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Abstract. The description of a nuclear system in its ground state and at low excitations based on the
equation of state (EoS) around normal density is presented. In the expansion of the EoS around the
saturation point, additional spin polarization terms are taken into account. These terms, together with
the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state
configurations of the N = Z even-even nuclei. At the nuclear surface these clusters can be identified as
alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account
an additional interaction between clusters the binding energies and sizes of the considered nuclei are very
accurately described. The limits of the EoS parameters are established from the properties of the α, 3He
and t particles.

1 Introduction

In 1936 Bethe and Bacher [1] and in 1938 Hafstad and
Teller [2] predicted that alpha-particle structures [3, 4]
could be present in atomic nuclei. Convincing arguments
for the existence of such structures were provided by sys-
tematics of the binding energies of the even-even nuclei
with equal number of protons and neutrons (see also [5]),
as well as by systematics of the binding energy of the ad-
ditional neutron in nuclei like 9B, 13C and 17O. The latter
systematics could be explained by assuming that the va-
lence neutron moves in a multi-center potential with cen-
ters identified with alpha particles. Today, from a com-
monly accepted point of view one considers that alpha-
particle clusters can appear in the nuclear matter at sub-
saturation densities. Such conditions are met, e.g., at the
nuclear surface where, in not too heavy nuclei, almost the
whole nuclear mass is concentrated.

Subtle changes of the ground-state energy of atomic
nuclei as a function of the nucleon number can be de-
scribed by the shell model, which neglects correlations be-
tween nucleons. The main idea of the present approach
is to verify whether these subtle changes, in the case of
n-alpha nuclei, could be attributed to the appearance of
alpha-like clusters which modify the structure of the wave
function and introduce strong correlations between nucle-
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ons. In such an approach the system in its ground state
behaves like a crystal, with stationary configuration and
shape and with definite distances between the wave func-
tion centers for a given nucleus. The subtle changes of the
binding energy due to appearance of alpha-like clusters in
the wave functions of n-alpha nuclei will be determined
within an extended version of the model proposed in [6].

It will be shown in the following that the hypothesis of
alpha structures in the n-alpha nuclei can indeed describe
the binding energy systematics of Bethe [1, 2]. It will be
also shown that the hypothesis of the alpha structures
helps to understand the evolution of the root-mean-square
(rms) radii and of the density profiles as a function of the
number of alpha particles in the n-alpha nuclei.

The paper is organized as follows: sect. 2 describes
the adopted interactions in the nuclear matter. Section 3
presents constraints on the introduced parametrization re-
sulting from the properties of light charged particles. Sec-
tion 4 is devoted to the ground-state properties of n-alpha
nuclei. First, it investigates the effects of clusterization on
the ground-state configurations. Then, some corrections
to the Hamiltonian, related to the many-body character
of the nuclear interaction and to the bosonic nature of
the wave function, are introduced. It will be shown that
the introduced corrections make the structural corrections
stronger. Finally, the model predictions for binding ener-
gies, rms radii and density profiles are presented and com-
pared with the experimental values. Section 5 presents the
conclusions.
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2 Interactions in nuclear matter around
saturation

In order to predict correctly a state and evolution of a
nuclear system, a reliable description of the interaction
between nucleons is needed. In the case of a strong inter-
action it is not an easy task. As we know, the fundamental
theory governing the nucleon-nucleon interactions is the
quantum chromodynamics (QCD), where interactions are
calculated from the physics of quarks and gluons. Unfor-
tunately, very limited progress has been achieved in the
application of QCD for the description of the interaction
between quark-gluon clusters. Therefore, a phenomenolog-
ical approach, associated to some specific conditions has
been applied. Since we are interested in the low-energy re-
gion in which nucleons are not excited internally, one can
treat nucleons as quasi-elementary particles. Additionally,
if we apply a non-relativistic approximation, the mutual
nucleon interaction can be described by a respective po-
tential. As can be found in the text-books, details of the
form of such a potential are deduced from nuclear interac-
tion symmetries and the mechanism of exchange of bosons.

For a final test of this type of potential and the deter-
mination of its parameters, one uses a comparison with
the experimental data. Here the nucleon-nucleon scatter-
ing data or light-nuclei properties are usually used. A gen-
eral conclusion from this kind of research is that a simple
two-body potential is not sufficient to describe the behav-
ior of the system of more than two nucleons. One should
add at least the three-body force. In particular, in the nu-
clear system, the three-body force is acceptable because
the strong interaction is generated by the exchange pro-
cess of gluons. The n-body interaction can be interpreted
as coming from the multi-pion exchange processes.

These considerations show the difficulties in the de-
scription of even the simplest nuclear system. The exten-
sion of the description of the interaction by the three-body
forces shows that the exchanged particles (bosons) play a
significant role in the interaction process.

In order to describe the dynamics of the system, one
has to express the change of energy associated with its
evolution. In the description of energy through the poten-
tial one has to define its form. Hence the wave function of
a system of identical particles must be either symmetric
or antisymmetric and it must be taken into account when
defining the energy of the ground state. In the case of the
fermionic systems one should use an antisymmetric wave
function which is a serious difficulty in the description of
the collision dynamics. Some proposals to solve this prob-
lem are shown for instance in [7–9]. Other approaches, in-
troducing some kinds of momentum-dependent Pauli po-
tentials and Pauli-blocking schemes, which are meant to
mimic the effects of antisymmetrization and are much less
time consuming, are also proposed, see, e.g., [10–14].

Therefore, in the present approach, we propose a de-
scription in which particles are distinguishable and the
energy associated with the fermionic motion affects the
resulting energy density which is parametrized and used
instead of the potential. Such a concept is present in the
description of the liquid drop model (LDM) and in some

density functional models, e.g., in [15]. It is obvious that
such an approach requires the knowledge of the local den-
sity of matter and the knowledge of the wave function
describing the system. In the present description we use
a standard one, commonly applied in such cases, i.e. the
wave function is defined as a simple product of minimal
wave packets (eq. (1)), as, e.g., in [16]. The main argument
for disregarding the antisymmetrization in the present ap-
proach is the form of the proposed EoS which includes
the spin and isospin terms. These terms force the unlike
nucleons to form “bosonic” alpha-like clusters for which,
presumably, the antisymmetrization may no longer play a
decisive role.

Each minimal wave packet in the adopted wave func-
tion has a defined spin and a specific charge for a selected
quantization axis:

Φ=
A∏

k=1

kφIkSk
, (1)

kφIkSk
=

1
(2πσ2

k(r))3/4
exp

(
−(rk − 〈rk〉)2

4σ2
k(r)

+
i

h̄
rk 〈pk〉

)
,

(2)

where σ2
k(r), 〈rk〉, 〈pk〉 are the width (the position vari-

ance of the k-th nucleon) of a Gaussian wave packet and
the mean position and mean momentum of each of the
A nucleons, respectively. Every partial wave function is
labeled by Ik = n or Ik = p and Sk =↑ or Sk =↓, de-
noting the isospin and spin (or precisely, their projections
on a specified quantization axis) associated with a given
nucleon. Variables 〈rk〉, 〈pk〉 and σ2

k(r) are, in general,
time-dependent parameters describing the wave functions.

In the present approach the nuclear matter is treated
as a four-component fluid characterized by the respective
densities:
– ρp↑ for protons with spin up;
– ρp↓ for protons with spin down;
– ρn↑ for neutrons with spin up;
– ρn↓ for neutrons with spin down.

Density distributions in the system are uniquely deter-
mined by parameters of the wave function (mean position,
mean momentum and variance of the position of each nu-
cleon). The description of the system evolution due to the
time evolution of these parameters is, in general, defined
by the Dirac-Frenkel time-dependent variational princi-
ple [17]. This approach describes the interaction in a self-
consistent way.

Assuming that nucleons are moving inside the nuclear
system, the average energy of the system is a sum of the
average potential energy and of the kinetic energy associ-
ated with the fermionic motion. This is the case in which
one disregards the energy of the ordered motion, which,
for the low excitations of the system, is considered later
on as a correction (see formula (14)).

According to the above idea we now present a method
for determining the average energy associated with each
nucleon. For the description of this average energy we as-
sume the existence of a scalar field ε(ρp↑, ρp↓, ρn↑, ρn↓),
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determined by the local densities ρp↑(r), ρp↓(r), ρn↑(r),
ρn↓(r).

If, for every k-th nucleon, the corresponding wave
packet kφIkSk

determines the probability Pk(r) =
|kφIkSk

|2 of finding a nucleon at a given point r, then
it is assumed that the average energy ek associated with
this nucleon is defined by the mean value and variance of
the field ε(ρp↑, ρp↓, ρn↑, ρn↓) and can be expressed as

ek = 〈ε〉k + λσk(ε), (3)

where

〈ε〉k =
∫

Pk(r)ε (ρp↑, ρp↓, ρn↑, ρn↓) d3r, (4)

σ2
k(ε) =

∫
Pk(r) (ε (ρp↑, ρp↓, ρn↑, ρn↓) − 〈ε〉k)2 d3r (5)

and λ is a parameter related to the surface energy, simi-
larly as in [18].

The EoS of the nuclear matter is defined for an in-
finite system, assuming its homogeneity and isotropy.
For such a matter, the variance of the associated field
ε(ρp↑, ρp↓, ρn↑, ρn↓) vanishes and the average value of the
energy per nucleon is determined by the mean value of the
field alone. The field ε(ρp↑, ρp↓, ρn↑, ρn↓) is in this case
equivalent to the EoS of the nuclear matter. Thus, the
functional form of the field ε(ρp↑, ρp↓, ρn↑, ρn↓) can be ob-
tained from the EoS by applying the local density approx-
imation.

In the present work we use a 12-parameter cubic form
of the EoS proposed in [6]. In the vicinity of the satura-
tion density it can be approximated using a second-order
Taylor expansion:

e = e00 +
K0

18
ξ2

+ δ2

(
eI0 +

LI

3
ξ +

KI

18
ξ2

)

+
(
η2

n + η2
p

) (
eii0 +

Lii

3
ξ +

Kii

18
ξ2

)

+ 2ηnηp

(
eij0 +

Lij

3
ξ +

Kij

18
ξ2

)
, (6)

where

ξ =
ρ − ρ0

ρ0
, (7)

δ =
ρn − ρp

ρ
, (8)

ηn =
ρn↑ − ρn↓

ρ
, (9)

ηp =
ρp↑ − ρp↓

ρ
(10)

in which ρ and ρ0 are the total nuclear matter density
and the density of isospin and spin-balanced matter at
saturation, respectively.

The first two terms in (6) are just a standard, 6-param-
eter form of the EoS approximation commonly used in
the present-day experimental and theoretical studies, see,
e.g., [19]. The first term describes the symmetric matter in
a balanced system (zero isospin and spin), with K0 being
the compressibility of the symmetric nuclear matter. The
second one is a standard approximation of the symmetry
energy:

eI = eI0 +
LI

3
ξ +

KI

18
ξ2 (11)

with eI0 being the Wigner constant and the coefficients
LI and KI being the slope and curvature, respectively.

The last two terms of (6) are the main novelty of the
present approach (see also [6]). In analogy to the isospin
symmetry energy, they describe the spin symmetry ener-
gies for neutrons and protons separately:

eii = eii0 +
Lii

3
ξ +

Kii

18
ξ2 (12)

and the energy of the mutual spin interaction of protons
and neutrons:

eij = eij0 +
Lij

3
ξ +

Kij

18
ξ2. (13)

The terms with indices ii, i.e. the eii0, Lii and Kii

(constant, slope and curvature), describe the energy of
protons or neutrons. Indices ij indicate that the symme-
try energy refers to the mutual interaction of protons and
neutrons. The determination of the expansion parameters
in (6) will be discussed in the next sections.

Using the field ε(ρp↑, ρp↓, ρn↑, ρn↓) one can express the
average value of the Hamiltonian for a given system of A
nucleons as

〈Φ|H|Φ〉 =
k=A∑

k=1

〈pk〉2
2mN

+
k=A∑

k=1

〈ε〉k

+λ
k=A∑

k=1

σk(ε) + 〈Φ|VC |Φ〉, (14)

where mN is the nucleon mass and the last term describes
the Coulomb energy. As later on we will be searching for
the ground-state configurations of the even-even nuclei
with N = Z, it can be assumed that the average momenta
of the wave packets 〈pk〉 are equal to zero and, thus, the
first term in the expression (14) can be neglected. Follow-
ing a standard approach (see, e.g., [19]) it is assumed that
the parametrization of the EoS includes implicitly the ki-
netic contribution coming from the Fermi motion. As has
been demonstrated in [18], the adopted cubic approxima-
tion of the EoS is flexible enough to reproduce typical
predictions of sophisticated models of the nuclear matter
which explicitly take into account the kinetic contribution
resulting from the Fermi motion.

Since the local density can be written as

ρ(r) =
k=A∑

k=1

Pk(r), (15)
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the average value of the Hamiltonian can be expressed as:

〈Φ|H|Φ〉 =
∫

ε (ρp↑, ρp↓, ρn↑, ρn↓) ρ(r)d3r

+λ

k=A∑

k=1

σk(ε) + 〈Φ|VC |Φ〉. (16)

As one can see the Hamiltonian is a sum of three com-
ponents, which can be interpreted as volume, surface and
Coulomb energies. Therefore, the present description can
be interpreted as a microscopic realization of the LDM.

Finding the ground-state configuration of a group of A
nucleons within the adopted parametrization of the wave
function and for given parameters of the EoS, consists in
finding the values of parameters σ2

k(r), 〈rk〉, and 〈pk〉,
which minimize the value of the Hamiltonian. The proce-
dure of finding the ground-state configurations has been
described in sect. 4 of [18]. We would like to emphasize
that the proposed parametrization of the EoS, with two
more terms in (6), is responsible for driving the nucle-
ons of different types, p↑, p↓, n↑, n↓, to form quadru-
plets, i.e. to group into α-like clusters during the mini-
mization procedure. These two terms play a similar role
as the standard symmetry term which attains a minimum
when the neutron-proton asymmetry δ of (7) tends to zero,
i.e. when the neutron-proton couples group together. This
α-like clustering property of (6) is shown in fig. 1.

The histogram in fig. 1 presents the evolution of the
binding energy of 12 nucleons during the process of search-
ing for the ground-state configuration which minimizes the
model Hamiltonian (16). The 6 panels of the inset show
“snapshots” of the projections of the mean positions of the
nucleon wave packets onto the x-y plane, at selected stages
of the minimization procedure. Panel 1 presents the initial
random configuration, panels 2–5 some intermediate ones
and panel 6 shows the final ground-state configuration of
12C. As can be seen, the minimum of the Hamiltonian
is achieved for a configuration with three α-like clusters.
These clusters appear in the corners of an equilateral tri-
angle. Note that in the figure the triangle is not perfectly
equilateral due to the 2-dimensional projection.

It has to be emphasized, that if clusters are allowed
to appear in the considered system the description has
to be modified. Modifications of the Hamiltonian due to
clustering will be discussed in sect. 4.2.

3 Constraints on the EoS from the properties
of light charged particles

Ground-state properties of light charged particles, LCP,
such as d, t, 3He or α, can provide important constraints
on parameters which describe interactions in the nuclear
matter for at least four reasons. First, one can assume
that in their structure clusters of matter (obviously be-
yond nucleons) can be formed. Therefore, one may expect
that clustering of matter has no effect on their binding en-
ergies and sizes. Second, these LCPs do not contain more
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Fig. 1. Evolution of the binding energy of 12 nucleons (3×p↑,
3× p↓, 3× n↑ and 3× n↓) during the minimization procedure.
The insets 1–6 show the projections of the configurations of nu-
cleons on the x-y plane at selected stages of the minimization.
Panel 1 represents the random initial configuration. Panel 6
shows the projection of the final ground-state configuration of
12C.

than one α-particle and, thus, one can neglect the α-α in-
teractions (see sect. 4.2) and use the simpler liquid-drop–
like Hamiltonian (16). Third, the measured density pro-
files of these light particles are relatively well described by
Gaussian distributions, which is in line with the adopted
parametrization of the wave function. Fourth, the simplic-
ity of these particles assures the vanishing of some types
of interactions in (6) and the selective increase of sensitiv-
ity to some other ones. For instance, parameters related
to the isospin symmetry energy (second term in (6)) in
principle do not affect the binding energy of a deuteron
and alpha particle. Similarly, due to the saturation of the
proton (neutron) spin interactions in 3He (t), the mutual
spin interaction (fourth term in (6)) vanishes in their case.

In the case of LCPs we can assume that the average
value of the Hamiltonian is completely determined by the
field ε(ρp↑, ρp↓, ρn↑, ρn↓), by the Coulomb interaction and
by the surface energy. This assumption may not be valid
for more complex systems in which mutually interacting
clusters can be formed, e.g., for 8Be → α-α or 6Li → α-d.
For such systems one can expect additional interactions
between clusters due to the specific many-body forces.
The mean value of the Hamiltonian (16) depends on 13
parameters: 12 parameters of the field ε(r) plus the surface
tension parameter λ. Binding energies and rms radii of the
ground states for d, t, 3He and α provide 8 equations, thus
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an insufficient number of constraints for a unique choice of
parameters describing the interaction. In the present sec-
tion we will try to deduce a subspace of this 13-parameter
space for which the above-mentioned properties of LCPs
are reproduced.

3.1 Constraints on ρ0, e00, K0 and λ from the
properties of an alpha particle

It is clear that the greatest reduction of the number of
parameters can be expected in the case of an alpha par-
ticle. Here, the spin- and isospin-dependent interactions
are practically absent. Thus, properties of alpha particles
should be described by four parameters only: ρ0, e00, K0

and λ. Constraints on these parameters are imposed by
the rms radius and the binding energy of an alpha par-
ticle. These parameters cannot be determined unambigu-
ously. However, there is a flexibility in determining a two-
dimensional hypersurface, in the space ρ0, e00, K0 and λ,
in which the searched values of these parameters exist.

In order to determine this hypersurface the following
χ2 variable is defined:

χ2 =
(

Bαe − Bαm

Bαe

)2

+
(

rαe − rαm

rαe

)2

, (17)

where Bαe, Bαm, rαe, rαm are the experimental and model
values of the binding energy and rms radius, respectively.
Note that a variable defined in this way should be zero in
the searched subspace.

In order to determine the correlations among the pa-
rameters in a searched subspace, the variables ρ0 and K0

are predefined on a grid, and the remaining two parame-
ters are found by requiring that χ2 < 10−7 for the model
ground-state configurations of an alpha particle. The re-
sults are shown in fig. 2.

The figure presents the constant saturation density
curves as a function of the other three parameters spec-
ified on the axis, which ensure a correct binding energy
and rms radius of an alpha particle for the model ground-
state configurations. The dotted and dashed lines show
how one can determine the parameters λ and e00 for a
given compressibility K0 and saturation density ρ0. In
the illustrated example the parameters ρ0 = 0.185 fm−3

and K0 = 270MeV determine the values of λ = 0.4 and
e00 = −16.79MeV. These values of the parameters have
been suggested by additional studies of the competition
among Coulomb, surface and volume energies in the bind-
ing energy calculated for the ground-state configurations
of the heavier nuclei (see table 1). This problem will be
considered later on.

3.2 Constraints on eI0, LI, KI, eii0, Lii and Kii from the
properties of t and 3He

After fixing the parameters ρ0, e00, K0 and λ let us try to
examine the other ones. For t and 3He the ground-state
energy does not depend on the choice of parameters eij0,

Fig. 2. Constant saturation density curves, ρ0, as a function
of e00, K0 and λ, constrained by the ground-state properties
of an α-particle.

Table 1. Parameters of the standard EoS which, together
with a parameter of the surface energy λ, are reproducing the
ground-state energy and rms radius of the alpha particle, t and
3He.

ρ0 e00 K0 eI0 LI KI λ

( 1
fm3 ) (MeV) (MeV) (MeV) (MeV) (MeV) 1

0.185 −16.79 270 32 59.405 −1250 0.4

Lij and Kij . This results from the vanishing of the ηnηp

product in the last term of (6). Thus, the binding energies
and rms radii for t and 3He can provide four equations
for six unknown EoS parameters: eI0, LI , KI , eii0, Lii

and Kii, and so, two equations are still missing. The two
free parameters can be constrained from the properties of
heavier nuclei as was done in the case of the fully sym-
metric nuclear matter. At this stage it is only possible
to examine the subspace defining the limits for the con-
sidered parameters from the properties of the t and 3He
nuclei. We notice the fact that the parameters associated
with isospin, eI0, LI and KI , differentiate between the
binding energy and the rms radii of t and 3He, while the
parameters eii0, Lii and Kii affect equally the energy and
the size of these particles.

Using a similar method as in the case of an alpha par-
ticle one can find relationships among the parameters eI0,
KI and LI , by requiring a precise description of the bind-
ing energies and radii of the t and 3He particles. Here,
the values of eI0 and KI were varied independently on a
grid and the value of LI was found from the minimization
of (17). The results of such calculations are shown in fig. 3.
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Fig. 3. Correlation between the slope, LI , and curvature, KI ,
of the isospin symmetry energy for different Wigner energies,
eI0, obtained from fitting the binding energies and rms radii
of the t and 3He.

Table 2. Parameters of the spin interaction chosen in such a
way that together with parameters from table 1 they reproduce
binding energies and sizes of d, t and 3He.

eii0 Lii Kii eij0 Lij Kij

(MeV) ( 1
fm3 ) (MeV) (MeV) (MeV) (MeV)

82.37 242.48 19.909 −1.5 182.0 1210.0

The figure presents a relationship between the param-
eters eI0, LI and KI . The selection of two of them allows
to determine the third one. It should be stressed that the
above correlations have been obtained as a result of the
procedure reproducing the t and 3He ground-state proper-
ties with the parameters ρ0 = 0.185 fm−3, K0 = 270MeV,
λ = 0.4 and e00 = −16.79MeV fixed from the ground-
state properties of an alpha particle (fig. 2). Three other
parameters, eii0, Lii and Kii, were found to be almost
independent of eI0 and KI .

3.3 Discussion of the parameter values

The final values of the EoS parameters adopted in this
work have been obtained by taking into account also the
binding energy and size of a deuteron. The values have
been summarized in tables 1 and 2. For this example set
of values the model reproduces exactly the experimental
values of the rms radii and of the binding energies of the
d, t, 3He and α particles (see also figs. 5 and 7).

From the point of view of the present work, which fo-
cuses on the nuclear systems with even and equal numbers
of protons and neutrons (i.e. the spin-balanced matter),
the parameters eii0, Lii, Kii and eij0, Lij , Kij from the
expansion (6) are irrelevant. However, they do play an im-
portant role when constructing the ground-state configu-
rations and determining the properties of nuclei composed
of asymmetric matter.

As far as the interactions between neutrons and pro-
tons are concerned, the Coulomb repulsion between pro-
tons causes that the proton matter tends to locate itself
in the outer regions of the nucleus. This leads to differ-
ences between the neutron and proton density distribu-
tions, even for symmetric nuclei, and triggers additional
interactions associated with the isospin symmetry energy
(proton or neutron skins can be created). This effect can
be negligible in the case of light nuclei, while for heav-
ier ones it may be more significant. Therefore, for heavier
nuclei, one has to use a reliable set of isospin symmetry
energy parameters eI0, LI and KI , even for symmetric
nuclear matter.

As has been shown above, the binding energies and
the rms radii of t, 3He and α impose certain constraints
on the parameters of the EoS. In the case of the e00, ρ0,
K0 and λ parameters, once two of them are fixed by some
other constraints or means, or from some other evidences,
the remaining ones can be determined using the obtained
correlations (fig. 2). Here, the compressibility parameter
of symmetric matter K0 should fall within the range of
about 250 ± 50MeV according to the recent experimen-
tal constraints (flow interpretation [20], monopole vibra-
tions [21, 22], subthreshold kaon production [23, 24]). It
has been fixed to 270MeV in the present approximation.
The volume energy parameter e00 should take the value
of about −16MeV according to the LDM. In the present
approximation it has been assumed to have the value of
−16.79MeV. The values of the remaining two parame-
ters, ρ0 and λ have been then uniquely determined from
the correlation plot of fig. 2.

In the case of the symmetry energy, the choice of any
two parameters out of eI0, LI , KI , allows to determine
the third one (fig. 3). The compilation [25] of the latest
results of the nuclear-physics experiments and astrophys-
ical observations suggests that the value of the symme-
try energy constant, eI0, and of the slope parameter, LI ,
should fall within a range of about 32 ± 1MeV and of
about 59 ± 17MeV, respectively. In the present approxi-
mation the values of these parameters have been assumed
to be 32 and 59.405MeV, respectively. These values yield
the value of KI to be about −1250MeV, according to
the correlation plot of fig. 3. The experimental constraint
of [26] on the symmetry energy compressibility parameter,
KI , yields its value to be about −50± 200MeV. Another
compilation [19] locates the theoretical values of KI be-
tween −400 and +466MeV and its experimental values in
a range from −566±1350MeV to 34±159MeV. Thus, this
parameter is least constrained experimentally and theo-
retically so far. Its value obtained within the model, pre-
ferring very soft symmetry energy, is consistent with the
negative experimental constraint, thanks to its large error
bar. However, we should stress that the adopted set of val-
ues is not at all unique. As seen from the correlation plots,
some other choice of parameters is equally well possible.
It should be also emphasized that the assumed value of ρ0

equal to 0.185 fm−3, which fits well the properties of the
LCPs, and is higher than the commonly used values of
0.16–0.17 fm−3, may influence the values of the remaining
parameters.
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Fig. 4. Proposed structures of n-alpha nuclei. These structures ensure a high level of symmetry for a given number of alpha
particles (see [3]). The density distribution of the central cluster (the red one) has quite a big spread and, therefore, it cannot
be identified as an alpha particle.

In order to describe the exotic nuclei and provide
more precise parameters of the symmetry energy, defi-
nitely some more advanced parameter searches will be
needed, involving, e.g., fitting the properties of the neu-
tron skin nuclei and also of those approaching the proton
drip line across the chart of the nuclides, but this is beyond
the scope of the present work.

A concise summary of the procedure of fixing the pa-
rameter values is presented in appendix A.

4 Energy and size of nuclei with equal and
even number of neutrons and protons

A method of finding the ground-state configuration based
on minimization of the average value of the liquid-drop–
like Hamiltonian (16) with respect to the wave function
parameters 〈rk〉 and σk(r) with the 〈pk〉 = 0 constraint, is
described in [6,18]. The ground-state configuration param-
eters determined in this way indicate that the correspond-
ing wave function has some numbers of centers, which can
be interpreted as the centers of alpha-like clusters in the
nuclear matter. Some features of these ground-state con-
figurations have been discussed in [6] without taking into
account interactions and correlations among clusters. In
the present approach the modification of the ground-state

configurations due to the presence of the alpha-alpha in-
teractions will be investigated.

The main aim is to identify such symmetries of the
ground-state configuration, and thus of the corresponding
wave function, which could be responsible for the experi-
mentally observed changes of the binding energies and rms
radii of the n-alpha nuclei as a function of n. We would
like to check whether it is possible to identify specific con-
figurations related to the magic numbers. In other words,
we would like to verify whether the shell corrections neces-
sary to describe deviations from the smooth predictions of
the LDM around the magic numbers, could be interpreted
in terms of a change of the ground-state configuration re-
sulting from the corrections to the Hamiltonian related to
the cluster-cluster interactions. As will be justified in the
following, the ground-state configurations corresponding
to the local minima of the Hamiltonian can be classified
according to the nuclear charge, Z, in the following way:

i) Z ≤ 8: The structures are identical with the structures
proposed in [2] and also in [6] and are characterized by
no alpha cluster in the center of the system.

ii) 8 < Z ≤ 20: A core represented by one alpha-like
cluster appears in the center of the system.

iii) 20 < Z ≤ 28: A core with a mass corresponding to two
alpha particles appears in the center.
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The structures for cases i) and ii) are visualized in fig. 4
(see also [3]).

The structures presented in fig. 4 result from the anal-
ysis of a large number of configurations obtained within a
procedure of minimizing the Hamiltonian (16) when start-
ing from a random configuration (see the 12C example in
fig. 1). The majority of the thus-obtained configurations
could be classified as those presented in the previous pa-
per [6], with alpha-like clusters located mostly at the sur-
face and with a moderate level of symmetry. Binding ener-
gies for these structures followed the smooth LDM trend
and could not reproduce the “fine” structure of binding
energies around the magic numbers. In some cases, how-
ever, the minimization procedure did not yield the global
minimum, but ended up in some local one, just about
0.3–0.5MeV above the ground-state energy of majority of
configurations. The configurations corresponding to these
local minima were characterized by a higher level of sym-
metry and possibly contained alpha-like cluster(s) in the
middle. Surprisingly, the binding energy distribution for
these structures did show characteristic “kinks” around
magic nuclei, despite some energy offset. These specific
structures are those presented in fig. 4.

The question that arose from the above observation
was whether it might be possible to convert the local min-
ima into global ones, while keeping the highly symmetric
structures, by introducing the corrections to the Hamilto-
nian which take into account the cluster-cluster interac-
tions. The following sections try to verify this hypothesis.

4.1 Matter without alpha clusters

The structures from fig. 4 have been used as structural
constraints in the minimization procedure by providing
the starting points for the preformed alpha-like clusters.
In other words, the random initial configurations, as in
fig. 1, have been replaced by those from fig. 4. The ac-
tual ground-state configurations were determined through
minimization of the liquid-drop–like Hamiltonian (16) by
varying the mean positions and the widths of the individ-
ual wave packets.

The following analysis is restricted to nuclei smaller or
equal to 40Ca which is the heaviest stable n-alpha nucleus.
Beyond Z = 20 the nuclei become radioactive and there
are no data about their sizes available.

The liquid-drop–like Hamiltonian (16) with the param-
eters from tables 1 and 2 has been used together with
structural constraints to obtain the ground-state configu-
rations for each of the considered nuclei. The minimiza-
tion procedure provided the final parameters determin-
ing the ground-state wave function: 〈ri〉 and σi. Figure 5
presents the obtained ground-state binding energies and
rms radii as a function of the atomic number Z. The ex-
perimental data and the model results are represented by
the squares and the circles, respectively. As one can see the
calculated binding energies change their slope at the same
place (Z = 8) as the experimental ones and the same con-
cerns the radii. The overall calculated binding energies are
somewhat bigger by about 0.3–0.5MeV/nucleon than the
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Fig. 5. The binding energies and rms radii of even-even nuclei
(N = Z) obtained for the ground-state wave functions and
the Hamiltonian (16). The solid line connects the experimental
points. Circles and triangles represent model results for two
sets of parameters of the EoS.

experimental ones and the calculated radii are somewhat
smaller; however both follow the experimental trends. The
properties of particles up to 4He are reproduced perfectly
well, because they served as the constraints in the param-
eter fitting procedure.

In order to check the sensitivity of the results on the
volume energy parameter e00, similar calculations for e00

equal to −16.1MeV instead of −16.79MeV have been per-
formed. The results are presented with a dotted green
line in fig. 5. In the case of the rms radii there is almost
no difference observed. The binding energies still deviate
from the experimental values, but what is important, sim-
ilar changes of the slopes in theoretical and experimental
trends are observed. Results of other trial calculations in
which all the remaining parameters from e0 to λ were
varied, did not yield a better reproduction of the exper-
imental values with the use of the liquid drop form of
the Hamiltonian together with the structural constraints
i)–iii). A better reproduction could only be obtained with
the corrections to the Hamiltonian discussed in the next
section. The structural constraints assure configurations
for which global minima of energy are obtained, provided
that the alpha-alpha interactions are taken into account.
Otherwise, they correspond to some local minima.
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4.2 Modification of the Hamiltonian due to alpha
clusters

Let us consider now the formation of the nucleus by ran-
domly located nucleons remaining within the range of
their mutual interaction. Due to the Hamiltonian (16), nu-
cleons are forming groups in such a way that the energy of
the system is minimized. At a certain density of the matter
alpha-like clusters can be formed as a result of the spin-
isospin interactions of nucleon groups. As alpha clusters
are formed, additional extra interactions connected with
multi-body effects can appear having a strong influence
on the final structure of the system. Figure 6 illustrates
a ground state of such a system. One can see that inside
a matter drop alpha clusters appear and interactions be-
tween them are changing the energy of the system. Below,
corrections to the Hamiltonian arising from these extra
interactions will be defined.

Assuming that alpha-like clusters appear in the struc-
ture of the nucleus, one can expect two kinds of minor
adjustments of the Hamiltonian, which should describe
the essential part of the α-α interaction.

The first correction corresponds to the possible inter-
action caused by the appearance of specific many-body
forces. Such many-body effect can be interpreted as a
modification of the type and numbers of exchange bosons
in the interaction process. It appears possible that, in such
an exchange, the charge currents are strongly limited be-
cause they change the energy of the considered clusters.
In this case, we can expect an additional term in the inter-
action potential which gives the repulsive forces between
groups of nucleons forming a cluster of alpha-like particles
(see fig. 4).

Here we test this hotfix in a form given by the product
of the harmonic-oscillator potential Vαα(dij) and probabil-
ities Pα(i), Pα(j) that, given four nucleons (groups named
i or j), form the alpha clusters:

〈Φ|ΔH1|Φ〉 =
∑

i�=j

Pα(i)Pα(j)Vαα(dij), (18)

where the potential Vαα(dij) is taken in the form

Vαα(dij) = κ(dij − d0)2 (19)

with dij being the average distance between clusters i and
j, and Pα(i) describing the probability that a group of
four nucleons 4n(i) forms an alpha cluster i. We assume
that Pα(i) can be expressed as

Pα(i) = exp
(
−ν

σ4n(i) − σα0

σα0

)2

, (20)

where σ4n(i) is the variance of the distribution describing
the probability of finding a nucleon in a group 4n(i) and
σα0 describes such a variance (experimentally measured)
for alpha particles. In the above formulas κ, d0 and ν are
free parameters. It is assumed that the potential is equal
to 0 when dij > 4 fm with a shape close to the van der
Waals one.

Fig. 6. Visualization of the additional interactions between
alpha clusters due to the many-body interactions.

The second correction is related to the additional sym-
metry of the wave function, which can be associated with
the bosonic character of an alpha cluster.

In the present approach nucleons and their clusters are
distinguishable objects (1). For nucleons their energy con-
nected with the fermionic motion is taken into account by
applying the energy density functional. For alpha particles
a relevant correction to energy should also appear and it
is an empirical one.

When calculating the minimum of the Hamiltonian by
varying the parameters of the wave function, the position
of the alpha-like cluster and its size and spread are estab-
lished.

These quantities can be different for different clusters
depending on the adopted structural constraint for a given
nucleus. The exchange of clusters must cause an increase
of the energy of the system as a minimum of the Hamilto-
nian defines definite spreads of clusters for their different
positions.

For the indistinguishable alpha particles due to the
symmetrization with respect to the exchange of cluster
positions there is no chance to relate cluster sizes to their
positions.

The second correction is an empirical one:

〈Φ|ΔH2|Φ〉 = μNα

i=A∑

i=1

(
σi(r) − σ0(r)

σ0(r)

)2

, (21)

where Nα is the number of alpha clusters and μ is a pa-
rameter. σi(r) is the variance of the nucleon radius and
σ0(r) is the average variance of nucleons forming an alpha
particle.

Thus, this correction to the Hamiltonian describes an
increase of the energy caused by different sizes of clus-
ters and it should vanish when the wave functions for all
the clusters correspond to alpha particles in their ground
states.

It seems that this correction could be related to the
bosonic character of alpha particles. Both corrections are
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Table 3. Estimated parameters of corrections (18), and (21) to
the Hamiltonian (16) coming from interactions between alpha
clusters.

μ ν d0 κ

(MeV) [1] (fm) (MeV/fm2)

1.0 9.0 3.77 5.2
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Fig. 7. Binding energies per nucleon and rms radii for the
Hamiltonian with the corrections (18) and (21). The right scale
of the binding energies per nucleon in the top panel refers to the
magnified view for nuclei from 12C to 40Ca. The solid (dashed)
line connects the experimental (model) points.

positive and in this way the binding energy decreases. As-
suming that parameters of the main part of the Hamilto-
nian (14) are established by properties of light nuclei d, t,
3He and α, the idea now is to define four additional pa-
rameters in order to reproduce the binding energies and
sizes of nuclei starting from 8Be up to 40Ca by imposing
the structural constraints.

The adopted values of these parameters are summa-
rized in table 3.

The results for the full Hamiltonian, including the cor-
rections due to the alpha-alpha interactions are presented
in fig. 7. The upper part of the figure shows the bind-
ing energies as a function of the atomic number Z. The
bottom part presents the rms radii.

Much better agreement between the model results and
the experiment can be observed now, as compared to fig. 5.

Fig. 8. Experimental (solid, red line) and model (dashed, blue
line) density profiles.

Some discrepancies can be still noticed especially for 8Be
for which the distance between the alpha particles is pretty
small and much smaller than d0 in the harmonic potential
description. Again, the properties of particles up to 4He
are reproduced perfectly well, because they served as the
constraints to fix the EoS parameters.

Figure 8 presents a comparison of the model and ex-
perimental density profiles for the selected nuclei. The full
(red) lines represent the experimental profiles and the bro-
ken (blue) lines result from the model calculations. Ex-
perimental density profiles were taken from [27]; however
for 20Ne and 36Ar reliable experimental data were not
available.

Figure 9 shows the isodensity contour plots for the
model ground-state configurations of 8Be, 12C, 16O and
20Ne. Note that apart from the 16O, which has a tetrahe-
dral shape, all the other nuclei have a planar geometry (cf.
fig. 4). A similar shape for 12C has been obtained within
the FMD [28] and AMD [29] simulations. In particular,
the 20Ne case shows that the central α-like cluster is more
diffused than the surface ones. More quantitatively, the
standard deviations of the density distributions of surface
alphas are of the order of 1.02 fm, while for the core alpha
they are of the order of 1.28 fm.

Figure 10 presents a distribution of distances between
alpha clusters for the nuclei in question.

The distances between clusters from the ground-state
configurations obtained with the liquid-drop–like Hamil-
tonian without corrections are represented by open circles.
The distances obtained from the full Hamiltonian calcu-
lations are represented by closed ones. As can be seen, in
the latter case the distances are grouping around 3.5 fm.
This can denote that these clusters behave more like rigid
spheres.
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Fig. 10. The distribution of the distances between alpha clus-
ters as a function of Z. The open (closed) circles represent the
distances without (with) the correction for the alpha-alpha in-
teraction in the Hamiltonian.

5 Summary and conclusions

A simple model of nuclei formed out of alpha-like clusters
in which interactions lead to strong correlations between
nucleons has been presented. The model interactions have
been defined using a cubic approximation of the nuclear
EoS. The proposed EoS contains additional terms which
take into account the spin and isospin polarizations. These
additional terms cause that nucleonic clusters, with an en-
larged binding energy, appear in the ground-state config-
urations. These clusters have full spin-isospin symmetry
similarly as in [8] and in [7]. For n-alpha nuclei these clus-
ters can be identified as alpha-like structures. When these
clusters are formed in regions of smaller density, i.e. at
the nuclear surface, then their sizes measured as the vari-

ance of the density distribution become comparable to the
alpha-particle size. On the other hand, the formation of
the clusters in the central part of nuclei leads to much
bigger spreads of their density distributions and they can
hardly be identified as alpha particles.

It has been shown that by taking into account the
liquid-drop–like form of the Hamiltonian in the mini-
mization process it was not possible to describe the sub-
tle changes of the binding energies of nuclei. Therefore,
the liquid drop part of the Hamiltonian has been supple-
mented by the corrections taking into account the cluster-
cluster interactions. The ground-state configurations ob-
tained from the minimization of the full Hamiltonian with
the imposed structural constraints were found to repro-
duce very well the experimental binding energies and sizes
of the n-alpha nuclei and the available density profiles. In
particular, the model with the cluster corrections has been
able to reproduce the “fine structure” of the ground-state
energy distribution (inset of fig. 7). In this respect it seems
to be able to mimic the shell effects without explicit spin-
orbit term.

The interactions have been defined using a 12-param-
eter EoS approximation. The thirteenth parameter has
been added to control the variance of the field for finite
systems. The values of these parameters and correlations
among them have been constrained using the experimen-
tal binding energies and sizes of d, t, 3He and α parti-
cles. Four additional parameters have been introduced in
the corrections to the liquid drop part of the Hamilto-
nian in order to account for the interactions between the
alpha-like clusters and to substantially improve the model
predictions. The differences between the calculated and
measured ground-state energies for nuclei with Z > 8 are
about an order of magnitude smaller than those obtained
using the liquid drop model. Besides, the obtained pa-
rameters describe the properties of the t, 3He and α very
accurately (practically without error).

It has also been demonstrated that correlations be-
tween nucleons in the phase space can play an important
role in the description of the ground states, particularly of
the ground states of nuclei with the same and even number
of neutrons and protons.
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Appendix A. Extraction of the EoS
parameters

The Hamiltonian (16) depends on 13 parameters and since
the binding energies and rms radii of the ground states
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Fig. 11. Flow chart of the procedure for fixing the K0, ρ0, e00

and λ parameters using the binding energy and the rms radius
of an alpha particle as a constraint. The details can be found
in sect. 3.

of d, t, 3He and α provide only 8 constraints, 5 of the
parameters have to be fixed by some other means.

The first step of the procedure to fix the EoS param-
eters consisted in constraining the values of K0, ρ0, e00

and λ by the binding energy and rms radius of an alpha
particle. This step has been summarized in the flow chart
of fig. 11.

The compressibility parameter of symmetric matter
K0 and the volume energy parameter e00 have been fixed
within the range of the recent experimental constraints.
The values of the remaining two parameters, ρ0 and λ,
are then uniquely determined from the correlation plot of
fig. 2. The remaining 9 parameters were irrelevant for the
properties of an alpha particle, which greatly simplified
the corresponding EoS.

In the second step, the parameters eI0, LI and KI

have been found in an analogous way by using the binding
energies and the rms radii of t and 3He as constraints in
eq. (17), by fixing the previously determined parameters
K0, ρ0, e00 and λ, and by disregarding the remaining 6
parameters.

Finally, the remaining 6 parameters eii0, Lii, Kii, eij0,
Lij and Kij have been found by minimizing (17) with the
fixed 7 parameters determined in the previous two steps
and using the binding energies and the rms radii of d, t and
3He as constraints. Fitting is done in an analogous way as
in the inner loop of the flow chart of fig. 11, replacing the
e00 and λ parameters by the remaining 6 ones.

After fixing the 13 parameters of the liquid-drop–like
Hamiltonian (16), the additional four parameters of the
α-α interaction, μ, ν, d0 and κ, have been fixed by fitting
the ground-state binding energies and rms radii of the nu-
clei from 8Be up to 40Ca. Here, in addition, the structural
constraints i)–iii) have been imposed in the fitting routine,
meaning that only the widths of the nucleon wave pack-
ets and the inter-α-like clusters distances could be varied,
preserving the imposed configuration.

The procedure of finding the ground-state configura-
tions which minimize the model Hamiltonian is described
in sect. 4 of [18], see also fig. 1.
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