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Abstract Resultant information concepts combining descriptors of both the proba-
bility and phase/current distributions in molecular electronic states are summarized.
Continuity equations for these fundamental densities are explored and the equilibrium
states of molecular systems are determined from the relevant information principles.
The extremumof the nonclassical entropy/information terms alone determines the sys-
tem vertical-equilibrium state of the vanishing current. The maximum of the resultant
entropy, which defines the system horizontal-equilibrium, corresponds to the optimum
“thermodynamic” phase determined by the system particle distribution and predicts
its finite current related to the gradient of electron density. This equilibrium phase-
transformation conserves the probability density while modifying the current of the
original state. Generalized measures of the entropy/information content give rise to
a thermodynamic description of molecular equilibrium states, which establishes the
entropy source and flux concepts in the underlying information continuity equation.
The influence of the equilibrium-phase transformation on the continuity relations for
the state probability distribution, phase density, and local entropy production is exam-
ined.
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1 Introduction

The classical information theory (CIT) [1–8], using measures of the entropy/
information content of molecular probability distributions, has been remarkably suc-
cessfull in addressing many classical issues in the theory of electronic structure and
reactivity, e.g., [9–12]. It fails, however, to account for the structural information con-
tained in the phase or current distributions of complex quantum states, being designed
to probe solely the particle density. The electronic current, generated by the phase
gradient, ultimately contributes to the resultant information content and quantum
communications between bonded atoms in molecules. Such a quantum extension of
information concepts, which recognizes the entropic contributions generated by the
state phase density or electronic current, calls for the nonclassical complements to the
familiar classical measures of the information content [13–20]. This quantum infor-
mation theory (QIT) distinguishes states exhibiting the same electron distribution but
differing in composition of electronic currents, which CIT fails to do.

In QIT an adequate measure of the resultant information content of molecular
electronic states must reflect their complete “structure” aspect, accounting for the
entropy/information characteristics of the spatial distributions of both the probabil-
ity and phase components of the system wavefunction. The electron density, related
to the wavefunction modulus, reveals the classical (probability) aspect of the state
information content, while the phase/current facet gives rise to the nonclassical
entropy/information terms. Together these two contributions allow one to monitor
the full (resultant) information content of, say, degenerate, non-equilibrium or gen-
eral (variational) states, thus providing the complete information description of their
evolution towards the ground-state equilibrium.

Such a combined perspective also applies to the cross-entropy (information-
distance) quantities and electronic communications in molecules, which generate
the entropic descriptors of chemical bonds. In QIT the classical information chan-
nel reflects the probability-scattering from the “input” to “output” events relevant for
the adopted resolution level. Its nonclassical supplement involves the associated net-
works of elementary phase- and current-propagations in the molecular bond system
[19]. Such phase/current networks generate the nonclassical supplements to classical
entropic descriptors of molecular bond multiplicities and their covalent/ionic compo-
sition [19,20].

A conservation in time of the overall classicalmeasures of the entropy/information
content in the position-probability density, due to the sourceless character of the con-
tinuity equation for the quantum distribution of electrons, has been stressed [11] and
the continuity equations for the resultant Shannon and Fisher type measures have been
explored [21,22]. These full measures exhibit finite source terms due to the nonclas-
sical information terms. The phenomenological description of equilibria in molecular
systems has been proposed [17,18,21], which resembles that developed in the ordinary
irreversible thermodynamics [23]. This nonequilibrium treatment of the time evolution
of entropic probes of molecular electronic states has introduced a new framework for
describing in information terms the dynamics of chemical processes [20]. The relevant
entropy current and source concepts have been identified in the continuity equation
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for the resultant entropy density, and the local sources of the overall Shannon (global)
and Fisher (gradient) type entropies have been interpreted [22].

The sourceless character of the continuity equation for the quantum probability
density in position representation implies a conservation of the classical information
measures in time. This is no longer the case, when the information contributions due
to the phase/current distributions are taken into account. Indeed, the continuity equa-
tions for these nonclassical degrees-of-freedom of molecular electronic states exhibit
finite sources [11,14,17,18,24], which ultimately contribute to the time dependence
of the resultant entropy measures. These nonclassical state-variables also introduce
a nonvanishing source term into the associated continuity equation for the resultant
entropy, which expresses a local balance between the flow and source contributions in
the time evolution of the resultant information density [22]. However, specific forms
of this continuity relation for the Fisher or Shannon type of the overall measure of
the entropy/information content is phase-current dependent, with different flux defi-
nitions only reshuffling the local probability and phase rates, known from molecular
Schrödinger equation, between the inflow and source parts of the underlying phase-
continuity equation.

The molecular phase-equilibria are determined by the extremum information prin-
ciples involving either the nonclassical or resultant entropy/information concepts
[15–18,25,26]. The latter determines the so called horizontal-equilibrium state, which
represents the phase-transformed quantum state of a molecule, corresponding to the
optimum, density-dependent “thermodynamic” phase. This manipulation of the elec-
tronic state, without an accompanying change of quantum observables, preserves the
electron probability distribution but modifies its current. It is the main purpose of
this work to examine how this “thermodynamic” transformation affects the continuity
equations for the electron probability, phase and entropy densities.

2 Probability and phase continuity

Let us consider a general one-electron state ϕ(r, t) = R(r, t) exp[iφ(r, t)], with
R(r, t) and φ(r, t) representing its modulus and phase components, respectively. We
adopt the usual Born-Oppenheimer (BO) approximation of the fixed nuclear positions.
In this prototype molecular scenario one envisages a single electron moving in the
external potential v(r) due to the “frozen” nuclei, described by the Hamiltonian

Ĥ(r) = −
(
h̄2/2m

)
∇2 + v(r) = T̂(r) + v(r). (1)

The state probability distribution and its current density read:

p(r, t) = |ϕ(r, t) |2 = R(r, t)2 ,

j(r, t) = h̄

2mi
[ϕ∗(r, t)∇ϕ(r, t) − ϕ(r, t)∇ϕ∗(r, t)] = h̄

m
p(r, t)∇φ(r, t). (2)

These principal distributions reflect the state two independent components: its mod-
ulus and the phase or its gradient determining the current density j ≡ jp. The
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wave-function modulus factor R, the classical amplitude of the particle probability
distribution p = R2, and the state phase φ or its gradient ∇φ thus constitute two
fundamental “degrees-of-freedom” of electronic states:

ϕ ⇔ (R, φ) ⇔ (p, j) . (3)

They both contribute to the resultant entropy/information descriptors of molecular
quantum states, which combine both the classical contributions, due the the particle
probability distribution, and the nonclassical terms, related to the state phase/current
[13–20].

The dynamics of this quantum state in wave mechanics is determined by the
Schrödinger equation (SE):

Ĥ(r)ϕ(r, t) = ih̄∂ϕ(r, t) /∂t. (4)

One further recalls that the weighted sum of this equation and its Hermitian conjugate
gives rise to the sourceless form of the continuity equation for the particle probability
distribution p(r, t):

∂p(r, t) /∂t = −∇ · j(r, t) or

dp(r, t) /dt ≡ σp(r, t) = ∂p(r, t) /∂t + ∇ · j(r, t) = 0. (5)

This continuity relation for the position-space probability expresses a local balance in
electron redistributions from the angle of the wave-function modulus: the local rate of
the probability density in the fixed “monitoring” volume element, ∂p(r, t)/∂t , is solely
due to the probability outflow measured by the negative divergence of the probability
current density, −∇ · j(r, t), while its rate in the volume element moving with the
particle, dp(r, t)/dt , i.e., the probability source, identically vanishes: σp(r, t) = 0.

The weighted difference of SE and its conjugate,

(ih̄)−1(ψ∗T̂ψ + ψT̂ψ∗ + 2pv) = − [h̄/ (mi)] [R�R − p(∇φ)2] + (ih̄)−12pv

= ψ∗(∂ψ/∂t) − ψ(∂ψ∗/∂t) = 2ip(∂φ/∂t),

similarly determines the time derivative of the state phase φ(r, t) [14],

∂φ(r, t)/∂t = [h̄/ (2m)] {R(r, t)−1�R(r, t) − [∇φ(r, t)]2} − v(r)/h̄, (6)

or the associated rate of the phase-density f(r, t) = φ(r, t)2 ≥ 0:

∂ f(r, t)/∂t = 2φ(r, t)∂φ(r, t)/∂t. (7)

Ascribing the flux concept to phase component of molecular states is not unique
[14,20,25,26]. Alternative phase-flow concepts Jf (r, t) only reshuffle the known rate
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of the state phase-density between the outflow,−∇· Jf (r, t), and the source,Σ f (r, t),
contributions in the underlying phase-continuity equation:

d f (r, t)/dt ≡ Σ f (r, t) = ∂ f (r, t)/∂t + ∇ · Jf (r, t). (8)

Therefore, for definiteness, one ascribes the whole derivative of Eq. (7) exclusively to
the absolute (abs.) phase-source, for the identically vanishing phase-current [20,22,
25,26],

∂ f (r, t)/∂t ≡ Σabs.
f (r, t) and Jf (r, t) ≡ 0. (9)

3 Classical entropy/information measures nad their nonclassical
complements

At specified time t , which for simplicity we temporarily leave out from the list of
the state arguments, the Fisher measure [1,2] of the gradient information in p(r),
reflecting the average determinicity-information content in this probability density, is
reminiscent of the vonWeizsäcker [27] inhomogeneity correction to the kinetic energy
functional in Thomas–Fermi–Dirac (TFD) theory:

I [p] = ∫[∇ p(r)]2/p(r)d r ≡ ∫ p(r)Ip(r)d r ≡ ∫ gp(r)d r ≡ I class.[ϕ], (10)

where
Ip(r) = [∇ p(r)/p(r)]2 = [∇lnp(r)]2 ≡ I class. (r) (11)

stands for the functional density-per-electron. This intrinsic accuracy descriptor mea-
sures an effective localization (compactness, narrowness, “order”) of the probability
distribution. It simplifies, when expressed in terms of its classical probability aplitude
R(r),

I [p] = 4 ∫[∇R(r)]2d r ≡ I [R], (12)

thus revealing that it effectively measures the average length of the gradient of the
state modulus factor R(r).

The complementary CIT descriptor, the classical entropy of Shannon [3,4],

S[p] = −∫ p(r)lnp(r)d r ≡ ∫ p(r)Sp(r)d r ≡ ∫ h p(r)d r ≡ Sclass.[ϕ], (13)

where the associated density-per-electron, Sp(r) ≡ Sclass.(r) = −lnp(r), reflects
the average indeterminacy-information content in p(r). This functional measures the
average uncertainty (diffuseness, spread, “disorder”) in the probability distribution. It
also provides the average amount of the information received, when this uncertainty is
removed by the particle-localization experiment: I S[p] ≡ S[p]. One further observes
that densities of these complementary gradient and global entropy/information probes
are mutually related:

Ip (r) = [∇lnp(r)]2 = [∇Sp (r)]2. (14)

The amplitude form of the Fisher information renders its natural, resultant gener-
alization in terms of the system complex probability amplitude, i.e., the wavefunction
ϕ(r) itself:
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I [ϕ] = 4 ∫ |∇ϕ(r)|2d r = 4{∫[∇R(r)]2d r + ∫ R(r)2[∇φ(r)]2d r}
≡ I class.[ϕ] + I nclass.[ϕ]

= I [p] + 4 ∫ p(r)[∇φ(r)]2d r ≡ ∫ p(r)[Ip(r) + Iφ(r)]d r
≡ I [p] + I [φ] ≡ I [p, φ]

= I [p] + (2m/h̄)2 ∫ j(r)2/p(r)d r ≡ I [p] + I [ j ] ≡ I [p, j ]. (15)

It is proportional to the state overall kinetic energy T [ϕ], I [ϕ] = (8m/h̄2)T [ϕ], and
introduces the nonclassical supplement to the classical gradient information due to
phase/current:

I nclass.[ϕ] = 4 ∫ p(r)[∇φ(r)]2d r ≡ I [φ] = (2m/h̄)2 ∫ j(r)2/p(r)d r ≡ I [ j ].
(16)

One conjectures the nonclassical complement Snclass.[ϕ] to Sclass.[ϕ] by applying
the classical equation (14) to the nonclassical entropy/information densities [15–
20,25,26]:

Iφ(r) = [2∇φ(r)]2 = [∇Sφ(r)]2. (17)

It follows from Eqs. (14) and (17) that the square of the gradient of the Shannon probe,
of the state indeterminicity (disorder), generates the density of the complementary
Fisher measure, of the state determinicity (order). For the positive phase convention,
φ = |φ| = ( f )1/2 ≥ 0, this relation finally gives:

Snclass.[ϕ] = −2 ∫ p(r)φ(r)d r = ∫ p(r)Sφ(r)d r ≡ −2〈φ〉. (18)

The nonclassical entropy Snclass.[ϕ] thus reflects the state average phase 〈φ〉. The
relevant densities-per-electron of the nonclassical entropy/information contributions
thus read:

Sφ(r) = −2φ(r) ≡ Snclass.(r) and

Iφ(r) = 4[∇φ(r)]2 = (2m/h̄)2 [ j(r)/p(r)]2 ≡ I nclass.(r). (19)

For the specified probability density p and the adopted phase convention, its nega-
tive sign signifies the maximum entropy in the strong-stationary molecular state, when
φ(r) = 0 and j(r) = 0. One thus predicts that the probability-constrained (vertical)
displacements �φ(r) = φ(r) ≥ 0 from this strong-stationary, vertical-equilibrium
state ϕ, for which the nonclassical entropy/information terms exactly vanish, result in
lowering the resultant entropy S[ϕ], the overall information-indeterminicity measure,
compared to the initial phase-maximum level Sclass.[ϕ] = S[p]. Therefore, in close
analogy to the maximum entropy principle of the ordinary thermodynamics [23], such
transitions of the state spatial phase, 0 → φ(r), diminish the nonclassical entropy
component, �Snclass.[ϕ] ≡ S[φ] ≤ 0, with δSnclass.[ϕ] ≡ −S[φ] ≥ 0 then measur-
ing the entropy change corresponding to the reverse displacement φ(r) → 0, which
restores back the system vertical equilibrium (see Fig. 1).

123



938 J Math Chem (2016) 54:932–954

S

I

S

nclass., I nclass., .~nclassI

nclass.[ϕ] = I [φ] 

0 φ ≥ 0 

nclass.[ϕ] = S[φ]

][~ . ϕnclassI  = −Inclass.[ϕ] = −I[φ] 

φ0 = 0 

Fig. 1 Qualitative plots of the nonclassical measures of the entropy/information content in the trial state
ϕ0(r) = ϕ[p0, φ; r] = R0(r) exp[iφ(r)]

A complementary picture emerges, when one examines the Fisher-type, gradient
measure of the state information-determinicity. For the specified probability distri-
bution p(r), the vertical equilibrium φ(r) = 0 now represents the phase-minimum
of the resultant information content. Thus, a finite displacement of the spatial phase,
�φ = φ > 0, increases the gradient information content by�I nclass.[φ] ≡ I [φ] ≥ 0,
with the relaxational quantity δ I nclass.[φ] ≡ −I [φ] ≤ 0 measuring the change in the
information content corresponding to the reverse displacement, φ(r) → 0, which
restores back the vertical equilibrium marking the vanishing nonclassical informa-
tion.

Therefore, a presence of a finite spatial phase, i.e., of a nonvanishing electronic
current, signifies a displacement from the system strong stationarity. It introduces
an additional “structure” element of quantum systems, which is not recognized in
CIT. The current pattern implies less “uncertainty” (more “order”) in the molecu-
lar electronic state, compared to its classical information content. The CIT approach
formally corresponds to the vanishing local currents, i.e., to the “standing-wave” solu-
tion representing our total “ignorance” of the current direction, when the “forward”
and “backward” currents have exactly the same probability. Thus, the state with a
definite current direction and its (finite) magnitude exhibits a higher information con-
tent, i.e., a lower entropy descriptor, compared to the strong-stationary state, in which
the direction of the current remains undefined, with the “forward” and “backward”
contributions exactly cancelling each other.

Indeed, since higher information content implies less state uncertainty, one pre-
dicts the negative sign of the nonclassical phase entropy (indeterminicity) supplement
Snclass.[ϕ], and the positive sign of the nonclassical current information (determinic-
ity) term I nclass.[ϕ]. The complex quantum state exhibiting a nonvanishing spatial
phase thus exhibits less resultant entropy compared to itsmaximumvalue in the strong-
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stationary state of the same probability distribution, and hence relativelymore resultant
information. Indeed, a close relation of the classical gradient measure to the kinetic
energy suggests a similar relation between its nonclassical supplement and the kinetic
energy due to electronic current, thus suggesting a positive sign of the current con-
tribution to the resultant Fisher-type information. The negative nonclassical entropy
contribution, which lowers the resultant entropy relative to its classical value, further
implies less resultant information received, when this current “order” is removed in
the strong-stationary state of the same density.

To summarize, the average resultant entropy is determined by the sum of the clas-
sical, Sclass.[ϕ] = S[p], and nonclassical, Snclass.[ϕ] = S[φ], entropy components:

S[ϕ] ≡ Sclass.[ϕ] + Snclass.[ϕ] ≡ ∫ p(r)S(r)d r ≡ ∫ h(r)d r

= ∫ p(r)Sp(r)d r + ∫ p(r)Sφ(r)d r = S[p] + S[φ] ≡ S[p, φ], (20)

each separately related [see Eqs. (14), (17)] to the corresponding gradient informa-
tion contributions, I class.[ϕ] = I [p] and I nclass.[ϕ] = I [φ] = I [ j ], in the average
resultant Fisher information:

I [ϕ] ≡ I class.[ϕ] + I nclass.[ϕ] ≡ ∫ p(r)I (r)d r ≡ ∫ g(r)d r

= ∫ p(r)Ip(r)d r + ∫ p(r)Iφ(r)d r = I [p] + I [φ] = I [p, φ]
= I [p] + I [ j ] = I [p, j ]. (21)

Of interest also is the state resultant gradient entropy [25], a local indeterminicity
descriptor

Ĩ [ϕ] = Ĩ class.[ϕ] + Ĩ nclass.[ϕ] = Ĩ [p] + Ĩ [φ] ≡ Ĩ [p, φ]. (22)

Since the classical Shannon entropy also measures the information content in the
probability distribution, S[p] = I S[p], one similarly attributes the classical Fisher
functional to the classical part of this gradient entropy:

Ĩ class.[ϕ] = Ĩ [p] = I F[p] = I [p] > 0. (23)

Moreover, since the presence of a finite current diminishes the state resultant uncer-
tainty, we ascribe the negative nonclassical gradient term I nclass.[ϕ] to the nonclassical
gradient entropy:

Ĩ nclass.[ϕ] = Ĩ [φ] = −I nclass.[ϕ] = −I [φ] ≤ 0. (24)

One also observes that the density-per-electron of this nonclassical gradient entropy
is now related to its Shannon-type analog by the modified variant of Eq. (17):

Ĩ nclass.(r) ≡ Ĩφ(r) = −[∇Sφ(r)]2 ≡ −[∇Snclass.(r)]2. (25)

The nonpositive character of the nonclassical entropy Snclass.[ϕ] = S[φ] and a sim-
ilar character of the associated gradient measure Ĩ nclass.[ϕ] = Ĩ [φ] manifest that a
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presence of a finite electronic current decreases the uncertainty (“disorder”) level in
electronic state. This is also in accord with the nonnegative kinetic-energy type Fisher
measure I [ j ] = I [φ], which reflects a degree of the state nonclassical determinicity
(“order”).

4 Molecular phase-equilibria

The maxima of generalized measures of quantum entropy content determine the asso-
ciated molecular phase-equilibria [15–18,25,26]. Let us first summarize the vertical
equilibrium principles, for the fixed probability distribution p = p0 = R2

0 of the
nondegenerate ground-state ϕ0 = R0, which determines the trial (variational) states
ϕ0(r) = ϕ[p0, φ; r] = R0(r) exp [iφ(r)], where the real functions R0(r) and φ(r)
stand for the (fixed) state modulus and (variational) phase components, respectively.
The optimum, vertical-equilibrium solutions are then derived from the extrema of the
nonclassical entropy/information functionals S[φ] or I [φ] alone, for the fixed classical
contributions S[p0] and I [p0], respectively. The optimum phase φ = φopt. of such
trial states in the vertical extremum is then determined by the Euler equations resulting
from the nonclassical entropy/information principles,

maxφS[φ] or maxφ Ĩ [φ], and minφ I [φ], (26a)

δSnclass.[ϕ0]/δϕ0(r)∗
∣∣
φ=φopt. = 0 ⇒ Ŝφopt. (r)ϕ0(r) = 2φopt.(r)ϕ0(r) = 0,

δ Ĩ nclass.[ϕ0]/δϕ0(r)∗
∣∣
φ=φopt. = 0

⇒ −Îφopt. (r)ϕ0(r) = −4[∇φopt.(r)]2ϕ0(r) = 0,

δ I nclass.[ϕ0]/δϕ0(r)∗
∣∣
φ=φopt. = 0

⇒ Îφopt. (r)ϕ0(r) = 4[∇φopt.(r)]2ϕ0(r) = 0. (26b)

They consistently predict the strong-stationary ground-state solution φopt.(r) =
φ0(r) = 0 as the system vertical equilibrium (eq.), for which the electronic current
exactly vanishes:

ϕeq.[p0; r] ≡ ϕ0(r) = ϕ[p0, φ0; r] = R0(r). (27)

Thus, the nonclassical, (phase/current)-related information principles (26a) all iden-
tify the lowest eigenstate of the electronic Hamiltonian,

Ĥ(r)ϕ0(r) = E0ϕ0(r), (28)

as the vertical equilibrium state of this one-electron system. The ground-state proba-
bility distribution p0 then determines all physical properties of the system, functionals
of the electron density alone, in accordance with the first Hohenberg-Kohn theorem
of the modern density functional theory (DFT) [28,29].

The vanishing spatial phase in the nondegenerate ground state thus signifies the
complete absence of the current aspect in the molecular electronic structure. Any
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displacement from this extreme, strong-stationary situation is manifested by the pres-
ence of a finite nonclassical entropy/information contribution, reflecting the average
magnitude of either the state spatial phase (in Shannon’s measure) or of its gradient
(in Fisher’s descriptor). These nonclassical terms reflect the extra current “disorder”
or “order” in the quantum state under consideration: increased presence of currents
implies more overall “structure” (order) in the system and hence less overall elec-
tronic “uncertainty” (disorder). This expectation is reflected by the negative signs of
the nonclassical complements Snclass.[ϕ0] or Ĩ nclass.[φ0], of the classical Shannon
or gradient entropy terms. Therefore, any finite displacement �φ(r) = φ(r) 
= 0 in
the spatial phase from the φ0(r) = 0 reference level generates the negative entropy
displacements from the relevant classical entropy values, S[p0] or Ĩ [p0] = I [p0] (see
Fig. 1):

�S[�φ] = Snclass.[ϕ0] < 0 and � Ĩ nclass.[�φ] = Ĩ nclass.[ϕ0] < 0. (29a)

The vertical equilibrium state for j0 = 0 also marks the minimum value I [p0] of
the resultant gradient information I [ϕ0], and hence the vanishing nonclassical term
I nclass.[ϕ0] = I [ j0] = 0. It implies the positive change in this information measure
due to a displacement from the vertical equilibrium, reflected by a finite current in a
trial state ϕ0, � j = j 
= 0,

�I [� j ] = I nclass.[ϕ0] = I [ j ] > 0. (29b)

Therefore, the nonpositive gradient entropy Ĩ nclass.[ϕ0] behaves very much like the
nonclassical entropy Snclass.[ϕ0], reaching the maximum (zero) value in the system
lowest stationary state. Obviously, the same is true for the associated resultantmeasure

Ĩ [ϕ[p0]] = I class.[ϕ[p0]] + Ĩ nclass.[ϕ[p0]] = I [p0] + Ĩ nclass.[ϕ0],

which also reaches its phase-maximum value I [p0] for the lowest equilibrium state
ϕ0 (Fig. 1).

We now put these measures to a consistency test by exploring the horizontal phase-
equilibria (eq.), φeq.[p; r], which mark extrema of the resultant global and gradient
entropies:

max S[p, φ] or max Ĩ [p, φ].

The associated Euler equations determine the optimum phase φeq. of such equilibrium
states,

ϕeq.[p, r] ≡ ϕeq.[p, φeq.[p]; r],

in terms of the state probability distribution: φeq. = φeq.[p]. One expects that predic-
tions resulting from these complementary Shannon-type and gradient resultant entropy
measures should have common solutions.
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Let us first examine implications of the maximum principle of the resultant
Shannon-type (global) entropy. The functional derivative, with respect to ϕ∗(r), of
the resultant entropy functional S[ϕ] = 〈ϕ|Ŝ|ϕ〉, where the multiplicative operator
Ŝ(r) = S(r), ultimately determines the horizontal-equilibrium state ϕeq. correspond-
ing to “thermodynamic” phase φeq.[p]:

ϕeq.(r) = ϕeq.[p, φeq.[p]; r] ≡ ϕeq.[p; r].

The relevant Euler equations determining this equilibrium phase in terms of the prob-
ability density p, φeq. = φeq.[p], read:

δS[ϕ]/δϕ∗(r)
∣∣
ϕ=ϕeq. = Ŝ[p, φeq.[p]; r]ϕeq.(r) = 0 or

S(r)ϕeq.(r) = {−logp(r) − 2φeq.[p; r]}ϕeq.(r) = 0. (30)

This entropic rule thus predicts the equilibrium thermodynamic phase related to elec-
tron probability distribution,

φeq.(r) = −(1/2)lnp(r). (31)

For the ground-state probability distribution p = p0 this prediction is in spirit of
the Hohenberg-Kohn theorem of modern DFT, that the ground-state density or the
associated probability distribution uniquely identify the system electronic state.

The same prediction follows from the maximum of the resultant gradient entropy
Ĩ [ϕ],

Ĩ [ϕ] = 〈ϕ|ˆ̃I|ϕ〉 = I class.[ϕ] + Ĩ nclass.[ϕ] ≡
∫

p(r) Ĩ (r)d r,

Ĩ (r) = Ip(r) − Iφ(r). (32)

The optimum phase φeq. = φeq.[p] of the resulting Euler equation,

δ Ĩ [ϕ]/δϕ∗(r)
∣∣
ϕ=ϕeq. = Ĩ (r)ϕeq.(r) = 0 or

{∇φeq.[p; r]}2 = {∇[(1/2) lnp(r)]}2, (33)

indeed recovers the solution of Eq. (31).
Thus, the maximum entropy principles derived from the quantum-generalized

global and gradient entropies predict the same horizontal equilibrium state corre-
sponding to the spatial phase determined by the negative logarithm of the system
electron probability density:

ϕeq.(r) = R(r) exp{i[φ(r) + φeq.(r)]} ≡ R(r)exp[i
eq.(r)] ≡ ϕeq.[p; r].
(34)
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It represents the result of the (unitary) phase-transformation of the original quantum
state

ϕ(r) = R(r) exp[iφ(r)], (35)

giving rise to the resultant phase component


eq.(r) = φ(r) + φeq.(r). (36)

5 Continuity equations in equilibrium states

We have shown above that the extremum of the resultant entropy content in a general
quantum state at time t , ϕ(r, t) = 〈r|ϕ(t)〉 [Eq. (35)], determines the equilibrium
thermodynamic phase of Eq. (31), which specifies the equilibrium state ϕeq.(r, t) =
〈r|ϕeq.(t)〉 [Eq. (34)]. While preserving the state probability distribution,

p(r, t) = |ϕeq.(r, t)|2 = |ϕ(r, t)|2 = R(r, t)2, (37)

this unitary transformation of the system wavefunction ϕ(r, t) modifies the initial
probability current in ϕ,

jϕ(r, t) = 〈ϕ|ĵ(r)|ϕ〉 = (h̄/m)p(r, t)∇φ(r, t), (38)

into the equilibrium current:

j eq.(r, t) = 〈ϕeq.(t)|ĵ(r)|ϕeq.(t)〉 = ηp(r, t)
m

∇
eq.(r, t)

= ηp(r, t)
m

{∇φ(r, t) + ∇φeq.(r, t)}
= jϕ(r, t) − η

2m
∇ p(r, t) = jϕ(r, t) − η

m
R(r, t)∇R(r, t). (39)

Let us now examine how this unitary equilibrium transformation of the initial wave-
function influences the continuity equations of the probability and phase distributions.
Multiplying both sides of SE (4) from the left by exp[iφeq.(r)] and inserting the trivial
factor

exp[−iφeq.(r, t)]exp[iφeq.(r, t)] = exp(0) = 1 (40)

between the Hamiltonian and the wavefunction express this equation in terms of the
equilibrium state and the phase-transformed (equilibrium) Hamiltonian Ĥeq.(r, t)

{exp[iφeq.(r, t)]Ĥ(r)exp[−iφeq.(r, t)]}{exp[iφeq.(r, t)]ϕ(r, t)}
≡ Ĥeq.(r, t)ϕeq.(r, t)

= ih̄ exp[iφeq.(r, t)]∂ϕ(r, t)/∂t. (41)
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One further observes that

∂ϕeq./∂t = exp(iφeq.)∂ϕ/∂t + i ϕeq.(∂φeq./∂t), (42)

where using the probability continuity relation ∂p/∂t = −∇ · j gives

∂φeq./∂t = [∂φeq./∂p][∂p/∂t] = (2p)−1∇ · j . (43)

Therefore, the transformed SE finally reads:

Ĥeq.ϕeq. = ih̄[∂ϕeq./∂t − iϕeq.∂φeq./∂t] = ih̄(∂ϕeq./∂t) + h̄ϕeq.(∂φeq./∂t). (44)

In particular, for an eigenstate of the Hamiltonian,

ϕs(r, t) = Rs(r)exp(−iωs t), ωs = Es/h̄, (45)

when ps(r, t) = ps(r) = Rs(r)2, ∂ps/∂t = 0, φeq.(r, t) = φs(r) and ∂φeq./∂t = 0,
Eq. (44) reads:

Ĥeq.(r)ϕs,eq.(r, t) = ih̄∂ϕs,eq.(r, t)/∂t. (46)

We recall, that the stationary-probability condition ps(r, t) = p(r) covers both the
plane-wave, weak-stationary j = const., and the strong-stationary j = 0 states.

It can be now explicitly demonstrated that the phase transformation of the wave-
function, which generates the horizontal equilibrium state, does not affect the local
time derivative in the continuity equation for the particle probability distribution. It
indeed follows fromEq. (44) and its Hermitian conjugate that their weighted difference
gives:

(ih̄)−1[ϕeq.
∗Ĥeq.ϕeq. − ϕeq.Ĥ

eq.ϕeq.
∗]

= −h̄/(2mi)[ϕ∗
eq.�ϕeq. − ϕeq.�ϕeq.

∗] = −∇ · j eq. + σp,eq.

= (ih̄)−1[ϕ∗Ĥϕ − ϕĤϕ∗] = −h̄/(2mi)[ϕ∗�ϕ − ϕ�ϕ∗] = −∇ · j

= ϕ∗
eq.(∂ϕeq./∂t) + ϕeq.(∂ϕ∗

eq./∂t) = (∂peq./∂t)

= ϕ∗(∂ϕ/∂t) + ϕ(∂ϕ∗/∂t) = (∂p/∂t). (47)

Therefore, the probability source σp,eq. in the horizontal equilibrium state ϕeq. is
modified relative to σp = 0 [Eq. (5)] in the initial state ϕ:

σp,eq. = (∂peq./∂t) + ∇ · j eq. = [(∂p/∂t) + ∇ · j ] − [h̄/(2m)]�p

= σp − [h̄/(2m)]�p = −[h̄/(2m)]�p. (48)

It should be observed, however, that—by the Gauss theorem—this equilibrium local
source of the probability density does not affect its overall normalization, since the
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particles are neither produced nor destroyed:

∫ σp,eq.(r)d r = −[h̄/(2m)] ∫∇ · ∇ p(r)d r

= −[h̄/(2m)]∫ ∫S→∞[∇ p(r)]ndS = 0. (49)

One similarly recovers in the equilibrium state the phase-derivative equations (6) and
(7). From the weighted sum of Eq. (44) and its Hermitian conjugate one again finds:

[ϕ∗
eq.Ĥ

eq.ϕeq. + ϕeq.Ĥ
eq.ϕ∗

eq.]
= (ϕ∗T̂ϕ + ϕT̂ϕ∗ + 2pv) = −[h̄2/(2m)][ϕ∗�ϕ + ϕ�ϕ∗] + 2pv

= −(h̄2/m)Re(ϕ�ϕ) + 2pv = −(h̄2/m)[R�R − p(∇φ)2] + 2pv

= (ih̄)[ϕ∗
eq.(∂ϕeq./∂t) − ϕeq.(∂ϕ∗

eq./∂t) + 2h̄ p(∂φeq./∂t)

= −2h̄ p[∂(
eq. − φeq.)/∂t] = −2h̄ p(∂φ/∂t)] or

∂φ/∂t = [h̄/(2m)][R−1�R − (∇φ)2] − v/h̄. (50)

Thus, at the specified particle location the partial time-derivative of the original
phase distribution f = φ2 also remains unaffected by the equilibrium phase transfor-
mation. However, in this equilibrium state the time derivative of the resultant phase


eq. = φ + φeq., φeq. = −(1/2)lnp, (51)

reads:

∂
eq./∂t = ∂φ/∂t + ∂φeq./∂t = ∂φ/∂t − [1/(2p)](∂p/∂t)
= ∂φ/∂t + [1/(2p)]∇ · j p, (52)

where we have used the probability continuity equation. In the absolute source scale
of Eq. (9) the equilibrium phase-source is determined by the partial time derivative of
the equilibrium phase density feq. = 
2

eq.:

∂ f eq./∂t = 2
eq.(∂
eq./∂t) = Σabs.
f − (lnp)(∂φ/∂t)

+(2p)−1(2φ − lnp)∇ · j p ≡ Σabs.
f.eq.. (53)

This equation also identifies the displacement of Σabs.
f.eq. relative to the original phase-

source of Eq. (9), Σabs.
f = ∂ f /∂t . We thus conclude that the equilibrium phase

transformation of electronic states while preserving the molecular probability distri-
bution introduces finite displacements in sources of both the probability and phase
distributions

6 Harriman representation

This single-electron development can be readily extended into general N -electron
systems by using the Harriman-Zumbach-Maschke (HZM) [30,31] construction of
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the antisymmetric wave functions of N fermions yielding the specified particle dis-
tribution. In this section we briefly summarize the equilibrium one-determinantal
states of molecular systems, e.g., in the familiar Kohn-Sham (KS) or Hartree-Fock
(HF) self-consistent field (SCF) theories, which result from extrema of the resultant
entropy/information functionals including the nonclassical contributions due to the
current/phase components of molecular orbitals (MO) defining the electron configu-
ration in question.

The density-conserving Slater determinants generated in the HZM construction
provide natural variational functions for the vertical thermodynamic searches in
the IT principles of electronic structure theory. These trial N -electron functions
are constructed using the complex, plane-wave type equidensity MO {ϕk(r) =
R(r) exp[iΦk(r)]}. They offer a convenient framework for an extension of the present
analysis into the general N -electron case. In constructing the mutually orthogonal
Slater determinants generating the specified electron density ρ(r) = Np(r) these
MO adopt the equal, density-dependent modulus R(r) = [ρ(r)/N ]1/2 = p(r)1/2 and
the resultant spatial phase,

Φk(r) = k · f (r) + φ(r) ≡ Fk(r) + φ(r), (54)

defined by the orbital reduced momentum k, the density-dependent vector function
f (r) = f [ρ; r], common to all orbitals and linked to the Jacobian of the r → f (r)
transformation, and the system “thermodynamic” phaseφ(r), identicall in all occupied
orbitals. The “orthogonality” phases {Fk(r)} assure the independence of these single-
particle states.

The optimumwave-number vectors k0 = {k0l } and the associated density ρ0(r) are
determined at the SCF MO stage, i.e., from the energy-minimization principle using
the HZM determinant as variational wavefunction. The thermodynamic phase φ0(r)
is subsequently determined from the resultant entropic rule. The equilibrium HZM
determinant is thus defined by N -lowest equidensity MO for the prescribed ground-
state probability distribution p0(r) = [R0(r)]2 = ρ0(r)/N , for which f [p0; r] ≡
f 0(r) and

ϕk(r) = [p0(r)]1/2exp{i[k0 · f 0(r) + φ(r)]}
≡ R0(r)exp(iΦk[p0; r]) ≡ ϕk[p0; r]. (55)

The overall phase Φk[p0; r] of the (ground-state occupied) equidensity orbital deter-
mines its electronic current,

j k(r) = 〈ϕk|ĵ(r)|ϕk〉 = h̄ p0(r)
m

{∇[k0 · f 0(r)] + ∇φ(r)}. (56)

The configuration overall flow measure of all N electrons, j(r; N ) ≡ j(r), is now
determined by the expectation value of the N -electron current operator,

ĵ(r; N ) =
N∑
l=1

ĵl(r), (57)
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in the ground-state HZM determinant,

�k0(N ) ≡ �k1,k1,...,kN (N ) = (1/
√
N !) det(ϕk1 , ϕk2 , . . . , ϕkN )

≡ |ϕk1 , ϕk2 , . . . , ϕkN | ≡ |{ϕkl }|, (58)

j(r; N ) = 〈�k0(N )|ĵ(r; N )|�k0(N )〉

=
N∑
l=1

j kl (r) ≡ h̄

m
{ρ(r)∇[K (k0) · f 0(r) + φ(r)]}. (59)

It is determined by the average “wave-number” vector in �k0(N ), k0 = (k01, k
0
2, . . .,

k0N ),

K (k0) = 1

N

N∑
l=1

k0l ≡ K 0. (60)

For the fixed electron distribution in the vertical entropy principle only the non-
classical components depend upon the MO “wave-number” vectors k0 and their
thermodynamic phase φ(r), which together determine the resultant phase in Har-
riman’s construction. In the vertical search only φ(r) is varied for the fixed k0.
The maximum principle of the average nonclassical entropies Snclass.[�k0 [p0]] or
Ĩ nclass.[�k0 [p0]] determines the optimum thermodynamic phase of the vertical-
equilibrium, labeled by the upper index “eq.”,

φeq.[p0; r] = −K 0 · f 0(r), (61)

that also minimizes I [(p0,k0), φ]. The associated equidensity orbitals are shaped by
the displacements {δkl = kl−K 0} of the orbital wave-number vector from the average
value K 0,

�lδkl = NδK 0 = 0, (62)

ϕ
eq.

kl
[p0; r] = [p0(r)]1/2exp{iδkl · f [p0; r]}, l = 1, 2, . . ., N . (63)

Therefore, in this equilibrium state the overall current [Eq. (59)] exactly vanishes:

jeq.(r; N ) = jeq.[p0; r] = h̄

m
ρ0(r)∇(δK 0 · f [p0; r]) = 0. (64)

Let us now examine the horizontal-equilibrium phases of the occupied equiden-
sity orbitals. In a general HZM determinant �(N ) = (N !)−1/2det({ϕl}) constructed
from equidensity orbitals {ϕl(r) = [p(r)]1/2exp[iΦl(r)]}, the resultant entropy or the
overall gradient measure of the information content are both given by the sums of the
corresponding orbital contributions,

S[�] = �l〈ϕl |Ŝl(r)|ϕl〉 = �l S[ϕl ], Ŝl(r) = Sl(r) = −logp(r) − 2Φl(r). (65)
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The vertical energy principle fixes theMO orthogonality phases in the resultant phases
{Φl(r) = δkl · f 0(r)+φ(r)}, which remain conserved at the final, “thermodynamic”
optimization stage determining their missing thermodynamic contribution φ(r), equal
in all occupied MO of �(N ). This assures the orthonormality of the equilibrium
orbitals and the normalization of �(N ): 〈�(N )|�(N )〉 = ∏

l〈ϕl |ϕl〉 = 1.
For the prescribed ground-state probability distribution p0, determined at an earlier

SCF energyminimization stage, in the associated horizontal principle for the resultant-
entropy one thus manipulates only the thermodynamic phase component φ(r) of all
MO phases {Φl(r)}. The relevant variation of ϕ∗

l in this variational search reads:

δϕ∗
l [δφ; r] = [p0(r)]1/2exp{i[k0l · f [p0; r] + δφ(r)]}

≡ [p0(r)]1/2exp{i[F0
l (r) + δφ(r)]} ≡ R0(r)exp(−iΦl [δφ; r]).

(66)

The horizontal phase-equilibrium extremizes the functional of the resultant entropy
or information:

δS[�k(N )] = 0 or δ Ĩ [�k(N )] = 0, and δ I [�k(N )] = 0. (67)

Performingvariations (66) of the complex-conjugate orbitals gives the associatedEuler
equation for determining the optimum equilibrium phase φeq.(r) of “thermodynamic”
orbitals in a general N -electron case,

�l [−lnp0(r) − 2Φl(r)eq.]
= −N lnp0(r) − 2�l F

0
l (r) − 2Nφeq.(r)]

= −N lnp0(r) − 2Nφeq.(r) = 0, (68)

which finally gives

φeq.(r) = −(1/2)lnp0(r) = φeq.[p0; r]. (69)

Therefore, the horizontal equilibrium state marks the resultant orbital phases deter-
mined by the electron probability distribution alone. For p = p0 this is again a
manifestation of the Hohenberg-Kohn theorem of DFT [28], that the ground-state
electron density uniquely determines the equilibrium equidensity orbitals in HZM
construction:

keq. = k[p0] = k0 = {k0l }, f eq. = f [p0] = f 0, φeq. = φeq.[p0]. (70)

The associated equilibrium orbital,

ϕl,eq.(r) = [p0(r)]1/2exp{i[(kl − K 0) · f 0(r) − (1/2)lnp0(r)]}
≡ [p0(r)]1/2exp{i[δkl · f 0(r) − (1/2)lnp0(r)]}, (71)
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now generates the following MO current contribution,

j l(r)eq = h̄

m
p0(r)

[
δk0l ∇ · f 0(r) − ∇ p0(r)

2p0(r)

]
, (72)

and hence the resultant equilibrium current of N electrons:

jeq.(r) = �l j l(r)eq. = − h̄

2m
∇ρ0(r), (73)

where we have again observed that �lδkl = NδK 0 = 0. In the horizontal ground
phase-equilibrium the overall current of N electrons is thus also determined by the
gradient of the molecular electron density ρ0 = Np0.

It can be also directly verified that the same equilibrium thermodynamic phase of
Eq. (69) results from the extremum of the gradient entropy:

Ĩ [�(N )] = �l〈ϕl |ˆ̃Il(r)|ϕl〉 = �l Ĩ [φl ],
ˆ̃Il(r) = Ĩl(r) = [∇ p0(r)/p0(r)]2 − 4{∇Φl [p0; r]}2. (74)

From the associated Euler equation,

�l{[∇lnp0(r)]2 − (2∇Φl [p0; r])2}
= �l∇{lnp0(r) − 2Φl [p0; r]} · ∇{lnp0(r) + 2Φl [p0; r]} = 0,

one obtains:

∇lnp0(r) = ±2∇Φl [p0; r] = ±2{[δk0l ∇ · f 0(r) + ∇φeq.(r)]}, l = 1, 2, . . ., N . (75)

Therefore, for the positive phase convention the summation of these equations gives

N∇lnp0(r) = ±2{[�lδkl ]∇ · f 0(r) + N∇φeq.(r)]} = −2N∇φeq.(r), (76)

which again identifies the equilibrium resultant phase of Eq. (69) as the optimum
solution.

7 Elements of nonequilibrium thermodynamic description

Consider again the simplest one-electron case. The resultant entropy S[ϕ] combines
the (positive) classical contribution of the Shannon entropy Sclass.[ϕ] = S[p], reflect-
ing the “wideness” (uncertainty) in p, and the (negative) nonclassical supplement
Snclass.[ϕ] = S[p, φ] ≡ S[ f ], measuring the average magnitude of the phase-
distribution f = φ2,

S[ϕ] = Sclass.[ϕ] + Snclass.[ϕ]
= −∫ p(r, t)lnp(r, t)d r−2 ∫ p(r, t) f (r, t)1/2d r ≡ ∫ h(r, t)d r. (77)
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As in the ordinary thermodynamics [23], we now identify the entropy (“intensive”)
conjugates of the two independent density variables p = |ϕ|2 = R2 and f = φ2:

θp(r, t) = δS[ϕ]/δp(r, t) = ∂h(r , t)

∂p(r, t)
and

θ f (r, t) = δS[ϕ]/δ f (r, t) = ∂h(r, t)
∂ f (r, t)

. (78)

For the adopted convention φ ≥ 0, when f 1/2 = |φ| = φ, one finds:

θp(r, t) = [−lnp(r, t) − 1] − 2φ(r, t) ≡ θclass.p (r, t) + θnclass.p (r, t) and

θ f (r, t) = −p(r, t)/ f (r, t)1/2 = −p(r, t)/φ(r, t) ≡ θnclass.f (r, t). (79)

These conjugates determine the associated affinities, the QIT “thermodynamic”
forces defined by gradients of these intensities,

G p = ∇θp = −[p−1∇ p + f −1/2∇ f ] = −2[R−1∇R + ∇φ]
≡ Gclass.

p (r) + Gnclass.
p (r) and

G f = ∇θ f = f −1/2{[p/(2 f )]∇ f − ∇ p} = (R/φ)[(R/φ)∇φ − 2∇R]
≡ Gnclass.

f (r). (80)

Next, one introduces the current of the resultant entropy density for the adopted choice
of the phase-flux J f (r, t):

Jh(r, t) = θp(r, t) j p(r, t) + θ f (r, t)J f (r, t). (81)

Its divergence ∇ · Jh(r, t) in an associated expression for the entropy-source,

dh(r, t)/dt ≡ σh(r, t) = ∂h(r, t)/∂t + ∇ · Jh(r, t), (82)

determines the corresponding entropy inflow to the infinitesimal volume d r around
r . The first term in the right-hand side of the preceding equation is suggested by the
entropy differential,

dS =
∫

∂h(r, t)
∂p(r, t)

dp(r, t)d r +
∫

∂h(r, t)
∂ f (r, t)

d f (r, t)d r

=
∫

[θp(r, t)dp(r, t)+θ f (r, t)d f (r, t)]d r, (83)

∂h(r, t)/∂t = θp(r, t)
∂p(r, t)

∂t
+ θ f (r, t)

∂ f (r, t)
∂t

, (84)
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while the divergence of the entropy current gives:

∇·Jh = j p · ∇θp + J f · ∇θ f + θp∇ · j p + θ f ∇ · J f

= G p · j p + G f · J f + θp∇ · j p + θ f ∇ · J f . (85)

When combined with the probability- and phase-continuity equations these two rela-
tions give the following thermodynamic-like expression for the rate of the local
production of the resultant entropy,

σh(r, t) = G p(r, t) · j p(r, t) + G f (r, t) · J f (r, t) + θ f (r)Σ f (r, t), (86)

where the second term vanishes in the absolute-source scale of Eq. (9):

σh(r, t) = G p(r, t) · j p(r, t) + θ f (r, t)Σabs.
f (r, t). (87)

Therefore, besides the thermodynamic-like product of the probability affinity and
its flux the above expression also involves a product of the affinity and (absolute)
source of the the phase distribution. Elsewhere we have explored expressions for the
corresponding sources of the resultant entropies in the position andmomentum spaces,
in terms of the state QIT intensities, affinities and currents [22,24,32]. They predict
that the vanishing intensities give rise to vanishing sources of the quantum Shannon-
and Fisher-type entropies. A generalization of this one-electron analysis to general
N -electron systems would again involve the wave functions in the HZM construction
of the modern DFT.

Let us finally examine the extra information-source contributions generated by the
equilibrium phase transformation of the electronic wavefunction. It modifies the initial
phase φ(r, t) of the complex quantum state

ϕ(r, t) = R(r, t)exp[iφ(r, t)], (88)

by the equilibrium “thermodynamic” phase component φeq.(r, t) = −(1/2)lnp(r, t)
[Eqs. (31), (69)], which extremizes the resultant measure of the state entropy content,
into the resultant phase 
eq.(r, t) of the associated equilibrium state

ϕeq.(r, t) = R(r, t)exp{i[φ(r, t) + φeq.(r, t)]} ≡ R(r, t)exp[i
eq.(r, t)]. (89)

The initial probability current in ϕ,

jϕ(r, t) = 〈ϕ|ĵ(r)|ϕ〉 = (h̄/m)p(r, t)∇φ(r, t) ≡ j(r, t), (90)

is thus modified by the correction term proportional to the negative gradient of the
conserved probability distribution,

p(r, t) = |ϕeq.(r, t)|2 = |ϕ(r, t)|2 = R(r, t)2, (91)

j eq.(r, t) = 〈ϕeq.|ĵ(r)|ϕeq.〉 ≡ j p[ϕeq.] = (h̄/m)p(r, t)∇[φ(r, t) + φeq.(r, t)]
= j(r, t) − [h̄/(2m)]∇ p(r, t). (92)
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We have also demonstrated in Sect. 5 that this change in the state phase/current affects
sources of both the probability and phase distributions in the position representation:

σp[ϕeq.] = σp[ϕ] − [h̄/(2m)]�p = −[h̄/(2m)]�p and

Σabs.
f [ϕeq.] = Σabs.

f [ϕ] + (2p)−1(2φ − ln p)∇ · jp − (ln p)(∂φ/∂t). (93)

The nonvanishing probability source σp[ϕeq.] modifies the relevant expression for the
equilibrium source of the resultant entropy [compare Eq. (87)]:

σh[ϕeq.] = ∂h[ϕeq.]/∂t + ∇ · Jh[ϕeq.]
= θp[ϕeq.](∂p[ϕeq.]/∂t + ∇ · j p[ϕeq.])

+θ f [ϕeq.]Σabs.
f [ϕeq.] + G p[ϕeq.] · j p[ϕeq.]

= θp[ϕeq.]σp[ϕeq.] + θ f [ϕeq.]Σabs.
f [ϕeq.] + G p[ϕeq.] · j p[ϕeq.]. (94)

A reference to the preceding equation indicates that the remaining quantities determin-
ing the entropy source σh[ϕeq.] are also modified by the thermodynamic phase-shift
in the equilibrium state ϕeq., compared to their values in the original state ϕ:

Gρ[ϕeq.] = Gρ[ϕ] − 2∇φeq. = Gρ[ϕ] + (∇ p)/p,

θp[ϕeq.] = −lnp − 1 − 2
eq., θ f [ϕeq.] = −p/
eq.. (95)

Finally, these modified state parameters and the probability source of Eq. (93) give
rise to the modified source of the resultant entropy in the horizontal equilibrium state
[Eq. (94)].

8 Conclusion

Elsewhere we have explored in a more detail the densities, currents, information mea-
sures, and continuity relations in the p-space [22,24,32]. The composition of the
probability and current distributions in the position (r) and momentum (p) spaces
are quite different [33]. For example, the chemically most important external (large
r , valence) region of the position-density corresponds to the internal (low p) region
of the momentum-density. The former gives rise to a sourceles continuity relation,
while the latter exhibits a finite source term, conditional on the adopted flux defini-
tion [22,24,32]. Indeed, the Fourier transforms of the strong-stationary (zero-current)
states in the position representation generally give rise to the weak-stationary (finite-
current) states in the momentum space. This observation strengthens the need for the
nonclassical information supplements in the QIT treatments of molecular electronic
states.

One recalls that the change of the position representation of the present analy-
sis into its canonical, momentum analog involves the simultaneous unitary operation
performed on both the vavefunctions and operators. Therefore, from the known prop-
erties of such unitary transformations one predicts that the above position-space
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conclusions remain generally valid also in the momentum space. Indeed, the uni-
tary canonical transformations between these two representations change the form of
the system wavefunction without affecting its independent variables. Thus the quan-
tum mechanical operators related by the unitary transformations represent the same
physical quantity, preserve their linear and Hermitian character and algebraic relations
between observables, e.g., commutation rules, the spectrum of eigenvalues, and the
matrix elements, e.g., the expectation values

E = 〈ϕ|Ĥ|ϕ〉 = 〈ϕeq.|Ĥeq.|ϕeq.〉, j(r, t) = 〈ϕ|ĵ(r)|ϕ〉 = 〈ϕeq.|ĵeq.(r)|ϕeq.〉, etc .

|ϕeq.〉 = Û|ϕ〉, Ĥeq. = ÛĤÛ
−1

, ĵeq.(r) = Ûĵeq.(r)Û−1. (96)

One further observes that, due to the nonvanishing equilibrium source of the proba-
bility density in r -space, the densities of classical information contributions exhibit the
nonvanishing sources in the associated r -space entropy/information continuity equa-
tions in suchphase-optimized states. Thenonclassical information terms also introduce
finite information sources due to the modified probability current in the equilibrium
molecular state. Moreover, a generally nonvanishing source of the momentum density
generates finite information-source contributions in p-space, due to both the classical
and nonclassical information/entropy terms. In the momentum representation a non-
vanishing momentum-probability current, due to a finite p-phase component of the
momentum wavefunction, and the current-dependent terms of the resultant measures
of the entropic content of molecular states should have a profound influence on the
time-evolution of the resultant entropy/information functionals.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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