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Abstract. In this paper we describe a procedure to obtain the general operator form of two-nucleon (2N)
potentials and apply it to the case of the 2N potential that has an additional dependence on the total
momentum of the system. This violates Galilean invariance but terms including the total momentum
appear in some relativistic approaches. In operator form, the potential is expressed as a linear combination
of a fixed number of known spin-momentum operators and scalar functions of momenta. Since the scalar
functions effectively define the potentials, using the operator form significantly reduces the number of
parameters that are needed in numerical implementations. The proposed operator form explicitly obeys
the usual symmetries of rotational invariance, particle exchange, time reflection and parity.

1 Symmetries of the general two-nucleon
operator

We consider quantum mechanical potential operators for
a 2N system in the non-relativistic domain. This, non-
relativistic, limitation is justified for few-nucleon forces,
including the newest models derived from Chiral Effec-
tive Field Theory [1–4], since they are constructed to ac-
curately describe the experimental data primarily at low
energies. All our considerations will be performed in the
momentum space with the momenta of the two individ-
ual particles 1, 2 in the initial (final) state denoted as k1,
k2 (k′

1, k′
2). For the 2N system the possible isospin struc-

tures are limited to the identity operator 1̌ (here and in
the following we use the inverted hat “ˇ” to denote oper-
ators) and to the scalar product of the isospin operators
τ̌(1) · τ̌(2). For this reason in the following it is sufficient
to consider only the spin degrees of freedom, the extension
to isospin is obvious. With this observation the momen-
tum space projected operators can be represented using
4 × 4 matrices (2 × 2 = 4 possible spin states for the 2N
system) and will be denoted, in the following, by using
square brackets [. . .].

We focus on matrix elements of 2N potentials V̌ of
the form 〈p′K ′ | V̌ | pK〉, where p′ = 1

2 (k′
1 − k′

2),
p = 1

2 (k1 − k2) are the final and initial relative momenta
of the two nucleons and K = k1 + k2 = k′

1 + k′
2 is the to-

tal momentum of the 2N system. We allow the potential
to be dependent on K. This additional dependence can
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potentially break Galilean invariance, however terms of
this type appear in non-relativistic reductions of relativis-
tic expressions [5,6]. Our aim is to find the most general
form of these matrix elements for operators that satisfy
the usual symmetries. The motivation for this work is to
reduce the numerical complexity of the so called “three-
dimensional” calculations [7–10] which directly utilize the
“three-dimensional” momentum degrees of freedom of the
nucleons without using partial wave decomposition. We
also hope to extend our results to find the general form of
the three-nucleon potential.

Momentum conservation means that

〈p′K ′ | V̌ | pK〉 ∝ δ3(K ′ − K).

More interesting is the rotational invariance since it in-
volves both the momentum and spin degrees of freedom
of the system. This symmetry will be considered in detail
in the next sect. 2.

We additionally assume the potential to be Hermitian
and invariant under parity, time reversal and particle ex-
change. All these symmetry conditions are discussed in
sect. 3. It should be noted that rotational invariance and
discrete symmetries can be considered separately since the
respective transformations commute with each other.

2 Invariance under spatial rotations

This section contains a description of an iterative algo-
rithm to obtain the general rotationally invariant form of
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the 2N potential. In the sections that follow additional
symmetry constraints, mentioned above, will be added.

First we define the set T of all spin and momentum
vector operators available for the construction of the 2N
potential

T =
{
σ̌(1), σ̌(2), p̌, p̌′, Ǩ

}
, (1)

where, as mentioned earlier, p and p′ are the relative
nucleon-nucleon momenta in the initial and final states re-
spectively. K is the total (conserved) 2N momentum and
finally σ(1), σ(2) are spin vectors (for particles 1, 2 re-
spectively). The inverted hat “ˇ” in (1) is used to indicate
that the set T contains operators.

Operators which are invariant under spatial rotations
can be constructed by combining various elements from
T to form scalars. This could potentially lead to a great
number of terms, since even lengthy scalar combinations
are possible. Lengthy scalar combinations of vector oper-
ators can, however, be expanded by using simple vector
identities to reveal a simple underlying structure. Consid-
ering, for example, the two following scalar combinations
constructed from vector operators ťi ∈ T (i is just the
vector number and not a coordinate):

(
ť1 ×

(
ť2 × ť3

))
·
(
ť4 ×

(
ť5 ×

(
ť6 × ť7

)))

= (ť1 · ť3)(ť2 · ť5)(ť4 × ť6 · ť7)
− (ť1 · ť2)(ť3 · ť5)(ť4 × ť6 · ť7)
+ (ť1 · ť2)(ť4 · ť5)(ť3 × ť6 · ť7)
− (ť1 · ť3)(ť4 · ť5)(ť2 × ť6 · ť7) (2)

and
(
ť1 × ť2

)
·
(
ť3 ×

(
ť4 ×

(
ť5 × ť6

)))

= (ť1 · ť6)(ť2 · ť3)(ť4 · ť5)
− (ť1 · ť3)(ť2 · ť6)(ť4 · ť5)
− (ť1 · ť5)(ť2 · ť3)(ť4 · ť6)
+ (ť1 · ť3)(ť2 · ť5)(ť4 · ť6), (3)

where we used

ti × (tj × tk) = tj(ti · tk) − tk(ti · tj),
(ti × tj) × tk = −ti(tj · tk) + tj(ti · tk),

(ti × tj) · (tk × tl) = (ti · tk)(tj · tl) − (ti · tl)(tj · tk),

to perform the expansions on the right hand sides of (2)
and (3), it is easy to see that even very complicated scalar
expressions can be built up from only two types of opera-
tors:

ťi · ťj , (ťi × ťj) · ťk. (4)

Thus, we define

V =
{
1̌, ťi · ťj , (ťi × ťj) · ťk

}
(5)

to be a set of operators of type (4) that can be constructed
from ťi, ťj , ťk ∈ T and the identity operator 1̌. The fol-
lowing steps describe the main algorithm leading to the
general rotation-invariant form of the 2N potential.

1) Construct the set V. In order to keep the notation
consistent in further iterations, let this first initial set
of operators be denoted as V0 = V.

2) The next step is the reduction of V0 by eliminating
those elements from V0 that can be expressed as lin-
ear combinations of scalar functions of the momenta
p, p′, K and the remaining operators from V0. This
means that if operators X̌, Y̌i ∈ V0 and X̌ �= Y̌i and
X̌ can be written as X̌ =

∑M−1
i=1 fiY̌i with fi being a

scalar function of momenta and M being the number
of elements in V0, then X̌ can be eliminated.

3) After the elimination in step 2 we end up with a new,
smaller set of operators V0 and, by its construction, it
is clear that any operator from V0 can be expressed by
linear combinations of scalar functions of p, p′, K and
operators from V0. This set, V0, is the result of the first
iteration of the algorithm. Additionally, this set will
play a special role in constructing further iterations.
In order to avoid confusion we give it an additional
name, let G = V0 be the generator.

4) Next we expand the set from the previous iteration.
This is done by multiplying each operator from V0 by
each operator from the generator G. This larger set V1

is then subjected to the same reduction procedure as
in the first iteration (step 2). The resulting set V1 is
the second iteration result.

5) These steps are repeated. We first expand the result of
the previous n-th iteration Vn−1 by multiplying each
operator from this set by each operator from the gen-
erator G. This larger set Vn is then reduced (as in step
2) to produce Vn, the n + 1 iteration result.

6) The procedure is completed when new iterations do
not introduce any new operators. The final result VN

can be shown to be composed from operators that can
be used to construct the general, rotation-invariant,
2N force.

For the 2N case considered here, it turned out that
this algorithm requires only two iterations. After the first
iteration we end up with 11 operators in the generator G

(V0 = G):

Ǧ1 = 1̌,

Ǧ2 = p̌′ · σ̌(1),

Ǧ3 = p̌′ · σ̌(2),

Ǧ4 = p̌ · σ̌(1),

Ǧ5 = p̌ · σ̌(2),

Ǧ6 = Ǩ · σ̌(1),

Ǧ7 = Ǩ · σ̌(2),

Ǧ8 = σ̌(1) · σ̌(2),

Ǧ9 = (p̌′ × σ̌(1)) · σ̌(2),

Ǧ10 = (p̌ × σ̌(1)) · σ̌(2),

Ǧ11 = (Ǩ × σ̌(1)) · σ̌(2). (6)

These operators are used to construct 16 operators
in V1 = {Ǒi=1...16} that will make up the general
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rotation-invariant form of the 2N potential:

Ǒ1 = 1̌,

Ǒ2 = p̌′ · σ̌(1),

Ǒ3 = p̌′ · σ̌(2),

Ǒ4 = p̌ · σ̌(1),

Ǒ5 = p̌ · σ̌(2),

Ǒ6 = Ǩ · σ̌(1),

Ǒ7 = Ǩ · σ̌(2),

Ǒ8 = σ̌(1) · σ̌(2),

Ǒ9 = (p̌′ × σ̌(1)) · σ̌(2),

Ǒ10 = (p̌ × σ̌(1)) · σ̌(2),

Ǒ11 = (Ǩ × σ̌(1)) · σ̌(2),

Ǒ12 = (p̌′ · σ̌(1))(p̌′ · σ̌(2)),

Ǒ13 = (p̌′ · σ̌(1))(p̌ · σ̌(2)),

Ǒ14 = (p̌′ · σ̌(1))(Ǩ · σ̌(2)),

Ǒ15 = (p̌ · σ̌(1))(p̌ · σ̌(2)),

Ǒ16 = (p̌ · σ̌(1))(Ǩ · σ̌(2)). (7)

It is clear that Ǒi=1...11 = Ǧi and the second iteration in-
troduced only 5 new operators Ǒi=12...16. With our choice
of elimination order, the third iteration does not con-
tribute any new operators to the final set. By consider-
ing the way V1 was constructed, it can be shown that any
rotation-invariant operator can be written as a linear com-
bination of operators Ǒi ∈ V1 and scalar functions of the
momenta αi = αi(p,p′,K)

V̌ = α1Ǒ1 + . . . + α16Ǒ16. (8)

In order to see this it is enough to consider only a single
multiple product of operators constructed from elements
of the form ťi·ťj and (ťi×ťj)·ťk since any scalar expression
can be written as a linear combination of such products.
For example, in expressions (2) and (3) we could consider
each of the following products of operators separately:

(ť1 · ť3)(ť2 · ť5)(ť4 × ť6 · ť7),
(ť1 · ť2)(ť3 · ť5)(ť4 × ť6 · ť7),
(ť1 · ť2)(ť4 · ť5)(ť3 × ť6 · ť7),
(ť1 · ť3)(ť4 · ť5)(ť2 × ť6 · ť7),
(ť1 · ť6)(ť2 · ť3)(ť4 · ť5),
(ť1 · ť3)(ť2 · ť6)(ť4 · ť5),
(ť1 · ť5)(ť2 · ť3)(ť4 · ť6),
(ť1 · ť3)(ť2 · ť5)(ť4 · ť6).

We will now show how any multiple products of opera-
tors of this type, called a “chain” in the following, can be
reduced to the general operator form (8). In appendix A
we show an example illustrating the steps described in
this paragraph when applied to a sample scalar 2N op-
erator. In general when looking at the first operator in a
chain, there are only two mutually exclusive possibilities.

Either this operator is an element of V0 or it is not. If
it is not then we can write it as a linear combination of
operators from V0, this is guaranteed by the construction
of V0 = G. Using this property we can write the whole
chain as a linear combination and consider each of the
new chains from the sum in this linear combination sep-
arately. We are guaranteed that each of these chains will
start from an operator belonging to V0. Next, if a chosen
chain has more than one operator, we can consider a sub-
chain that contains the first pair of operators in a chain
(otherwise we can stop since any elements of V0 can also
be expressed by elements in VN , the final result of the
algorithm). Looking this time at V1, again we have two
possibilities. Either the considered sub-chain of operators
is in V1 or it is not. If it is not then it must be a linear
combination of operators in V1, this is guaranteed by the
construction of V1. Similarly, we can use this property to
write the whole chain as a linear combination. This re-
sults in a sum containing a certain number of chains with
the guarantee that each chain will begin with an operator
from V1. Again, each chain can be considered separately
and the same steps as above can be repeated. We look
at a sub-chain that contains the next operator (if there
is one) and create chains that start with operators from
V2. Next we look at a sub-chain that contains yet another
operator (if there is one) and create chains that start with
operators from V3, etc. After each repetition, we will end
up with chains, each starting with an operator from V2,
V3, . . . After we reach VN (the final result of the algo-
rithm, for our 2N case VN = V1) there is no need to look
at VN+1. We can continue to consider larger sub-chains
and in each case look at VN . The procedure stops if there
are no new operators to add to a sub-chain. Finally we will
end up with a linear combination of chains, each contain-
ing a single element from VN , very similar to the sum (8).

Using the same arguments, it is also easy to see that
VN is complete. Any product of operators from VN can be
written as a linear combination of operators from VN and
scalar functions of the momenta. This can be immediately
verified by considering the procedure from the previous
paragraph.

Now we describe a more practical aspect of the imple-
mentation. It is important to make sure that the reduction
from steps 2 and 4 of the operator-generating procedure
is implemented in an efficient way since this is the most
demanding part of the algorithm. In our calculations we
use a numerical approach to perform the reduction. We
take all operators contained in Vn−1 at the beginning of
the n-th iteration and consider each operator as a matrix
element in momentum space and as an operator in spin
space. Next, since there are 4 possible spin states, we cre-
ate the 4× 4 matrix representation for each operator. We
then choose random numerical values for the momentum
vectors p, p′, K and substitute these in the matrix rep-
resentation. At this point, we have a set of matrices that
are composed of complex numbers. Checking if an opera-
tor can be expressed as a linear combination of the other
operators multiplied by scalar functions of momenta now
becomes an easy task. Namely, one particular matrix is
taken out of the set Vn−1 and written as a vector in its
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natural basis
⎛

⎜
⎜
⎝

1 0 . . .

0 0 . . .

...
...

. . .

⎞

⎟
⎟
⎠

4×4

,

⎛

⎜
⎜
⎝

0 1 . . .

0 0 . . .

...
...

. . .

⎞

⎟
⎟
⎠

4×4

, . . . ,

so that the vectors elements are simply appropriate
components of the matrix representation. Let this 16-
dimensional vector be b. The remaining operators from the
set are also written in the same way in this basis. These
vectors can be stacked together to create a (M − 1) × 16
matrix A, where M is the number of operators in Vn−1.
All that remains is to solve a linear equation Ax = b and
the results x are the values of the M − 1 scalar functions
with the momenta p, p′, K having the appropriate ran-
domly substituted values. To be on the safe side, multiple
different momentum substitutions can be used. If no nu-
merical solution to Ax = b can be found, then the operator
is considered independent. If a solution can be found, then
the operator is left out from Vn−1.

Caution is advised however, since it is tempting to use,
instead of steps 1–6 of the operator generating algorithm,
a procedure similar to Gauss elimination: stack the M
vectors to create a M ×16 matrix, then multiply the rows
by numbers and add rows to each other in order to set
as many rows as possible to 0. This procedure will lead
to errors since we can only multiply each operator by a
scalar function. A number might violate this requirement
(e.g. we cannot multiply by the z component of p —since
it is clearly not a scalar function).

The procedure described in this section can also be
applied to systems of three or more particles. Only slight
modifications are required. For instance when dealing with
the three-nucleon force in momentum space, the potential
could be constructed from the Jacobi momenta in the final
and initial states p′, q′, p, q and the total momentum K.
This together with the addition of the third spin operator
σ̌(3) leads to a different form of the set (1) that can be
used to construct the general form of the spatial rotation-
invariant three-nucleon potential

T =
{
σ̌(1), σ̌(2), σ̌(3), p̌, q̌, p̌′, q̌′, Ǩ

}
.

With this in mind, the procedure can be carried out with
almost no modifications.

3 Additional symmetries

At this point we have at our disposal 16 operators Ǒi

from (7) that make up the rotationally invariant 2N po-
tential. In addition to this we require that the potential be
Hermitian and symmetric with respect to parity, time re-
versal and particle exchange. We will consider a group of
transformations composed from the identity operator 1̌,
spatial reflections Ť SR, time reflections ŤTR, Hermitian
conjugations ŤHR (X̌† = ŤHRX̌) and particle exchange
ŤPE. We require the potential to be symmetric with re-
spect to this group. The explicit set of discrete operations

that form the group will be denoted by D:

D = {1̌, Ť SR} × {1̌, ŤTR} × {1̌, ŤHR} × {1̌, ŤPE} (9)

and this set is a direct product of 4 simple groups. In
practice we use the 4 × 4 matrix representation of op-
erators to implement transformations acting on operator
Ǒ(p′,p,K). Time reflection ŤTR was implemented using

[
Ǒ(p′,p,K)

]
→

[iσy ⊗ iσy]
[
Ǒ(−p,−p′,−K)

]
[iσy ⊗ iσy]−1

, (10)

where σy is the Pauli matrix and ⊗ denotes the Kronecker
product. Particle exchange ŤPE was implemented using

[
Ǒ(p′,p,K)

]
→

[
P̌12

] [
Ǒ(−p′,−p,K)

] [
P̌12

]
, (11)

where [P̌12] is a 4 × 4 matrix implementing particle per-
mutations in the spin space. Spatial reflections Ť SR were
implemented using

[
Ǒ(p′,p,K)

]
→

[
Ǒ(−p′,−p,−K)

]
. (12)

Finally the Hermitian conjugate ŤHR

[
Ǒ(p′,p,K)

]
→

[
Ǒ(p,p′,K)

]†
. (13)

Parallel to the matrix implementation of the symmetry
transformations we used the symbolic equivalents of the
same transformations where we work directly with ana-
lytical expressions involving p′, p, K, σ(1), σ(2).

In order to add the additional symmetries, a sym-
metrization procedure is applied to the general form of
the potential (8)

V̌ →
∑

Ť∈D

Ť V̌ , (14)

where the sum is over all transformations of the group
D. After this transformation we are guaranteed that the
resulting operator is symmetric with respect to all trans-
formations from (9). This can be immediately verified by
applying any transformation Ď ∈ D to the new operator:

Ď
∑

Ť∈D

Ť V̌ =
∑

Ť∈D

ĎŤ V̌ =
∑

Ť∈D

Ť V̌ . (15)

This equation is satisfied since D is a group and ĎŤ is
just another element of D. The combination of the two
operators only changes the order of the summation on the
right hand side of (15).

When applying the procedure (14) to (8), we can focus
on each element of the sum separately. It is important,
however, to keep in mind that the procedure is applied to
the scalar functions of momenta and to the operators at
the same time:

∑

Ť∈D

Ť V̌ =
∑

Ť∈D

Ť
(
α1Ǒ1 + . . . + α16Ǒ16

)
.

For this reason it is important to consider the number
and type of arguments for the scalar function. A simple
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calculation reveals that for the 2N system with 3 vectors,
the scalar function can have in general 3 × 3 − 3 = 6
arguments (number of vectors × number of dimensions
− number of constraints). It is easy to construct 6 scalar
combinations from p, p′ and K:

α(p′,p,K) = α(p′ · p′,p · p,K · K,p′ · p,p · K,K · p′),

but such a simple choice of arguments is incorrect and
can be misleading. To understand this we can consider
two momentum transformations

p → −p, p′ → −p′

and
K → −K.

They are a part of parity, time reversal and particle ex-
change in (10), (11), (12), (13). It turns out that they lead
to the same function

α(−p′,−p,K) = α(p′,p,−K). (16)

If arguments containing a triple product

p × p′ · K

are included and

α(p′,p,K) =
α(p′ · p′,p · p,K · K,p′ · p,p · K,p × p′ · K), (17)

then the same transformations lead to different functions.
In practice the procedure (14) was carried out using sym-
bolic programming within the Mathematica R© [11] package
and we used (17) as test functions.

Another issue to consider is the type of the scalar func-
tions. We considered the properties of the scalar functions
α under time reversal, particle exchange and Hermitian
conjugation. After determining the group of transforma-
tions that change the arguments of the scalar functions we
chose a representation for α

α = β−1,−1,−1 + β−1,−1,1 + β−1,1,−1

+β−1,1,1 + β1,−1,−1 + β1,−1,1 + β1,1,−1 + β1,1,1,

(18)

where βn1,n2,n3 is any scalar function that changes its sign
to n1, n2 and n3 under the transformations

βn1,n2,n3(p′,p,K) = n1β
n1,n2,n3(−p,−p′,K),

βn1,n2,n3(p′,p,K) = n2β
n1,n2,n3(p′,p,−K),

βn1,n2,n3(p′,p,K) = n3β
n1,n2,n3(−p′,−p,K).

Considering the purely real and purely imaginary
scalar functions of different types (18), after performing
the symmetrization procedure (14), we end up with a
large set of operators. Next we use a reduction procedure
described in sect. 2 but with additional tests for the scalar
function type βn1,n2,n3 . This eliminates those operators
that can be expressed by a linear combination of the

Table 1. The n1(i), n2(i), n3(i) values for β
n1(i),n2(i),n3(i)
i

from (20).

i n1(i) n2(i) n3(i)

1 −1 −1 −1

2 −1 1 1

3 1 −1 −1

4 1 −1 −1

5 1 −1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 1 1 1

10 1 1 1

11 −1 −1 1

12 −1 −1 1

13 −1 1 −1

14 1 −1 1

15 1 1 −1

16 1 1 −1

remaining operators and scalar functions (of appropriate
type).

We end up with 16 independent operators

W̌1 = (p · σ̌(1))(K · σ̌(2)) + (p · σ̌(2))(K · σ̌(1))
+ (K · σ̌(1))(p′ · σ̌(2)) + (K · σ̌(2))(p′ · σ̌(1)),

W̌2 = (p · σ̌(1))(p · σ̌(2)) − (p′ · σ̌(2))(p′ · σ̌(1)),

W̌3 = (p · σ̌(2))(p′ · σ̌(1)) − (p · σ̌(1))(p′ · σ̌(2)),

W̌4 = (p · σ̌(1))(K · σ̌(2)) + (p · σ̌(2))(K · σ̌(1))
− (K · σ̌(1))(p′ · σ̌(2)) − (K · σ̌(2))(p′ · σ̌(1)),

W̌5 = (p + p′) · σ̌(1) × σ̌(2),

W̌6 = 1̌,

W̌7 = σ̌(1) · σ̌(2),

W̌8 = (p · σ̌(1))(p′ · σ̌(2)) + (p · σ̌(2))(p′ · σ̌(1)),

W̌9 = (p · σ̌(1))(p · σ̌(2)) + (p′ · σ̌(1))(p′ · σ̌(2)),

W̌10 = (p · σ̌(1))(K · σ̌(2)) − (p · σ̌(2))(K · σ̌(1))
− (K · σ̌(1))(p′ · σ̌(2)) + (K · σ̌(2))(p′ · σ̌(1)),

W̌11 = i(p · (σ̌(1) − σ̌(2)) + p′ · (σ̌(1) − σ̌(2))),

W̌12 = iK · (σ̌(1) + σ̌(2)),

W̌13 = i(p · (σ̌(1) + σ̌(2)) − p′ · (σ̌(1) + σ̌(2))),

W̌14 = i(p · (σ̌(1) − σ̌(2)) − p′ · (σ̌(1) − σ̌(2))),

W̌15 = i(p · (σ̌(1) + σ̌(2)) + p′ · (σ̌(1) + σ̌(2))),

W̌16 = iK · (σ̌(2) − σ̌(1)), (19)

that make up the general operator form of the 2N potential

V̌ =
16∑

i=1

β
n1(i),n2(i),n3(i)
i W̌i. (20)

The numbers n1, n2, n3 assigned to each real scalar
function are given in table 1. Equation (20) is our final
expression for the 2N potential dependent on the initial
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and final relative momentum and the total momentum of
the system. This form is Hermitian and constructed to im-
plicitly obey rotation symmetry as well as parity, time re-
versal and particle exchange. It can be additionaly checked
that removing the Hermiticity condition changes (20) by
allowing the functions β to be complex. In principle, a
very similar procedure can be used to construct the gen-
eral operator form of the 3N potential. Dealing with three
particles makes using the procedure (14) more difficult
due to the complexity of particle permutations. For this
reason, for the 3N case, the symmetrization with respect
to discrete transformations is typically divided into two
parts as described in [12].

Equation (20) together with the set of operators (19)
and table 1 are the final result and can be used to ex-
tend the so called “three-dimensional” formalism [7–10]
by using more general 2N potential types. For the centre-
of-mass case with K = 0 our result should reduce to the
general form from [7,13] with w̌i=1...6(p′,p). The resulting
relations are

w̌1(p′,p) = W̌6(p′,p,K),

w̌2(p′,p) = W̌7(p′,p,K),

w̌3(p′,p) = − (p′ × p) · (p′ × p)
K · (p′ × p)

W̌12(p′,p,K)

−K · ((p′ × (p′ × p)) + (p × (p′ × p)))
2K · (p′ × p)

× W̌13(p′,p,K)

−K · ((p′ × (p′ × p)) − (p × (p′ × p)))
2K · (p′ × p)

× W̌15(p′,p,K),

w̌4(p′,p) =
1
2
(p2 − p′2)W̌2(p′,p,K)

+ ((p′ × p) · (p′ × p))W̌7(p′,p,K)

+ (p · p′)W̌8(p′,p,K)

− 1
2
(p2 + p′2)W̌9(p′,p,K),

w̌5(p′,p) = W̌8(p′,p,K) + W̌9(p′,p,K),

w̌6(p′,p) = −W̌8(p′,p,K) + W̌9(p′,p,K).

When taking the limit K → 0, there is a problem with w̌3

since some of the scalar functions have singularities. The
problem exists only if the scalar functions and operators
are considered separately. When taking the limit K → 0
the product of the scalar function and the operator have
to be considered together and the limit can be performed
in a straightforward manner. This operation results in the
w̌3 operator.

4 Summary

After introducing a new procedure to generate the
rotation-invariant operator form of the 2N potential
dependent on the spins, relative momenta and total-
momentum operators σ̌(1), σ̌(2), p̌, p̌′, Ǩ we added
the spatial reflection, particle exchange and time-reversal

symmetry. On top of this we required Hermiticity and
ended up with the most general form of the 2N poten-
tial V̌ ,

V̌ =
16∑

i=1

β
n1(i),n2(i),n3(i)
i W̌i,

where it is written as a linear combination of scalar func-
tions βn1,n2,n3 = βn1,n2,n3(p,p′,K) and spin operators
W̌i = W̌i(p,p′,K). The spin operators have a known form
and the scalar functions (having appropriate properties)
effectively define the potential. This final operator form
can be used to extend the so called “three-dimensional”
formalism by using more general 2N potential types. It is
a crucial element of these calculations because it signif-
icantly reduces the computational complexity of the nu-
merical implementation. Additionally, it can be useful to
improve techniques that perform the partial wave decom-
position of few nucleon forces. It should be stressed that,
with only minor modifications, the techniques described in
this paper can also be used to create the general operator
form of the 3N potential.
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Appendix A. Illustration of the steps

Here we give an example that ilustrates the steps in proof
from sect. 2. Let us consider the following operator:

X̌ = (p̌ · σ̌(1))(p̌ × σ̌(1) · σ̌(2))(p̌ · σ̌(2)). (A.1)

Our aim is to express X̌ as a linear combination of oper-
ators from (7).

We start by looking at the first operator in the chain,

(p̌ · σ̌(1)),

and immediately recognize Ǧ4 ∈ V0 (V0 = G) from (6).
Thus operator (A.1) can be written as

X̌ = (Ǧ4)(p̌ × σ̌(1) · σ̌(2))(p̌ · σ̌(2)). (A.2)

There are still two additional operators in this chain. This
leads us to consider a sub-chain of (A.1) containing the
first pair of operators

(p̌ · σ̌(1))(p̌ × σ̌(1) · σ̌(2))

and this time we are looking at V1 since, by construction,
any two operator chain can be expressed by operators from
V1. It turns out that

(p̌ · σ̌(1))(p̌ × σ̌(1) · σ̌(2)) = ip2Ǒ8 − iǑ15,

where Ǒ8, Ǒ15 ∈ V1 are operators from (7). Now we can
write (A.1) as

X̌ = ip2Ǒ8(p̌ · σ̌(2)) − iǑ15(p̌ · σ̌(2)). (A.3)
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Finally, we consider two element sub-chains

Ǒ8(p̌ · σ̌(2))

and
Ǒ15(p̌ · σ̌(2)).

This time we are again looking at V1 since the next it-
eration V2 does not introduce any new operators. It can
easily be checked that

Ǒ8(p̌ · σ̌(2)) = Ǒ4 − iǑ10

and
Ǒ15(p̌ · σ̌(2)) = p2Ǒ4.

Using the above identities we are finally in the position to
rewrite (A.1) as

X̌ = ip2(Ǒ4 − iǑ10) − i(p2Ǒ4) = p2Ǒ10. (A.4)

After each step (A.2), (A.3), (A.4) we ended up with
shorter chains. Chains from each step start with an oper-
ator from V0 = G, V1 or V2 = V1 respectively.
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