such that for every r > r0, in fact, there is an equality

ε(L, r) =
√

L2

r .

Theorem 3.6. Let S be a hyperelliptic surface. Let L be an ample line bundle
on S. Then

ε(L, r) ≥
√

L2

r

√
1 − 1

8r
, r ≥ 2.

Proof. The claim follows immediately from the Harbourne–Roé theorem (The-
orem 2.3) with μ = 8. The point is to check that the assumptions of the the-
orem are satisfied with this particular constant. Turning into details, we need
to check the following two conditions:

(1) for every integer 1 ≤ m < 8, α0(L,m[r]) ≥ m
√

L2
(
r − 1

8

)
;
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(2) for every integer 1 ≤ m < 8
r−1 and for every integer k with k2 <

r
r−1 min{m,m + k}, α0(L,m[r−1],m + k) ≥ mr+k

r

√
L2

(
r − 1

8

)
.

Ad (1). For m = 1, 2, . . ., 7, we ask whether the inequality α0(L,m[r]) ≥
m

√
L2

(
r − 1

8

)
is satisfied.

Let C be a curve computing α(L,m[r]). It suffices to show that LC ≥
m

√
L2

(
r − 1

8

)
. As L is ample, by the Hodge index theorem it is enough to

prove that L2C2 ≥ m2L2
(
r − 1

8

)
.

We split the proof that C2 ≥ m2
(
r − 1

8

)
into two cases: m = 1 and m > 1.

For m = 1, we have h0(C) = dim |C|+1 ≥ r +1. Moreover, by Proposition
2.8 (3), h0(C) = C2

2 . Hence C2

2 ≥ r + 1. Therefore it is enough to show that
2r + 2 ≥ r − 1

8 . This condition is satisfied for every positive r.
Now let 2 ≤ m ≤ 7. By the Xu-type lemma (Lemma 2.12), C2 ≥ rm2 −

m + 2. Hence it is enough to show that rm2 − m + 2 ≥ m2
(
r − 1

8

)
, which is

elementary.
Ad (2). In the table below we write down all values of r, m, and k satisfying

the conditions 1 ≤ m < 8
r−1 and k2 < r

r−1 min{m,m + k}.

r m < 8
r−1 possible k

2 1 1
2 1,−1
3 1,−1, 2
4 1,−1, 2
5 1,−1, 2,−2, 3
6 1,−1, 2,−2, 3
7 1,−1, 2,−2, 3

3 1 1
2 1,−1
3 1,−1, 2

4 1 1
2 1,−1

5 1 1
6 1 1
7 1 1
8 1 1

We have omitted the case k = 0 in each row, as for k = 0 we have the
inequality already proved in (1).

Using the Hodge index theorem, analogously to (1) the condition to check is
reduced to the inequality C2 ≥ (

mr+k
r

)2 (
r − 1

8

)
, where C is a curve computing

α0(L,m[r−1],m + k).
Again we consider two cases: m = 1 and m > 1.
Let m = 1. Then k = 1. Since the Xu-type lemma (Lemma 2.12) implies

that C2 ≥ r + 3, we easily obtain that C2 ≥ (
r+1

r

)2 (
r − 1

8

)
.
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Let m > 1. Then r ∈ {2, 3, 4}. By the Xu-type lemma C2 ≥ (r − 1)m2 +
(m+ k)2 −m+2, so it is enough to show that (r − 1)m2 +(m+ k)2 −m+2 ≥(

mr+k
r

)2 · (
r − 1

8

)
holds. After reordering the terms, we obtain the inequality

8r2k2 − 8r2m + 16r2 + m2r2 + 2mrk − 8rk2 + k2 ≥ 0. Simple computations
confirm that the last inequality is satisfied for all admissible m > 1, r, and k.
The proof is completed. �

Remark 3.7. Note that the proof of Theorem 3.6 holds also for abelian surfaces
with ρ = 1.
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