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Abstract This study assessed the effects of Reynoutria
japonica, Rudbeckia laciniata, and Solidago gigantea invad-
ing sites within and outside river valleys on activity, bio-
mass, and composition of soil microbial communities.
Microbial properties such as soil respiration, urease and
arylsulfatase activities, microbial biomass (based on
substrate-induced respiration, or SIR, and phospholipid fatty
acids, or PLFA), and community composition (based on
PLFA) were determined. R. japonica encroached on sites
characterized by the lowest values of microbiological prop-
erties and R. laciniata on sites with the highest microbiolog-
ical quality. The effect of invasion on soil microbial proper-
ties depended on the invasive plant species. R. japonica
significantly decreased microbial biomass, determined by
both SIR and total PLFA, urease activity, fungal PLFA,
fungal:bacterial PLFA ratio, gram-negative bacterial PLFA,
and soil respiration in comparison to soil under adjacent
native plant communities. Microbial community composi-
tion also differed between soils under R. japonica and those
under native plants. In contrast, R. laciniata and S. gigantea
did not influence most microbial properties, though
S. gigantea significantly increased fungal PLFA and
R. laciniata and S. gigantea increased fungal:bacterial
PLFA ratio. The effects of plant invasion on microbial prop-
erties were basically similar in soils located within and

outside river valleys, probably because initially (i.e., before
invasion) soils from the two locations were largely similar in
terms of basic properties such as texture, moisture, pH, C:N
ratio, and most microbial properties.
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Introduction

Invasive plants alter ecosystem structure and functioning, as
they differ from natives in the physiology, leaf-area alloca-
tion, shoot allocation, growth rate, size, and fitness
(Ehrenfeld 2003; Liao et al. 2008; Van Kleunen et al.
2010). Plant invasions considerably reduce the diversity
and abundance, or change the composition of aboveground
and belowground communities, including soil microbial
communities (Belnap and Phillips 2001; Yeates and
Williams 2001; Broz et al. 2007; Kappes et al. 2007;
Hejda et al. 2009; Moroń et al. 2009; Aguilera et al.
2010; Lenda et al. 2013). Indeed, invasive plants can
change the composition or abundance of complex microbial
communities and particular microbial groups, such as
saprotrophic, mycorrhizal or pathogenic fungi, or
ammonia-oxidizing bacteria (Kourtev et al. 2002; Hawkes
et al. 2005; Batten et al. 2006; Broz et al. 2007; Niu et al.
2007; Zhang et al. 2009a, 2009b; Mincheva et al. 2014;
Majewska et al. 2015). Crucial ecosystem processes, for
example, organic matter decomposition and mineralization
or nitrogen fixation, are also modified by invaders (Rice
et al. 2004; Hawkes et al. 2005; Liao et al. 2008;
Tharayil et al. 2013; Mincheva et al. 2014). These modifi-
cations may lead to changes in soil nutrient pools and
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element cycling, engendering positive feedback that poten-
tially stabilizes current or accelerates further invasion, and
prevent re-establishment of native species (Ehrenfeld 2003;
Niu et al. 2007; Liao et al. 2008; Pii et al. 2015). The
greater the invader-induced changes in soil, the greater the
feedback that may be expected (Scharfy et al. 2010).

The magnitude and direction of changes in soil characteris-
tics and processes brought about by invasion depend on local
habitat conditions, invasive plant species traits, and/or the inter-
action of both (Meyerson et al. 2000; Ehrenfeld 2003; Koutika
et al. 2007; Dassonville et al. 2008; Scharfy et al. 2009; Vilà
et al. 2011; Hulme et al. 2013; Castro-Díez et al. 2014).
Dassonville et al. (2008) reported that invasion increased nutri-
ent concentrations of surface soils with initially low nutrient
concentrations, while under the opposite conditions, a negative
impact was mainly observed. Similarly, Scharfy et al. (2009)
discovered that the effects of invasion on some soil physico-
chemical properties depended on P availability, being more pro-
nounced at more P-rich sites.

Reynoutria japonica, Rudbeckia laciniata, and Solidago
gigantea aggressively invade anthropogenic, semi-natural,
and natural habitats in Europe, forming dense, near-
monoculture stands. They exert negative influence on the bio-
diversity of valuable natural and extensively managed habitats
(Zelnik 2012). These species are considered transformers
(Tokarska-Guzik et al. 2010), i.e., invasive species that
Bchange the character, condition, form, or nature of ecosys-
tems over a substantial area^ (Pyšek et al. 2004); therefore,
their effects on soil microbial processes and thus soil function-
ing (Nannipieri et al. 2003) require detailed investigations.
Previous research has been often conducted using either one
or a small number of study sites, a single invasive species/
genus, and/or measuring few microbial properties, making
generalizations on the impact of the invasion on soil function-
ing problematic (Chapuis-Lardy et al. 2006; Herr et al. 2007;
Scharfy et al. 2009, 2010; Aguilera et al. 2010; Dassonville
et al. 2011; Tharayil et al. 2013; Mincheva et al. 2014). To the
best of our knowledge, data on the influence of R. laciniata
invasion on soil microbial properties are lacking.

We performed an extensive investigation based on
48 independent study sites to assess the effects of
R. japonica, R. laciniata, and S. gigantea on the activ-
ity, biomass, and composition of soil microbial commu-
nities. The study sites were located either outside or
within river valleys (on floodplains); the latter were
affected by fluvial processes and expected to differ
from the former in terms of microclimate, the presence
of alluvial materials, and soil properties. We hypothe-
sized that the invasion would influence soil microbial
properties and thus soil functioning and that the direc-
tion and magnitude of the changes would depend on
the invasive species identity and location (within or
outside valleys).

Materials and methods

Invasive plant species

Three invasive plant species were selected for the study:
R. japonica Houtt. [= Fallopia japonica (Houtt.) Ronse
Decr. , = Polygonum cuspidatum Sieb. & Zucc.]
(Polygonaceae), R. laciniata L. (Asteraceae), and S. gigantea
Aiton [= S. serotina Aiton] (Asteraceae). These perennial
herbs can reach 1.2–3 m in height. R. japonica is native to
eastern Asia, R. laciniata and S. gigantea to North America.
They invade a range of habitats such as riparian zones around
standing waters or streams, floodplain woods, forest clearings,
swamps, wastelands, grasslands, cultivated field margins, fal-
lows, roadsides, and/or areas along railroad tracks (Tokarska-
Guzik et al. 2010; Sudnik-Wójcikowska 2011; Bzdęga et al.
2012; Zelnik 2012).

Study sites and soil sampling

Study sites were established on ca. 7500 km2 area in southern
Poland (from 18° 55′ E to 20° 31′ E and from 49° 50′N to 50°
22′ N; altitude from 180 to 320 m a.s.l.) (Fig. 1). The area lies
in the transitional climate zone between a temperate oceanic
climate in the west and a temperate continental climate in the
east. Mean annual temperature fluctuates between 7 and 9 °C
and precipitation between 700 and 900 mm. The vegetation
season (days with average temperature >5 °C) spans a period
between 210 and 230 days.

Forty-eight study sites were located within (N = 24) and
outside (N = 24) river valleys (Fig. 1). The sites were localized
relatively far from each other (a minimum of 0.4 km) and
separated by areas overgrown by distinct plant communities
in order to limit the possibility that the properties of one study
site affect the properties of another. In other words, we did our
best to have as independent study sites as possible (Fig. 1).
Valley sites were localized in the floodplains of four main
rivers, namely the Wisła, Raba, Skawa, and Skawinka, and
their minor tributaries, at a maximum distance of ca. 10–
50 m from the riverbed, depending on the size of the river.
Therefore, sites within (in contrast to those outside) river val-
leys were potentially affected by fluvial processes. The two
locations could be expected to differ in terms of microclimate
and the presence of alluvial materials.

Of the forty-eight study sites, each site belonged to one of
the three site types encroached by (1) R. japonica, Rj
(N = 16), (2) R. laciniata, Rl (N = 16), or (3) S. gigantea,
Sg (N = 16) (Fig. 1). All sites were dominated by tall her-
baceous vegetation and characterized by compact and rela-
tively large neighboring patches of invasive and native
plants. At each study site, two paired plots (2 m × 2 m each)
were established: one in a dense, near-monoculture (> 90 %
cover) patch of the invasive plant and one in the adjacent
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native vegetation devoid of any invasive species (control).
The contrasting (invaded vs. native) plots were located as
close as possible, a maximum of 15 m from each other, so
as to limit differences in soil properties between the two
vegetation types existing prior to the invasion event, and at
least 3 m from the edge of a patch so as to minimize any
effects of contrasting vegetation such as shading or litterfall.
Within each plot, vascular plants and bryophytes were re-
corded. The 12-grade cover-abundance scale was used (1,
<0.2 % cover and 1 small individual; 2, <1 % and 1–3 small
individuals; 3, 1–3 % and 2–5 individuals; 4, 3–5 % and 3–
8 individuals; 5, 5–12 % and 8–20 individuals; 6, 13–25 %;
7, 25–35 %; 8, 36–50 %; 9, 51–65 %; 10, 66–75 %; 11, 76–
85 %; 12, 86–100 %). Uninvaded vegetation did not differ
significantly in terms of plant species number and total plant
cover between valleys and outside-valley locations
(Table 1). The uninvaded patches of vegetation in Rj and
Sg valley sites were dominated by Phalaris arundinacea
and Rubus caesius, followed by Petasites hybridus,
Calystegia sepium, Aegopodium podagraria, and Urtica
dioica (Rj valley sites) or Cirsium arvense and Tanacetum
vulgare (Sg valley sites). Rl valley sites were dominated by
Cirsium arvense, Galeopsis speciosa, Dactylis glomerata,
and Chaerophyllum aromaticum. Calamagrostis epigejos,
Arrhenatherum elatius, Cirsium arvense, and Equisetum
arvense dominated both Rj and Sg outside-valley sites.
These species were often accompanied by Rubus caesius
(Rj outside-valley sites) or Agropyron repens and
Tanacetum vulgare (Sg outside-valley sites). The patches
of native vegetation in Rl outside-valley sites most often
consisted of Arrhenatherum elatius, Cirsium arvense,
Holcus lanatus and Centaurea phrygia.

In August 2013, three subsamples of topsoil (ca. 0–20 cm)
were taken from each plot after the removal of organic layer
consisting of fragmented litter and bulked to obtain one com-
posite sample per plot. In total, 96 soil samples were collected:
3 site types (Rj vs. Rl vs. Sg) × 2 locations (within vs. outside
valleys) × 8 replicates (sites) × 2 plots (invasive vs. native).

Laboratory work

Soil physicochemical properties

Soil samples were sieved (2 mm mesh) and divided into three
parts that were then either dried for chemical analyses, frozen
at −20 °C for phospholipid fatty acid (PLFA) analysis, or kept
moist at 4 °C for the other microbial analyses. Dry weight was
measured after drying overnight at 105 °C. Maximum water-
holding capacity (WHC) was assessed using a gravimetric
method. Soil texture was determined through a combination
of sieving and sedimentation (ISO 11277 1998). Soil pH was
measured in 1:5 (w:v) water suspensions (ISO 10390 1994)
with a Hach Lange HQ40D meter. Organic C was determined
with a Leco RC-612 and total S with a Leco SC-144 DR dry
combustion analyzer. Total N was determined by Kjeldahl
method; soil was digested in H2SO4 with Kjeltabs (K2SO4 +
CuSO4·5H2O; Foss Tecator Digestor Auto) followed by dis-
tillation on a Foss Tecator Kjeltec 2300 Analyzer Unit. The
available (Olsen) P was measured with an ion chromatograph
(Dionex ICS-1100) following soil extraction with 0.5 M
NaHCO3 (Olsen et al. 1954, modified).

Soil microbiological properties

The soil basal respiration rate and microbial biomass, deter-
mined by substrate-induced respiration (SIR), were measured
in fresh soil samples adjusted to 50 % WHC. The samples
were incubated in gastight jars at 22 °C for ca. 24 h; the
evolved CO2 was absorbed in 0.2 M NaOH. The excess hy-
droxide was titrated with 0.1 M HCl following the addition of
BaCl2 and phenolphthalein as an indicator. After the basal
respiration measurements, a mixture of talcum and glucose
monohydrate (4:1; 10 mg glucose g−1 dw soil) was added to
the soil samples to measure substrate-induced respiration,
which involves the determination of CO2 after 4 h of incuba-
tion (Beck et al. 1996, modified).
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Fig. 1 Location of the study area and 48 sites within (gray symbols) and outside valleys (white symbols). Within each site, two plots (invasive vs. native)
were localized
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Urease activity was measured according to Kandeler
(1996) using the unbuffered method. Soil samples were incu-
bated at 37 °C for 2 h following the addition of urea solution.
Released ammonium was extracted with KCl and determined
by a modified Berthelot reaction, which is based on the reac-
tion of sodium salicylate with ammonium in the presence of
sodium dichloroisocyanurate and sodium nitroprusside at al-
kaline pH. Photometric measurements were performed at
690 nm with a Hach Lange DR 3800 spectrophotometer.

Arylsulfatase activity was measured according to Strobl
and Traunmüller (1996). Following the addition of acetate
buffer (pH = 5.8) and p-nitrophenylsulfate, soil samples were
incubated at 37 °C for 1 h. Nitrophenol released by
arylsulfatase activity was extracted, colored with NaOH, and
determined at 420 nm using the Hach Lange DR 3800
spectrophotometer.

Phospholipid fatty acid (PLFA) analysis was performed
according to Palojärvi (2006), with the exception of the lipid
extraction, which was performed according to Macnaughton
et al. (1997). Lipids were extracted from freeze-dried soil
samples with a mixture of methanol:chloroform:phosphate

buffer (2:1:0.8, v:v:v) using accelerated solvent extractor
ASE 200 (Dionex; two 15-min cycles, 80 °C, 1200 PSI).
Following the extraction, an appropriate volume of chloro-
form and deionized water was added to give the correct final
ratio (chloroform:methanol:phosphate buffer/water; 1:1:0.9,
v:v:v) and form two phases. The chloroform layer was trans-
ferred to a new test tube, evaporated under nitrogen at 37 °C,
and stored at −20 °C. The lipids were separated into neutral-,
glyco-, and phospholipids in Bakerbond silica gel SPE col-
umns (500 mg, Baker) by eluting with chloroform, acetone,
and methanol, respectively. The methanol fraction was re-
duced to dryness under nitrogen. The phospholipids were sub-
jected to mild alkaline methanolysis, and the resulting fatty
acid methyl esters were separated and identified using a
Varian GC–MS system (Varian 3900 and Saturn 2100T) and
N I ST l i b r a r y. T h e CP - S e l e c t CB f o r FAME
(50 m × 0.25 × 0.39) column (Agilent Technologies) was
used. Helium was used as a carrier gas, and injections were
made in split mode (1:100). Individual fatty acids were iden-
tified relative to several standards: 37-component FAMEMix
(Supelco), Bacterial Acid Methyl Ester (BAME) Mix

Table 1 Basic characteristics of
uninvaded plots located within
and outside river valleys (mean ±
standard error, N = 24)

Variable Outside valley Valley p

Sand (%) 50.6 ± 5.2 42.5 ± 3.5 0.39

Silt (%) 22.3 ± 2.9 24.4 ± 2.2 0.50

Clay (%) 27.1 ± 2.9 33.1 ± 2.0 0.10

Moisture (%) 14.3 ± 1.0 15.6 ± 1.0 0.37

pH H2O 6.9 ± 0.2 7.3 ± 0.2 0.12

Organic C (%) 2.3 ± 0.3 2.1 ± 0.2 0.55

Total N (%) 0.23 ± 0.02 0.20 ± 0.02 0.24

Total S (g kg−1) 0.37 ± 0.04 0.52 ± 0.10 0.05

Olsen P (mg kg−1) 5.0 ± 0.5 6.2 ± 0.4 0.004

C:N 10.2 ± 0.5 11.3 ± 1.0 0.31

C:S 65.8 ± 3.1 52.5 ± 4.6 0.032

Soil respiration (μM CO2 g
−1 dw 24 h−1) 1.6 ± 0.2 1.8 ± 0.1 0.17

SIR-biomass (mg g−1 dw) 0.69 ± 0.04 0.69 ± 0.06 0.86

Urease activity (μg N g−1 dw h−1) 39.5 ± 3.4 50.8 ± 3.9 0.040

Arylsulfatase activity (μg pNP g−1 dw h−1) 128 ± 12 150 ± 15 0.35

Total PLFA (nM g−1 dw) 609 ± 45 669 ± 49 0.45

Bacterial PLFA (nM g−1 dw) 377 ± 28 421 ± 32 0.41

Gram-positive bacterial PLFA (nM g−1 dw) 234 ± 17 255 ± 21 0.57

Gram-negative bacterial PLFA (nM g−1 dw) 127 ± 10 149 ± 10 0.18

Fungal PLFA (nM g−1 dw) 20.8 ± 3.2 20.3 ± 2.0 0.75

Fungal:bacterial PLFA 0.05 ± 0.01 0.05 ± 0.004 0.86

Plant species number 11.2 ± 0.81 11.0 ± 0.8 0.88

Total plant cover (%)a 97.8 ± 4.8 106 ± 4.0 0.22

a Total plant cover exceeded 100 % at some plots as plant species of different height, composing Blayers^ of
herbaceous vegetation, were present at the same unit area. Statistically significant differences (p < 0.05) are shown
by the italic character. Student’s t test was used for all variables except Olsen P and C:N ratio, for which theMann-
Whitney U test was employed
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(Supelco), and a few additional one-component standards
(Sigma-Aldrich). Methyl nonadecanoate (19:0; Fluka) was
used as an internal standard.

Calculations and statistical analyses

Cmic was calculated according to the equation: Cmic

(μg g−1) = 40.04x + 0.37, where x is the respiration rate given
in microliters CO2 h

−1 g−1 (Anderson and Domsch 1978).
Forty-eight PLFAs were measured in soil samples; howev-

er, most PLFAs were present in negligible amounts in soil.
Eighteen fatty acids (14:0, 2OH 14:0, 15:0, a15:0, i15:0,
16:0, i16:0, 16:1ω7, 17:0, a17:0, i17:0, cy17:0, 17:1, 18:0,
18:1ω7, 18:1ω9, 18:1ω9t, 18:2ω6) with more than 0.5 % of
the total relative abundance were present in most soils, and
these fatty acids with cy19:0 were used in further calculations
and statistical analyses (Bossio and Scow 1998; Moore-
Kucera and Dick 2008). The sum of the above PLFAs (total
PLFA) was used as a total microbial biomass indicator. PLFA
18:2ω6 was used as an indicator of saprophytic fungi.
Bacteria were represented by 15:0, a15:0, i15:0, i16:0,
16:1ω7, 17:0, a17:0, i17:0, cy17:0, 18:1ω7, and cy19:0
(Frostegård and Bååth 1996; Ruess and Chamberlain 2010).
The fatty acids a15:0, i15:0, i16:0, a17:0, and i17:0 were cho-
sen to represent gram-positive and 16:1ω7, cy17:0, 18:1ω7,
and cy19:0 gram-negative bacteria (Piotrowska-Seget and
Mrozik 2003; Bardgett and Walker 2004; Moore-Kucera and
Dick 2008; Cycoń et al. 2013).

Prior to statistical analyses, all variables were transformed
by a logarithmic or exponential function and expressed on a
0–1 scale in order to achieve homogeneity of variances.
Student’s t tests or Mann-Whitney U tests were used to com-
pare uninvaded soil properties between valley and outside-
valley sites. Principal component analysis (PCA) was per-
formed on the concentrations of individual PLFAs, expressed
in mole percentages, to arrive at the minimum number of
variables, called principal components (PCs), representing
the composition of microbial communities. One variable
(PLFA 17:1) was excluded from the PCA due to its consider-
able deviation from a normal distribution. Interpretation of
PCs was based on factor loadings of individual PLFAs on
PCs. Split-plot ANOVAwas used to examine the effect of site
type (3 site types—Rj, Rl, and Sg, including both invaded and
native plots; whole-plot factor), location (2 locations—within
and outside valleys; whole-plot factor), and invasion (2 plot
types within sites—invaded vs. native; split-plot factor), or
their interactions, on soil microbiological properties. Split-
plot ANOVA was followed by Tukey’s HSD test if any sig-
nificant (p < 0.05) effects of site type, location, or their inter-
actions on microbial indices were found. Contrast analysis
was performed to test for differences in microbiological prop-
erties between invaded and native soils if any of the following
interactions was significant: invasion × site type,

invasion × location, or invasion × site type × location.
Statistical analyses employed Statistica 9 (StatSoft Inc).

Results

Seven PCs with eigenvalues >1, explaining the highest per-
cent of variance (a total of 77.8 % of variance in the PLFA
data), were chosen to represent the microbial community com-
position. PC1 (19.9 % of variance) correlated mainly with
i16:0 (−0.85), i17:0 (−0.74), 16:1ω7 (0.74), a17:0 (−0.54),
cy17:0 (0.52), PC2 (15.1 %) with 16:0 (−0.84), cy17:0
(0.56), i15:0 (−0.54), a15:0 (0.53), a17:0 (0.53), PC3
(12.5 %) with 14:0 (−0.78), 15:0 (−0.76), 17:0 (−0.66), PC4
(10.3 %) with 18:2ω6 (0.64), a15:0 (−0.49), 18:1ω9t (0.45),
PC5 (7.3 %) with 18:1ω9 (−0.49), 18:1ω7 (0.49), cy19:0
(0.49), PC6 (6.6 %) with 2OH 14:0 (−0.67), i17:0 (0.42),
and PC7 (6.1 %) with 18:0 (0.59), cy19:0 (−0.50).

Most studied soils (70 %) were classified as clay, clay
loam, or sandy clay loam. Uninvaded soils did not differ in
terms of most basic physicochemical properties between val-
ley and outside-valley sites (Table 1). Statistically significant
(p < 0.05) differences between the locations were found only
for Olsen P and C:S ratio. Uninvaded soils of the two locations
were also similar in respect of nearly all microbiological prop-
erties, except urease activity (Table 1) and community com-
position represented by PC1 (p = 0.015).

Soil microbiological properties were mainly affected by
two factors: site type and invasion × site type interaction
(Table 2). Effects of other factors, i.e., location, invasion,
site type × location, invasion × location, and invasion × site
type × location, were either rarely significant or insignifi-
cant (Table 2).

The effect of invasion on soil microbial communities
depended strongly on the invasive plant species (significant
effect of invasion × site type interaction for most microbio-
logical properties; Table 2). R. japonica influenced many mi-
crobial indices. SIR-biomass, urease activity, total PLFA, fun-
gal PLFA, fungal:bacterial PLFA ratio, gram-negative bacte-
rial PLFA, and soil respiration were significantly lower under
R. japonica than under adjacent native plant communities
(Fig. 2). Microbial community composition also differed be-
tween soils from under R. japonica and native plants
(p < 0.01 for PC2 and p < 0.001 for PC4 and PC7).
R. laciniata and S. giganteamainly influenced the abundance
of fungal community, i.e., fungal PLFA and fungal:bacterial
PLFA ratio (Fig. 2) and PC4 (p < 0.01 for S. gigantea), as
well as PC6 (p < 0.05 for R. laciniata) and PC7 (p < 0.05 for
R. laciniata and p < 0.01 for S. gigantea). More fungi were
observed under R. laciniata and S. gigantea than under native
communities, in contrast to the phenomenon observed for
R. japonica.
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The influence of plant invasion on soil did not generally
depend on location (Table 2). A significant effect of
invasion × location interaction was only found in the case of
PC1: microbial community composition was only influenced
by invasion in outside-valley soils (p < 0.001). Moreover,
arylsulfatase activity responded to invasion depending on both
location and site type: it was significantly lower under
R. japonica than under native plant communities in river val-
ley soils (Table 2, Fig. 2).

The significant site type effect means that total microbial and
bacterial biomass, enzyme activities, and community composi-
tion varied among sites of different invasive plant species,
irrespectively of patch (plot) type, i.e., invaded vs. native;
R. japonica encroached on sites characterized by the lowest
SIR-biomass, enzyme activities, total PLFA, bacterial PLFA,
and gram-positive bacterial PLFA, while the opposite was de-
tected for R. laciniata (Fig. 2). Sites infested by R. japonica also
differed from those encroached upon by R. laciniata in terms of
the soil microbial community composition represented by PCs
(p < 0.01 for PC1 and PC2). Most microbiological properties
did not differ significantly between the locations. The only ex-
ceptions were urease activity, which was lower in outside-valley
than in valley soils, and microbial community composition rep-
resented by PC1, PC4, and PC7 (Table 2).

Discussion

This study assessed the influence of three invasive plant spe-
cies, R. japonica, R. laciniata, and S. gigantea, on activity,
biomass, and composition of microbial communities in soils
located within and outside river valleys. Our results clearly
show that the invasion effects on soil microbes differed among
the invasive plant species.R. japonica infestation significantly
altered both the composition and the function of soil microbial
communities, irrespective of location (valley or outside val-
ley). Specifically, its invasion reduced soil respiration, both
urease and arylsulfatase activities, the abundance of fungi
and gram-negative bacteria, and the fungal:bacterial ratio.
The negative effects of R. japonica invasion on soil microbial

Table 2 Results of split-plot ANOVA for the effects of site type, location, invasion, and their interactions on soil microbial properties

Microbial variable Site typea Locationb Site type ×
location

Invasionc Invasion ×
site type

Invasion ×
location

Invasion × site
type × location

F p F p F p F p F p F p F p

Soil respiration 1.34 0.27 2.14 0.15 0.96 0.39 0.15 0.70 6.24 0.004 0.00 0.95 1.81 0.18

SIR-biomass 25.00 <0.001 0.00 0.98 1.90 0.16 2.83 0.10 13.77 <0.001 0.46 0.50 0.17 0.85

Urease activity 13.74 <0.001 6.66 0.013 1.12 0.34 0.47 0.50 13.31 <0.001 0.00 0.96 1.90 0.16

Arylsulf atase activity 18.75 <0.001 1.87 0.18 1.98 0.15 5.12 0.029 0.95 0.40 0.02 0.90 3.93 0.027

Total PLFA 3.67 0.034 1.23 0.27 1.29 0.29 0.92 0.34 4.36 0.019 0.40 0.53 2.39 0.10

Bacterial PLFA 4.13 0.023 1.48 0.23 1.07 0.35 1.34 0.25 3.11 0.06 0.48 0.49 2.41 0.10

Fungal PLFA 2.77 0.07 0.46 0.50 2.84 0.07 0.40 0.53 27.3 <0.001 0.37 0.55 2.88 0.07

Fungal:bacterial PLFA 0.05 0.96 0.05 0.83 2.18 0.13 3.75 0.06 18.48 <0.001 0.00 0.97 1.79 0.18

G+ bacterial PLFA 5.17 0.010 1.17 0.29 1.28 0.29 3.10 0.09 2.25 0.12 0.92 0.34 2.21 0.12

G–bacterial PLFA 2.45 0.10 2.26 0.14 0.81 0.45 0.03 0.86 3.81 0.030 0.02 0.88 2.41 0.10

PC1 6.28 0.004 4.39 0.042 1.56 0.22 12.63 0.001 1.88 0.16 4.36 0.043 0.49 0.62

PC2 5.28 0.009 2.48 0.12 0.37 0.69 0.87 0.36 6.96 0.002 0.00 0.95 0.52 0.60

PC3 0.05 0.95 0.31 0.58 0.48 0.63 6.53 0.014 2.71 0.08 0.05 0.82 0.14 0.87

PC4 0.29 0.75 5.57 0.023 0.78 0.47 0.17 0.68 15.75 <0.001 0.03 0.86 2.70 0.08

PC5 2.32 0.11 0.16 0.70 2.41 0.10 0.76 0.39 1.42 0.25 0.13 0.72 0.72 0.49

PC6 0.33 0.72 0.53 0.47 0.21 0.81 1.96 0.17 4.39 0.019 0.78 0.38 0.27 0.76

PC7 2.67 0.08 4.17 0.05 2.26 0.12 2.92 0.10 13.35 <0.001 1.16 0.29 2.20 0.12

a Three site types: encroached by R. japonica, R. laciniata, or S. gigantea, including both invaded and uninvaded vegetation patches (plots)
b Two locations: within and outside valleys
c Differences between two plot types within sites: invaded vs. native

Statistically significant effects (p < 0.05) are shown by the italic character

�Fig. 2 Microbial properties of soils under invasive and native vegetation
within and outside valleys (means and standard errors, N = 8). Different
small letters above the bars denote statistically significant (p < 0.05)
differences between three site types, i.e., sites encroached by
R. japonica, R. laciniata, or S. gigantea, including both invaded and
native plots. Asterisks indicate statistically significant effects of
invasion, i.e., differences between invaded and native plots
(***p < 0.001, **p < 0.01, *p < 0.05). The effect of invasion did not
depend on location (within and outside valleys), with the exception of
arylsulfatase activity. See Table 2 for results of the split-plot ANOVA
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properties agree with those reported by others. Mincheva et al.
(2014) discovered that R. japonica litter decomposed 3–4
times more slowly than the litter of native grassland species.
Dassonville et al. (2011) and Tharayil et al. (2013) found that
R. japonica, or other species of the Reynoutria genus, de-
creased enzyme activities related to N mineralization and/or
denitrification, although the changes were season dependent
(Tharayil et al. 2013). Our soils invaded byR. japonica, which
is a nonmycorrhizal plant, showed a reduced abundance and
species richness of arbuscular mycorrhizal fungi (AMF)
(Zubek et al. unpublished). On the other hand, Aguilera
et al. (2010) found no negative influence of R. japonica infes-
tation on soil processes such as ammonification, nitrification,
or total N mineralization.

Plants modify soil properties, including microbial process-
es, through deposition of litter and rhizodeposition that differ
between species in terms of quantity and chemical quality
(Chen et al. 2015). Invasive plants are often characterized by
higher productivity than co-occurring native vegetation (Vilà
et al. 2011; Jo et al. 2015). The biomass produced by
R. japonica is 2–5 times greater and characterized by lower
concentrations of essential nutrients such as N, P, K, Mg, or
Mn than the biomass of native plants (Dassonville et al. 2008;
Aguilera et al. 2010). Moreover, the tissues of R. japonica are
characterized by relatively high C:N and lignin:N ratios at the
time of senescence and litterfall (Aguilera et al. 2010;
Mincheva et al. 2014). Hence, R. japonica provides the soil
with huge amounts of low-quality litter (Aguilera et al. 2010;
Mincheva et al. 2014), which is probably the primary reason
for the severe decline in most soil microbial properties under
the R. japonica monoculture discovered in this study.
R. japonica invasion may have actually affected microbial
properties through changes in soil chemical characteristics,
as it altered the amount of soil N–NO3

¯ in comparison to
control soil (Stefanowicz et al. unpublished). The poor quality
of litter produced by R. japonica and low microbial activity
and decomposition rate accumulated large, undecomposed
fragments of organic matter and increased the organic layer
thickness under the plant (Maurel et al. 2010). The thickness
of the organic layer reached ca. 20 cm at some of our study
sites (data not shown).

The decomposition of detritus produced by R. japonica,
characterized by high C:N and lignin:N ratios and relatively
recalcitrant, is expected to be accomplished predominantly by
soil fungi, not by bacteria (De Boer et al. 2005; Thorn and
Lynch 2007). Surprisingly, our observations suggest that soil
from under R. japonica was not beneficial to fungi, as soil
fungal PLFA and fungal:bacterial ratio were considerably
lower under R. japonica than under native plants. Previous
research showed that the abundance, biomass, or composition
of saprotrophic fungal communities found on decomposing
litter in terrestrial and stream ecosystems differed between
R. japonica and native plants, though it depended on study

sites or decaying tissues (leaves vs. stems) (Lecerf et al. 2007;
Mincheva et al. 2014). According to Mincheva et al. (2014),
there were some striking differences in fungal communities:
Phoma sp. was isolated in very high abundance from
R. japonica litter, whereas it was absent in native litter. The
opposite observation was made for Mucor sp.—one of the
dominant taxa in native litter.

Modifications of the soil environment by invasions can
depend not only on the chemical composition of plant litter
but also on the release of secondary metabolites. R. japonica
produces numerous compounds that inhibit the growth of
pathogenic bacteria and fungi (Kim et al. 2005; Zhang et al.
2013). Phenolics released by R. japonica can also affect sea-
sonal patterns of soil processes such as N mineralization
(Tharayil et al. 2013). Thus, these substances may also explain
the low microbial activity and biomass detected in soil from
under R. japonica in our study.

The two other invasive species, i.e., Rudbeckia laciniata
and Solidago gigantea, did not influence most soil microbial
properties. They significantly affected only fungi-related
properties, namely fungal PLFA (S. gigantea) or
fungal:bacterial PLFA ratio (R. laciniata, S. gigantea). Both
absolute and relative abundance of soil fungi increased due to
the invasion, a phenomenon which is the opposite of that
found in R. japonica. Both plant species increased mycorrhi-
zal frequency but decreased species richness of AMF (Zubek
et al. unpublished). Our results agree with those of Scharfy
et al. (2009, 2010) and Quist et al. (2014) who found that
S. gigantea invasion had no influence or decreased soil respi-
ration, bacterial biomass, or phosphomonoesterase activity but
increased fungal biomass and/or fungal:bacterial ratio.
S. gigantea litter may support fungal rather than bacterial
growth as it has lower tissue concentrations of most nutrients
and higher C:N ratio than adjacent native vegetation
(Vanderhoeven et al. 2006; Thorn and Lynch 2007;
Dassonville et al. 2008). However, such differences in tissue
nutrient concentrations were not found by other authors
(Stefanowicz et al. unpublished). High fungal biomass detect-
ed in this study may suggest that S. gigantea stimulates fungal
pathogens in its introduced range (Scharfy et al. 2010), as
shown previously for other invasive species (Nijjer et al.
2007; Mangla et al. 2008). For example, Mangla et al.
(2008) found that Chromolaena odorata, a destructive tropi-
cal invasive weed, accumulated high concentrations of the
generalist soil-borne fungi,Fusarium semitectum, thereby cre-
ating a negative feedback to native plant species. However,
another species of the Solidago genus, S. canadensis, sup-
pressed fungal or fungi-like pathogens (Zhang et al. 2009b).
Stimulation or inhibition of soil microorganisms, including
fungal pathogens, may be driven through exudation of
allelochemicals (Zhang et al. 2009b). The composition of sec-
ondary metabolites, which potentially affect activity and
biomass of microorganisms, differs between plant species,
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including those belonging to the same genus (Kalemba and
Thiem 2004). Essential oil extracted from S. gigantea
contained 95 compounds, of which sesqi terpene
(–)-cyclocolorenone was dominant; it had both antibacterial
and antifungal properties (Jacyno et al. 1991; Kalemba et al.
2001; Kalemba and Thiem 2004). It is known, however, that
some secondary metabolites exhibit antibacterial, but not an-
tifungal, activity (Saeedi and Morteza-Semnani 2009), poten-
tially altering fungi:bacteria ratio in soil.

Invasive plants may also affect activity and biomass of bac-
teria and fungi indirectly through changes in soil fauna that feed
on microorganisms. It was proved that invasive plants can alter
the abundance or species composition of soil and sediment
invertebrates, including fungivorous or bacterivorous nema-
todes, collembola, enchytraeids, and mites (Talley and Levin
2001; Yeates and Williams 2001; Quist et al. 2014; Rusterholz
et al. 2014). These changes would possibly influence microor-
ganisms as, depending on species and grazing intensity and
selectivity, soil invertabrates can inhibit or stimulate mycelial
growth and alter species dominance and composition within
microbial communities (Hedlund and Augustsson 1995;
Crowther et al. 2011).

The lack of effects of S. gigantea or R. laciniata invasion
on most soil microbial properties in our research was unex-
pected, as both species are considered, like R. japonica,
Btransformers^ that modify ecosystems considerably (Pyšek
et al. 2004; Tokarska-Guzik et al. 2010). Other studies on the
influence of S. gigantea on soil microbial properties provided
inconsistent results, with positive, negative, or no changes in
soil properties due to the invasion. Chapuis-Lardy et al. (2006)
and Koutika et al. (2007) found that S. gigantea enhanced soil
respiration, C mineralization, and alkaline and acid
phosphomonoesterase activities in comparison to native
vegetation. Similar results were reported by Zhang et al.
(2009a) for other species of the Solidago genus; S. canadensis
invasion increased soil microbial biomass, basal and
substrate-induced respiration, and functional diversity of
microbial communities. On the other hand, Herr et al. (2007)
pointed out that microbial biomass P and acid phosphomono-
esterase activity did not change due to S. gigantea infestation,
while alkaline phosphomonoesterase activity declined
considerably.

Contrary to expectations, the effects of invasion on soil
microbial properties did not differ between valley and
outside-valley sites, probably because the two locations did
not differ in terms of basic soil properties such as total C, N
and S content, texture, pH, or most microbial properties.
Presumably the influence of fluvial processes we had
expected in the river floodplain was too weak to alter soil
properties as well as plant species richness and cover
considerably. Dassonville et al. (2008) and Scharfy et al.
(2009) found that the direction and magnitude of changes in
soil properties induced by invasion differed between study

sites, but their sites showed differences in initial (pre-
invasive) soil properties. Specifically, invasion increased nu-
trient concentrations of surface soils with initially low nutrient
concentrations, while under the opposite conditions a negative
impact was mainly observed (Dassonville et al. 2008).
Scharfy et al. (2009) reported that some effects of S. gigantea
on soil depended on soil P availability, being more pro-
nounced at P-rich sites.

In this study, soil samples were collected from paired plots,
which were established in the patches of an invader and native
vegetation. Such a sampling scheme did not exclude the pos-
sibility of pre-invasion differences among invaded and
uninvaded plots as already mentioned by Vanderhoeven et
al. (2005), Carol Adair and Burke (2010), and Dostál et al.
(2013). However, our experimental plan avoided these differ-
ences since paired plots were established within one site, as
close as possible to each other, in flat terrain and far enough
from shrubs or trees. Experiments involving sowing, or plant-
ing, invasive and native plants in uninvaded soil should be
performed in addition to field studies. Such experiments, test-
ing the effects of R. japonica, R. laciniata, and S. gigantea on
soil properties, are in progress.

Conclusions

Investigations concerning the effects of invasive plants on
soil microbial properties are often based on only a single
invasive species and sampling schemes that are affected by
pseudoreplication. In contrast, our study included three inva-
sive plant species and two locations (valleys and outside val-
leys) and used replicate independent study sites scattered over
a vast area. The invasion of R. japonica, R. laciniata, and
S. gigantea influenced soil microbial properties compared to
native plants, but the direction and magnitude of the changes
depended on the invasive species. The effects of R. japonica
were the most pronounced: this species reduced microbial
activity and biomass. Such negative effects of plant invasions
on soil are not a common phenomenon as invasive plants
generally increase nutrient pools, microbial activity, and rates
of soil processes such as litter decomposition, N mineraliza-
tion, or nitrification (Liao et al. 2008; Vilà et al. 2011).
Changes in soil properties brought about by plant invasions
may induce positive or negative feedback with implications
for acceleration or stabilization of these invasions, re-
establishment of the native flora, and the functioning of
whole ecosystems. The effects of the invasive species on soil
properties did not differ between valley and outside-valley
locations, probably because soils of the two locations had
similar initial characteristics. Further research should study
the impact of plant invasions on soil microbial properties also
testing seasonal effects and including ecosystems with con-
trasting properties.
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