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We evaluate n-particle (n = 2, 3, 4, 5) transverse momentum correlations for pions and kaons following 
from the decay of statistical clusters. These correlation functions could provide strong constraints on a 
possible existence of thermal clusters in the process of particle production.
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1. Observation of the positive short-range correlations between 
particles created in high-energy hadron collisions [1] is naturally 
interpreted as the consequence of production of particles in “clus-
ters” [2,3]. This effect was not unexpected, as the strong inter-
action between particles may easily lead to such clustering. The 
nature of these clusters and the actual mechanism of their forma-
tion remains, however, the subject of controversy even now.

In the present paper we continue the discussion [4,5] of the 
consequences of the idea invoked in the statistical cluster model 
[6,7], where clusters are treated as objects created by strong in-
teraction in the state of local equilibrium and thus decaying into 
observed particles according to the Boltzmann distribution, charac-
terized by the inverse cluster temperature β = 1/T . For a cluster 
moving with the four-velocity uμ we have

dN1(p; u) ∼ e−βpμuμ
d2 p⊥dy, (1)

where p⊥ and y are the transverse momentum and rapidity of the 
final particle.1 This can be rewritten as

e−βpμuμ = e−βγ⊥m⊥ cosh(y−Y )+βp⊥u⊥ cos(φu−φ), (2)

where u⊥ , Y and φu are the cluster transverse four-velocity, ra-
pidity and azimuthal angle, and φ is the azimuthal angle of the 
produced particle. Finally m2⊥ = m2 + p2⊥ , with m being the pro-
duced particle mass, and the transverse gamma factor γ 2⊥ = 1 +u2⊥ .
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our results. There are only small corrections (of the order of 10–20%) for pions.
http://dx.doi.org/10.1016/j.physletb.2016.06.068
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
The distribution of the cluster 4-velocity was studied in [4]
where it was observed that if γ⊥ is distributed according to the 
power law ∼ 1/γ κ⊥ , the single particle transverse momentum dis-
tribution

dN1(p⊥)

dp2⊥
∼

∞∫

1

dγ⊥
γ κ⊥

K0(βγ⊥m⊥)I0 (βu⊥p⊥) , (3)

with I0 and K0 denoting the modified Bessel functions of the first 
and the second kind, follows to a good accuracy the Tsallis distri-
bution [8], which is known to describe very well the p⊥ particle 
spectra [9–11]. Furthermore, it was shown in [5] that T = 140 MeV
and κ = 5 provides a good description of pions and kaons in a 
broad range of p⊥ . This gives a possible estimate of T and κ . 
However, as pointed in Ref. [12] the single particle momentum 
distribution could be distorted by, e.g., secondary particles from 
resonance decays. We checked that even a substantially higher 
temperature (for example T = 160 MeV) does not modify our re-
sults significantly.

In our previous work [5], we evaluated some of the two-particle 
correlations resulting from the production and decay of the uncor-
related statistical clusters. They present a rather stringent test of 
the model and can be confronted with experiment.

Measurements of the two-particle correlations alone, however, 
may not be sufficient to distinguish the idea of statistical clusters 
from the production of standard hadronic resonances, represent-
ing another possible interpretation of the observed two-particle 
correlations. It is thus interesting to evaluate and measure also 
multi-particle correlations, as they are strongly suppressed in res-
onance decays while there seems to be no obvious mechanism of 
such suppression in the decay of statistical clusters.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Multi-particle correlation functions, cn(p⊥, ..., p⊥), for n = 2, 3, 4, 5 as a function of p⊥ = p1⊥ = ... = pn⊥ for pions (left plot) and kaons (right plot). The curves are 
scaled to unity at p⊥ = 0.
In this paper we discuss n-particle correlations in transverse 
momenta. It turns out that Cn(p1⊥, ..., pn⊥) can be written in a 
simple analytical form, which can be directly compared with ex-
periment.

2. If clusters are uncorrelated, the genuine n-particle correla-
tion function (n-particle cumulant) is given by the n-particle dis-
tribution from decay of a single statistical cluster which reads

dN(1 cluster)
n

dy1d2 p1⊥ · · ·dynd2 pn⊥
∼

∼
∞∫

1

γ −κ
⊥ dγ⊥

2π∫

0

dφu

∫
dY G(Y ) ×

×
∏n

k=1
e−βγ⊥mk⊥ cosh(yk−Y )+βpk⊥u⊥ cos(φu−φk), (4)

where G(Y ) is the rapidity distribution of clusters (which should 
roughly follow the rapidity distribution of the produced particles) 
and u2⊥ = γ 2⊥ − 1.

In this formula the conservation laws are not included. If clus-
ters are objects with well-defined energy, momentum and other 
quantum numbers, this may lead to error which scales as inverse 
of the number of particles in the cluster. However, it is not obvious 
to us that clusters are isolated from their environment. It is actu-
ally plausible that they exchange energy, momentum and particles 
with their neighbours and thus our canonical description may be 
an effective replacement of the exact calculation based on micro-
canonical ensemble with (unknown) mass, momentum and charge 
fluctuations.

Performing straightforward integration over φk (from 0 to 2π ), 
yk and φu we obtain

Cn(p1⊥, ..., pn⊥)

∼
∞∫

1

dγ⊥
γ κ⊥

A (βγ⊥m1⊥, ..., βγ⊥mn⊥)
∏n

k=1
I0 (βu⊥pk⊥) , (5)

where

A (βγ⊥m1⊥, ..., βγ⊥mn⊥)

=
∫

dY G(Y )
∏n

k=1

∫
dyke−βγ⊥mk⊥ cosh(yk−Y ). (6)

In the above formula the integration over yk is performed over 
the specific rapidity bin, depending on an actual measurement. 
We note that this bin should be broad enough to capture a multi-
particle cluster. We found that Cn with |yk| < 2 and2 mk⊥ >

2 Of course the broader rapidity bin the better.
0.6 GeV can be very well approximated by A with the integral 
from −∞ to +∞.3 In this case A is simply given by a product of 
K0 functions and we obtain

Cn(p1⊥, ..., pn⊥)

∼
∞∫

1

dγ⊥
γ κ⊥

∏n

k=1
K0 (βγ⊥mk⊥) I0 (βu⊥pk⊥) , (7)

which does not depend on the specific shape of G(Y ).
In the following we present our results for

cn(p1⊥, ..., pn⊥) = Cn(p1⊥, ..., pn⊥)

N1(p1⊥) · · · N1(pn⊥)
. (8)

As a reminder, the only two free parameters of the model, 
T = 140 MeV and κ = 5, are fixed by fitting (3) to the pion 
and kaon transverse momentum spectra in p + p collisions at √

s = 2.76 TeV [5].
In Fig. 1 cn(p⊥, ..., p⊥), is plotted vs p⊥ for pions (left plot) and 

for kaons (right plot). As we are not interested in the overall nor-
malisation of cn only the ratio cn(p⊥, ..., p⊥)/cn(0, ..., 0) is plotted. 
We observe a nontrivial dependence on p⊥ which is getting more 
pronounced with increasing n and particle mass. This dependence 
on p⊥ is not particularly intuitive since the distribution of particle 
momenta is determined by a subtle interplay between the temper-
ature T and the power law γ⊥ distribution. However, we checked 
that if T goes to zero cn(p⊥, ..., p⊥) explodes. This can be eas-
ily understood. For T → 0 particles momenta from a cluster are 
solely determined by γ⊥ and are all identical (in the rest frame of 
a cluster all momenta are zero). It means that correlation between 
particles is the strongest possible.

In Fig. 2 we study cn for pions (left plot) and kaons (right 
plot) in a different way. We fix pk⊥ = p0 for k = 1, 2, ..., n − 1
and study the dependence of cn(p0, ..., p0, pn⊥)/cn(p0, ..., p0, p0)

on the transverse momentum of the last particle pn⊥ = p⊥ . We 
choose two values of p0 = 0.3 and 0.5 GeV for pions, whereas for 
kaons we use p0 = 0.5 and 0.7 GeV. The results shown in Fig. 2, 
can be easily understood. When one chooses a certain number of 
particles from the same cluster to have rather small transverse mo-
menta, one selects a cluster with a small transverse velocity and 
consequently the last particle is expected to have small p⊥ as well. 
When p0 increases, the last particle also tends to have larger p⊥ . 
In other words, depending on the value of p0, the correlation 
function cn(p0, ..., p0, p⊥) can be either decreasing or increasing 
function of p⊥ in the vicinity of p0. However it is somehow sur-
prising that the correlation function is not peaked at p⊥ = p0. 

3 For smaller m⊥ corrections do not exceed 20%.
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Fig. 2. n-particle correlation functions for pions (left) and kaons (right), cn(p0, ..., p0, p⊥) for n = 2, 3, 4, 5 as a function of the transverse momentum of the n-th particle, p⊥ . 
The remaining n − 1 particles have fixed momenta pk⊥ = p0, k = 1, 2, ..., n − 1. For pions we choose p0 = 0.3 and 0.5 GeV whereas for kaons we use p0 = 0.5 and 0.7 GeV. 
The correlation functions are scaled to unity at p⊥ = p0. For clarity the curves for p0 = 0.5 GeV (pions) and p0 = 0.7 GeV (kaons) are shifted vertically.

Fig. 3. n-particle correlation functions for pions (left) and kaons (right) for integrated n − 1 transverse momenta in the range 0.2 < pk⊥ < 1.5 GeV, k = 2, 3, ..., n as a function 
of p⊥ of the remaining particle. The curves are scaled to unity at p⊥ = 0.
We verified that this is the consequence of the non-zero tempera-
ture.

Finally, in Fig. 3 we present the results for a more practical 
situation. We integrate n − 1 particles over a range of transverse 
momenta and plot cn as a function of p⊥ of the momentum of the 
remaining particle

c(int n−1)
n (p⊥) =

∫
dp2

2⊥ · · ·dp2
n⊥Cn(p⊥, p2⊥, ..., pn⊥)

N1(p⊥)
∫

dp2
2⊥N1(p2⊥) · · · ∫ dp2

n⊥N1(pn⊥)
. (9)

In Fig. 3 we show c(int n−1)
n (p⊥), n = 2, 3, 4, 5, where the trans-

verse momenta, p2⊥, ..., pn⊥ , are integrated from 0.2 to 1.5 GeV. 
We scale c(int n−1)

n (p⊥) to 1 at p⊥ = 0.

3. To summarise, the formulae for the n-particle correlation 
functions in transverse momenta, following from the production 
and decay of the uncorrelated statistical clusters, were written 
down. Numerical evaluation of n-particle correlations, n = 2, 3, 4, 5, 
were presented and their specific features discussed. When com-
pared with experimental data, they may serve as a test of the 
nature of the clustering effects observed since long time in multi-
particle production.

Several comments are in order.
(i) The main goal of our investigation is to emphasize the 

importance of measurements of multi-particle short-range corre-
lations as their presence could be the decisive argument in the 
discussion on the nature of clustering effects observed in many 
processes of multi-particles production. We hope that our semi-
quantitative estimates shall be useful in the future experimental 
search.

(ii) To compare our results with experiment it is necessary to 
measure the genuine n-particle correlation functions, given by the 
n-particle cumulants Cn (see, e.g., [13]). For example

C2(p1, p2) = N2(p1, p2) − N1(p1)N1(p2), (10)
and for three particles

C3(p1, p2, p3) = N3(p1, p2, p3) + 2N1(p1)N1(p2)N1(p3) −
N2(p1, p2)N1(p3) −
N2(p1, p3)N1(p2) − N2(p2, p3)N1(p1), (11)

where Ni are the standard (inclusive) i-particle densities. The ex-
pressions for up to six particles can be found, e.g., in Ref. [14], see 
also [13].

(iii) To illustrate the results, we evaluated numerically multi-
particle correlations up to five particles. If needed, it is not difficult 
to perform similar evaluation for any number of particles.
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