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Abstract:

Background: The interaction between the dopaminergic and somatostatinergic systems and their role in mood regulation have been

well-documented. Therefore, we decided to investigate the effect of antidepressant drugs on the heterodimerization of the dopamine

D2 and somatostatin Sst5 receptors.

Methods: The human receptor proteins were tagged with fluorescent proteins, expressed in the HEK 293 cells and incubated with

antidepressant drugs: desipramine and citalopram. To determine the FRET efficiency, the fluorescence resonance energy transfer

(FRET) and photobleaching confocal microscopy techniques were used.

Results: We found that the efficiency of FRET is markedly increased in cells coexpressing the somatostatin Sst5 and dopamine D2

receptors after 48 h of incubation with desipramine and citalopram.

Conclusions: In the present study we provide physical evidence, based on FRET analysis, that antidepressants increase Sst5 and D2

receptors heterodimerization. The effect is specific because desipramine in the incubation medium uncouples other pairs of recep-

tors, such as the dopamine D1-D2 receptors.
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Abbreviations: CFP – cyan fluorescent protein, CIT – citalo-

pram, D2 – dopamine type 2 receptor, DMI – desipramine,

FRET – Förster (Fluorescence) Resonance Energy Transfer,

GPCR – G-protein-coupled receptors, HEK 293 – Human

Embryonic Kidney 293 cell line, pbFRET – photobleaching

FRET, Sst5 – somatostatin type 5 receptor, YFP – yellow fluo-

rescent protein

Introduction

Dopaminergic and somatostatinergic system interac-

tions have been suggested for many years based on

anatomical, behavioral and biochemical studies. It has
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been reported that dopamine administration regulates

somatostatin release in the rat striatum and hippocam-

pus [17] and that selective dopamine D1 and D2 re-

ceptor agonists increase somatostatin receptor density

in the striatum [8]. Likewise, somatostatin positively

modulates dopamine release in the striatum [3, 19].

Dopamine and somatostatin have also been impli-

cated in the pathophysiology of depression because of

their potential roles in mood regulation. Reduced lev-

els of somatostatin have been observed in the cerebro-

spinal fluid [10, 18] and recently in the subgenual an-

terior cingulate cortex [20] of depressive patients. In-

tracerebroventricular administration of somatostatin

results in an antidepressant-like effect in rats, as

shown by a forced swim test [6]. Furthermore,

chronic desipramine treatment selectively potentiates

somatostatin-induced dopamine release in the nucleus

accumbens and the striatum [12]. It has also been

shown that chronic administration of antidepressants

influences somatostatin levels and somatostatin re-

ceptor density in rat brains [13]. More recent studies

show that imipramine upregulates somatostatin release

in the mouse hypothalamus, eliciting antidepressant-

like effects in tail suspension test [11].

The molecular basis of this functional interaction

between the somatostatinergic and dopaminergic sys-

tems may stem from the interaction of the somatosta-

tin and dopamine receptors. These receptors were

found to share some similarities: they are members of

the G protein-coupled receptors (GPCRs) family, show

sequence homology and appear to be structurally re-

lated [6]. It has been demonstrated that members of

both superfamilies, when coexpressed in the same cell

and in the presence of specific ligands, may interact at

the membrane level, forming homo- and hetero-

dimers. These dimers may constitute a novel receptor

that can activate alternative pathways, possibly en-

hancing ligand affinity and signal transduction [7].

It has been established by immunocytochemical

studies that the dopamine D2 and somatostatin Sst5

receptors colocalize in medium-sized aspiny interneu-

rons in the striatum and pyramidal neurons in the

cerebral cortex, an observation that suggests the pos-

sibility of functional interactions between these recep-

tors. It has been shown that the dopamine D2 and so-

matostatin Sst5 receptors, when coexpressed in the

same cell, undergo ligand-dependent heterodimeriza-

tion with enhanced functional activity. D2-Sst5 het-

erodimerization is associated with a modification in

ligand binding and a synergistic effect on the activa-

tion of the transduction pathway because both recep-

tors signal through the inhibition of adenylyl cyclase

via Gi proteins [16].

In the present study, we investigated the heterodi-

merization of the human D2 and Sst5 receptors upon

treatment with antidepressant drugs (desipramine and

citalopram) in the proposed in vitro model by employ-

ing biophysical approaches, such as photobleaching

fluorescence resonance energy transfer microscopy.

Förster (Fluorescence) Resonance Energy Transfer

(FRET) is a physical phenomenon that is being used

more and more in biomedical research and drug dis-

covery, as it allows the study of interactions between

proteins in a single cell. FRET is a process that relies

on the distance-dependent transfer of energy between

an excited donor molecule and an acceptor molecule

in a non-radiative way. This technique provides in-

sight into the interactions between proteins that are in

close proximity (less than 10 nm) to each other, which

makes it an excellent method for measuring the extent

to which receptors dimerize. One of the established

and commonly used techniques for measuring FRET

is acceptor photobleaching [14]. It is based on the fact

that FRET reduces the amount of fluorescence re-

leased by the donor fluorophore. This method in-

volves measuring the donor fluorescence intensity in

the same sample before and after destroying the ac-

ceptor by photobleaching. If FRET is initially present,

an increase in unquenched donor fluorescence occurs.

We used two antidepressant drugs with different

pharmacological profiles: desipramine a tricyclic an-

tidepressant that inhibits the continued uptake of

noradrenaline and, to a lesser extent, serotonin; and

citalopram, a serotonin uptake inhibitor. Although

none of the antidepressants used in this study have

any affinity for the dopaminergic or somatostatinergic

receptors [2], 48 h of incubation has been found to af-

fect their ability to form heterodimers.

Materials and Methods

Materials

HEK293 cells were obtained from the American Type

Culture Collection (Manassas, VA, USA). Cell culture

reagents were purchased from Gibco (Carlsbad, CA,

USA), Sigma-Aldrich (Poznañ, Poland) and PAA

Laboratories GmbH. Molecular biology reagents were
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obtained from Fermentas (Vilnius, Lithuania). Oligo-

nucleotides were synthesized by IBB PAN (Warszawa,

Poland). The pcDNA3.1(+) plasmids encoding human

Sst5 and D2 receptors were obtained from the UM-

RcDNA Resource Center (University of Missouri,

Rolla, MO, USA). The pECFP-N1 and pEYFP-N1

vectors were purchased from BD Biosciences, Clon-

tech (Palo Alto, CA, USA). Desipramine and citalo-

pram were obtained from Sigma-Aldrich (Poznañ,

Poland), and somatostatin-14 was obtained from Pro-

Spec (Rehovot, Israel).

Construction of fusion proteins

The human somatostatin Sst5 and D2 genes cloned

into the pcDNA3.1(+) plasmids were labeled with

cDNA encoding enhanced CFP (ECFP) or enhanced

YFP (EYFP). Briefly, the cDNAs encoding the D2

and Sst5 receptors were PCR-amplified. The primers

used were the forward universal primer for

pcDNA3.1(+) and the reverse primer, which removed

the STOP codon and introduced a unique Xho I re-

striction site. Using Nhe I and Xho I restriction en-

zymes, the entire coding sequences were inserted into

the pECFP-N1 and pEYFP-N1 vectors. Subsequently,

receptors tagged with CFP protein were used as the

fluorescence donor, and receptors tagged with YFP

were used as fluorescence acceptor.

Cell culture and transfection

Human Embryonic Kidney 293 (HEK 293) cells were

cultured on coverslips at 37°C and 5% CO2 atmos-

phere in Dulbecco’s modified essential medium sup-

plemented with 10% fetal bovine serum and 1% L-

glutamine. Using a calcium phosphate precipitation

procedure, the cells were transiently co-transfected

with the pcDNA3.1 plasmid containing the sequences

of the somatostatin Sst5 and dopamine D2 receptors

tagged with fluorescent proteins (CFP and YFP). At

48 h after transfection, the cells were incubated with

somatostatin-14 (1 µM) for 30 min or desipramine

and citalopram (10, 1 and 0.1 µM) for 24, 48 and 72 h,

and fixed with a 4% paraformaldehyde solution for

15 min at room temperature. Then, the cells were

washed, mounted onto slides and processed for confo-

cal microscopy FRET measurement.

Confocal microscopy – FRET measurement

Confocal laser scanning microscopy was performed

using a Leica TCS SP2 microscope (Leica Microsys-

tem, Mannheim, Germany). FRET was measured with

the Acceptor Photobleaching application using Leica

Software as follows: images in the CFP (donor) and

the YFP (acceptor) channel were acquired before pho-

tobleaching. A region of interest was selected, and the

acceptor (YFP) was photobleached by scanning re-

peatedly with the 514 nm laser line until the fluores-

cence signal was at the 50% level. Then, post-

photobleached images for CFP and YFP were

acquired by scanning with the appropriate laser line.

The FRET efficiency was calculated from the follow-

ing equation:

FRETeff = (Dpost – Dpre)/Dpost

where Dpost is the fluorescence intensity of the donor

after acceptor photobleaching, and Dpre is the fluores-

cence intensity of the donor before acceptor photo-

bleaching. The FRET efficiency is considered to be

positive when Dpost > Dpre.

Statistical analysis

The obtained data are presented as the mean ± SEM.

Statistical significance was evaluated using the t-test

or by a one-way ANOVA, followed by a Dunnett’s

test for post-hoc comparisons. For the statistical

analysis of the data, GraphPad Prism version 5.00 for

Windows (GraphPad Software) was used.

Results and Discussion

To investigate the interaction between the analyzed

receptors, we transiently co-transfected HEK 293

cells with dopamine D2 and somatostatin Sst5 recep-

tors tagged with fluorescent proteins (CFP, YFP).

Confocal microscopy observations indicated that both

dopamine D2 and somatostatin Sst5 receptors colo-

calize at the plasma membrane (Fig. 1).

First, the agonist-induced formation of hetero-

dimers was investigated. After 48 h of transfection,

cells were treated with somatostatin-14 (1 µM) for

30 min (according to [16]). The observed FRET effi-

ciency was markedly increased compared to the non-
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treated cells (9.74 ± 1.27% vs. 1.83 ± 0.59%, respec-

tively, p < 0.001) (Fig. 2). This result confirms previ-

ous reports that the heterodimerization of the somato-

statin Sst5 and dopamine D2 receptors is induced by

agonist stimulation and that in the absence of ligand,

no significant pre-formed heterodimers exist [6].

We then investigated the effect of antidepressant

drugs upon the dimerization of the Sst5 and D2 recep-

tors. The co-transfected cells were incubated for 24,

48 and 72 h with an antidepressant drug – either desi-

pramine or citalopram (Fig. 3).

Desipramine (at concentrations of 10, 1 and

0.1 µM) present in the incubation medium for 48 h in-

duced a significant increase in FRET efficiency

(respectively: 12.7 ± 2.7%, 15.1 ± 0.9%, 11.9 ± 1.7%

vs. 3.6 ± 1.2%, p < 0.05) in the cells coexpressing

both the Sst5 and D2 receptors. Similarly, citalopram

induced a significant increase in the FRET efficiency

that was measured following 48 h of citalopram being

present in the culture medium at concentrations of 10

and 1 µM (respectively: 12.4 ± 1.3% and 14.6 ± 1.8%

vs. 3.6 ± 1.2%, p < 0.01). No significant changes were

observed after 24 or 72 h of antidepressant presence

in the incubation medium.

The obtained data indicate that desipramine and

citalopram presence for 48 h in a culture medium af-

fects the ability of the Sst5 and D2 receptors to form

heterodimers, despite the lack of affinity of these

drugs for the dopamine or somatostatin receptors [2].

The present study provides the physical evidence,

based on FRET analysis, that antidepressants promote

dimerization of the Sst5 and D2 receptors. The

mechanism of this influence might be for antidepres-

sant drugs to modulate cell membrane fluidity, lead-

ing to the enhancement of receptor-receptor interac-

tions. Previous studies have shown that chronic anti-

depressant treatment can lead to alterations in the

lipid membrane, causing the redistribution of proteins

and allowing them to be more mobile and therefore

able to interact with each other [4]; however, this

antidepressant-induced increased mobility of mem-

brane proteins may also cause a disruption of their in-

teractions. On the other hand, in our preliminary stud-
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Fig. 1. Colocalization of fluorescently tagged somatostatin Sst5 and dopamine D2 receptors on the membrane surface of transiently trans-
fected HEK 293 cells. Sst5-CFP receptor is shown in green (A) and D2-YFP receptor is shown in red (B). Coexpression of Sst5 and D2 recep-
tors can be seen by the yellow color in the merged image (C)

Fig. 2. Somatostatin stimulation of HEK293 cells coexpressing sst5-
CFP (fluorescence donor) and D2-YFP (fluorescence acceptor)
receptors. Somatostatin-14 (1 µM) was present in the incubation
medium for 30 min. FRET efficiency was measured by acceptor
photobleaching. The data are presented as the mean ± SEM. The
statistical significance between the means was evaluated by the
t-test. (Asterisks indicate p < 0.001)



ies, we have observed an opposite effect of antidepres-

sants on a different pair of receptors, the dopamine

D1-D2 receptors, because a significant reduction in

FRET efficiency after 24 h of incubation with desi-

pramine (1 µM) was observed (Fig. 4). These findings

are in agreement with the recent studies of Pei et al.,

which show that the coupling between the dopamine

D1 and D2 receptors is markedly increased in the

postmortem brains of patients who had suffered from

major depression, and that uncoupling the D1–D2

receptor complex exerts an antidepressant-like effect

[15]. Therefore, the effect of antidepressant drugs on

D2-Sst5 receptor heterodimerization seems to be

specific.

In the present study, we validated the use of FRET

and photobleaching in the studies of membrane

protein dimerization in response to specific ligands

and drugs. The high sensitivity of pbFRET is ideally

suited for the study of molecular interactions in indi-

vidual cells. The acceptor photobleaching technique

has been widely used to demonstrate the oligomeriza-

tion of different pairs of receptors [1, 5, 16]. GPCR

oligomerization is difficult to analyze in native cells;

therefore, human embryonic kidney cell line 293, as

well as other cell lines, have been widely used in reso-

nance energy transfer studies of membrane receptors

because these cells provide an accepted model in

which fluorescently tagged receptor proteins can be

efficiently expressed [9]. Although the experiments

performed in transfected in vitro models do not repre-

sent a physiological state, it might be expected that

a similar situation occurs in the membranes of neural

cells coexpressing both receptors. However, such con-

clusions need to be confirmed in vivo.

Numerous biochemical and behavioral studies have

reported that dopamine and somatostatin may play

a role in the pathophysiology of depression. Somato-

statin is known to increase dopaminergic activity in

the striatum, although the specific receptors that me-

diate this effect are still unknown. The results pre-

sented in this work may be considered to be evidence

for a potential molecular mechanism underlying the

antidepressant-like effect of somatostatin, which in-

fluences dopamine-mediated behavioral responses.

Synergistic effects on the transduction pathway via di-

merization of the dopamine D2 and somatostatin Sst5

receptors may enhance the antidepressant effect. As

they are distinct from monomers, Sst5-D2 dimers

may also activate unknown signal pathways.
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Fig. 4. The effect of desipramine on changes in FRET efficiency in
HEK293 cells transiently cotransfected with plasmids containing
D1-YFP and D2-CFP fusion proteins. FRET efficiency was measured
by acceptor photobleaching. Cells were incubated with desipramine
(1 µM) for 24, 48 and 72 h prior to cell fixation. The data are presented
as the mean ± SEM. The statistical significance between the means
was evaluated by the t-test (* p < 0.05)

Fig. 3. FRET efficiency of the sst5-CFP and D2-YFP pairs by acceptor
photobleaching. The data are presented as the mean ± SEM. Antide-
pressant drugs (A � desipramine, B � citalopram) at concentrations
of 10, 1, or 0.1 µM, were present in the incubation medium for 24, 48
and 72 h prior to cell fixation. The statistical significance was evalu-
ated using a one-way ANOVA, followed by a Dunnett�s test for post-
hoc comparisons. (* p < 0.05; ** p < 0.01; *** p < 0.001)



Dopamine D2 and somatostatin Sst5 heterodimers

with enhanced functional activity may be considered

to be novel mediators of antidepressant mechanisms

and may possibly serve as a new drug target in re-

search on the improvement of therapy for depression.

However, still more studies are required to elucidate

the physiological or pathological consequences of

heterodimerization in vivo.
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