
Full Paper

Proc. of Int. Conf. on Advances in Communication and Information Technology 2012

© 2012 ACEEE
DOI: 03.CSS.2012.3.27

Towards a Graph-Based Model of Computer Games
Iwona Grabska-Gradzińska1, Bartosz Porębski2, Wojciech Palacz3, Ewa Grabska4

Faculty of Physics, Astronomy and Applied Computer Science, Cracow, Poland
Email: 1iwona.grabska@uj.edu.pl, 2 bartosz.porebski@uj.edu.pl,

 3wojciech.palacz@uj.edu.pl, 4ewa.grabska@uj.edu.pl

Abstract—This paper proposes a new holistic approach to a
formal model of computer games. The story and structure of a
computer game is represented by a hierarchical layered graph,
meanwhile the way that the game is played – by graph
transformations. This approach enables comparative
description of different games, analysis of dependencies
between a game structure and players’ strategies, automatic
gameplay generation, and switching from single- to
multiplayer mode.

Index Terms—game design, gameplay analysis, game plot
modeling, hierarchical graphs, graph transformations,
narrative structures

I. INTRODUCTION

This paper proposes a new formal description of computer
games. The main goal is to encompass the most important
game aspects in one holistic model. This approach is
promising in both practical and theoretical problems of
computer game design.

Methodology of game research was developed with
traditional games in mind. Rules of ancient games are barely
known – they are reconstructed on base of preserved tokens,
boards, pictures and literary descriptions. Rules of more
contemporary games were created in times when all rules had
to be remembered by one man and all dependencies between
game elements calculated in mind. Nowadays computers
completely change the way the games are played. NPCs (Non
Player Characters) with artificial intelligence, complicated
rules, sophisticated modifiers – all that can be computed by
machine, which increases speed of opponent’s reaction,
rapidity of environmental changes and, in general, number of
stimuli. Therefore the old XIX/XX-century based discourse
of game research is not sufficient for modern computer games.
It does not give the holistic view and describes only single,
separated game aspects.

Computer games are mainly described by data structures
of a specific game engine. Usually, the following aspects are
considered separately: game as application, plot and narrative
structures of the story game is based on, status of players
and their roles in the formation of the game-play (scope of
their decisions and flexibility of the plot) [1]. As a consequence
– it is hard to represent structure of the game as one model
including all aspects of playability. Computer scientists are
interested in algorithms, programmers in implementation
details, sociologists in players’ emotions, motivations and
engagement in virtual reality, literary critics in plot structure.
For a long time games were in spectrum of interest of
sociologists (as a social activity) and narratologists (if there
is a story inside gameplay) because no computer was need

to play [2]. Times changed and now the huge branch of game
industry is based on programmers’ creations.

The problem is that different game aspects influence each
other significantly. Lack of holistic view causes that
sometimes even beautiful visual-sophisticated games have
pointless stories and boring, unbearably artificial characters,
or very interesting story in beautiful environment gives
players only frustration because game reality rules are not
intuitive. The present challenge is to describe and measure
players behavior and dependencies between player strategies
and gameplay, player impressions and, at last, effectiveness
of the game understood as “wow factor”.

A.  Rules
The heart of gameplay is a set of rules which enable

players to make decisions, reach the goal, and get the prize
[3]. As long as games were human-refereed, the rules could
be unclear, sometimes inconsistent and often being modified
ad hoc during the activity. Computer games changed this
situation. Computer as a game master needs precision and
consequence in preparing gameplay. That is the cause that
many computer  games are very schematic and no
spontaneous reactions are allowed.

The problem is that on one hand there is immeasurable
variety of plots, stories and narrations, and on the other hand
a list of scripts and schemas of behavior has to be short.

B.  Narrative elements
Not only game designers, but also book publishers

dreamed about automatic plot generation, but the great variety
of events which happen in everyday life made it seem like a
futile dream. On the other hand, the frequent déjà vu effect
implies that story tellers used only a small fragment of the
spectrum of narrative possibilities. Literary theory explains
that paradoxically all range of human behaviors can be
described by small amount of narrative units. The early
twentieth century work of Russian structuralist [4], Vladimir
Propp gives a proof that construction of any folktale of
Russian culture tradition is based on eight types of character:
the villain – struggles against the hero; the donor – character
who makes the lack known and sends the hero off; the
(magical) helper – helps the hero in the quest; the princess or
prize – the hero deserves her throughout the story but is
unable to marry her because of an unfair evil, usually because
of the villain. The hero’s journey is often ended when he
marries the princess, thereby beating the villain; her father –
gives the task to the hero, identifies the false hero, marries
the hero, often sought for during the narrative.; the dispatcher
– prepares the hero or gives the hero some magical object;
the hero or victim/seeker hero – reacts to the donor, weds the

34



Full Paper

Proc. of Int. Conf. on Advances in Communication and Information Technology 2012

© 2012 ACEEE
DOI: 03.CSS.2012.3.27

princess; false hero – takes credit for the hero’s actions or
tries to marry the princess. These characters take sequence
of 31 actions: absentation; interdiction; violation of
interdiction; reconnaissance; delivery; trickery; complicity;
villainy or lack; mediation; beginning counter-action;
departure; first function of the donor; hero’s reaction; receipt
of a magical agent; guidance; struggle; branding; victory;
liquidation; return; pursuit; rescue; unrecognized arrival;
unfounded claims; difficult task; solution; recognition;
exposure; transfiguration; punishment; wedding [4]. On the
higher level of abstractive thinking every story can be built
from these narrative units, like a puzzle. This regularity
provides a great possibility to create computer aided game
design structure. Manipulation of finite set of elements
produces complete spectrum of storytelling.

The problem is that generating the plot for the novel
means finding one of typical sequences of character actions
which obeys rules and choose the environment which
authenticate or, at least, not disturb the story. Generating the
gameplay means preparing the environment to support every
story which fulfills the rules [5]. Rules must include all aspects
of history and give us answers for all questions.

C.  Why graph-based model?
Computer game is a kind of virtual reality – simulation of

elements of real world. It is system of high complexity, but,
on the other hand, built with components quite well
categorized and somehow organized. There are four main
types of components:
characters (human-like creatures with a set of human-like
properties),
locations (areas where characters’ actions take place),
items of environment,
narrative elements: plot, rules, character development
paths, behavior patterns.

They are connected geographically, chronologically, and,
most importantly, influence each other. Especially plot
elements stimulate and restrict interferences between other
elements.

 Game is a fascinating combination of flexibility and
regularity. Right proportions of these both components give
a mind-blowing gameplay. Missing any of them means that
game is too boring or too complicated to play intuitively.

The most convenient way to show complexity of real or
virtual world is a graph model. The universal system of nodes
and edges is a tool to describe majority of dependencies,
hierarchy, structure.

This mathematical approach is novel, because so far the
natural language, not formal structures, has been used for
description and analysis of game narrations.

Moreover, a graph structure allows one to notice
unexpected correlations. The well-defined graph network
shows similarities between phenomena we never associated
before and explain seemingly non-explainable behavior of
examined system, for instance correlations between players’
behavior and structure of the gameplay can be analyzed.

II. EXAMPLE

Based on the categorization by Arthur Asa Berger [1]
game structures can be divided into following types:
simulations, real-time strategy games, first person shooters,
action arcade games, adventure games, role playing games,
sport games.

Concept and rules of sport games are directly taken from
reality. The challenge is how to increase illusion of world
around and impression of tactility.

In all of these types there are additional differences
between single-player and multiplayer structures, but the plot
can be considered in both cases as the same structure, just
multiplied in the latter case.

The origin of game industry is an innate need to compete.
Term “to win” is shared by many languages as one of primaries
in human relations. Playing games is often related to practicing
skills, empathy and abstract thinking. The oldest games, let
us call them “situational”, placed emphasis on this first
usability. “Who will first scoop up the stone into that hole,
One, two three, start” – and there is the first game: with game-
players, environment, object, rules of their manipulation and
winning conditions. In the course of time rules became more
sophisticated, environment more abstractive and hierarchy
of game-players more complex. Shortly speaking it is the way
from slinging stones at each other to practicing chess playing.

Human need to compete is a primal mechanism of
improving skills. Not only physical, as in race, but also social
and emotional achievements. This type of “psychological”
games needs not only rules but also a plot – to find analogies
between game and reality. This game function is not very far
from story-telling. Listening to the myths, legends, folktales
and stories helps to define social roles, identities, casual
connections and social behavior. Games based on story-
telling became extremely popular. Everybody can be a knight,
a king, a princess or a dragon and learn what decisions,
emotions and responsibilities are connected with this
particular social role. It is much more effective social training
than just listening. Plot-based games are nowadays the
broadest part of game industry.

 The following part of this paper focuses on this type
plot-based adventure games.

Let us take into consideration a typical adventure game.
Long time ago there was a kingdom led by a righteous king.
He had a beautiful daughter. One time a huge disaster
threatened the kingdom – a gargantuan dragon started to
burn houses, kill people and animals.

Brave knights tried to fight but they failed. Terror grown.
The terrified king announced that his daughter would marry
the man who defeats the dragon.

The main game task is to save the world from the dragon.
Getting married to the princess and becoming a king is an
award for the winner.

35



Full Paper

Proc. of Int. Conf. on Advances in Communication and Information Technology 2012

© 2012 ACEEE
DOI: 03.CSS.2012.3.27

Figure 1. Structure of the game

A. Structure of the world
Let us imagine this kingdom: the castle, few cities being

repeatedly burnt by the dragon, the main road and forests
around. These are locations which characters occupy. To
such a kingdom fit characters of few types: rulers (in this role
King and Princess), knights, craftsmen (including our player:
Young Shoemaker), peasants and one monster represented
by Dragon. There are items: possessed by characters or placed
in locations.

The structure of the game is shown in Fig. 1. The world is
described by rules (denoted as R1, …, R4) and dependencies,
which define interpersonal relations, societal hierarchy and
behaviors of human and animals. For example: monsters like
eating sheep and young virgins, people die when attacked
by a monster, monsters die after eating sulfur.

Poisoning with sulfur-filled sheep carcass is a standard
procedure for getting rid of dragons in Polish folktales.

Each character is described by elements of a plot (nodes
on the highest layer), place he occupies (a node in the loca
tions layer) and items he possesses (nodes in the lowest
layer). As focus of our interest is character we can notice that
sub-graphs describing character have specific shape, like a
sheaf.

Structure of character information is shown in Fig. 2. On
the left: a character (orange node) determined by three
elements of plot (blue ones) is in a specified location (green
one) and owning two items (beige ones). That sub-graph
stands for Young Shoemaker having twine and leather,
walking along road and obeying three rules: he is a craftsman,
he is good and he is a player character. In the middle there is
another location with two items in it. It is a meadow and two

sheep. On the right: another character determined by some
plot elements and having one item. That sub-graph stands
for Dragon.

As Fig. 3 shows, characters’ activity can be modeled by
changing the graph: Dragon changed location to the meadow
(tempted by sheep, as we can presume) and the Young
Shoemaker did the same. When two characters of opposite
nature (good and bad ones) find themselves in the same
location, an edge representing a fight is established between
them.

The most useful tool to transform graph is to define
productions changing one sub-graph into another. For any
further manipulation a formal definition of the graph system
is needed.

Figure 2. “Sheaf” sub-graph describing character’s situation

36



Full Paper

Proc. of Int. Conf. on Advances in Communication and Information Technology 2012

© 2012 ACEEE
DOI: 03.CSS.2012.3.27

Figure 3. Sub-graph from Fig. 2 after the change

III. FORMALISM

A mathematical definition of graphs is needed for precise
understanding of their capabilities and as a basis for future
implementation of the game engine. Many different definitions
can be found in the literature; this problem needs graphs
which are labeled and attributed, can represent both
symmetrical and asymmetrical relations, allow for nesting of
nodes in other nodes, and for separation between different
node types (plot elements, characters, locations, and items).

The definition used in this paper is based on [6,7]. The
hierarchical graphs allow for straightforward modeling of
compound objects, i.e. a military squad consisting of several
soldiers, or a sheep with a sulfur filling. Nodes are connected
by directed edges (asymmetrical), but a pair of edges which
connect the same two nodes going in opposite directions
can easily be used to represent a symmetrical relation. Labels
and attributes provide information about real-life objects
which are being modeled. Graph layers allow for separation
of nodes into four subsets.

Let L be an alphabet of labels for nodes and edges. Let A
be a nonempty, finite set of attributes. For every aA, let Da
be a fixed, nonempty set of its admissible values, called the
domain of a. If f is a function, then let f+ be its transitive
closure.

 A hierarchical graph is a system
G (V, E, s, t, ch, lab, atr),
where:
 V and E are finite disjoint sets of nodes and edges,
 s : E        V  and t : E         V are edge source and edge

target functions,
 ch : VE          2VE is a child nesting function such that

x  VE : x  ch+(x),
 lab : VE        L is a labeling function,
 atr : VE        2A is an attributing function.

This definition provides attributes, but does not determine
what their values are. It can be said that nodes and edges in
these graphs are generic.

Let us come back to the game. There can be a node which
represents a sword, with attributes for damage dealt and its
price in gold pieces, but it is an abstract sword – it is not
known if it is a +50 sword of dragon slaying which costs ten
thousand, or a worthless 1 rusty sword. A graph with
concrete values assigned to its attributes is known as an
instance.

A graph instance is defined as
I = (V, E, s, t, ch, lab, atr, val),
where:
 (V, E, s, t, ch, lab, atr) is a graph,
 val : (VE) × A       D, with D = UaA Da, is a partial

function such that
for all x  VE and a  A
if a  atr(x) then val(x, a)  Da .

Let us assume that L (the set of labels) consists of three
disjoint subsets ΣV, ΣD, and ΣU, which are used to label nodes,
directed edges, and undirected edges. Furthermore, let Y =
{Y1, Y2, … Yn} be a partition of ΣV.

Graph G or instance I is layered if and only if
for all x  V
lab(x)  Yi implies that lab(V )” ch+(x))  Yi
(i.e., a node and all other nodes nested in it have labels from
the same layer).

In the specific case presented in this paper
Y = {PLOT, CHAR, LOC, ITEM}.
Summarizing, a gameplay graph is, formally speaking, a

layered graph instance. Fig. 4 shows an example of such a
graph model.

Fig. 4. A graph instance corresponding to the left part of Fig. 2

Actions undertaken by game characters change gameplay
graphs. We would like to use graph productions to represent
these actions, because this is the way usually used to formally
define the process of graph rewriting.

Productions used in this paper are based on single-
pushout productions [8]. They were extended to handle
hierarchical graphs, attributes, and to be able to match not
only nodes with a specific label, but also nodes with any
label belonging to a specific layer. This ability is extensively
used to specify actions which operate on any character, or at
any location.

A production consists of the left- and the right-hand side,
the application condition, and the family of value assigning
functions. Both sides are graphs (not graph instances), and
there is a partial morphism from the left side to the right side.
Nodes and edges mapped through this morphism are called
“the context”, and are preserved when the production is
applied.

37



Full Paper

Proc. of Int. Conf. on Advances in Communication and Information Technology 2012

© 2012 ACEEE
DOI: 03.CSS.2012.3.27

The process of applying a production to a graph instance
begins with searching the instance for a fragment which
matches the left-hand side. After the match is found, the
application condition is evaluated. If no match could be found,
or if the condition was not fulfilled, then the whole process
fails – the production cannot be applied.

Otherwise, the process continues. First, it removes from
the instance fragment those nodes and edges which are
matched to the non-context part of the left-hand side. Next, it
adds to the instance copies of non-context nodes and edges
from the right-hand side. Finally, it evaluates the value
assigning functions, which specify attribute values for just
added nodes and edges (they can also modify attribute values
in the context nodes and edges).

IV. PLAYER ACTIVITY

The player knows that in general he wants to get from the
world where he is closer to Dragon than to the Princess to
the situation where Dragon is killed and Princess is his wife.

Figure 5. Starting and winning gameplay states

Let us consider the main, most typical activities defined
by the simple productions.

Figure 6. Picking up an item

The first example, displayed in Fig. 6, represents the action
of picking up an item. Please note that instead of specific
node labels the production uses layer names; this means
that the left-hand side can be matched to any character in a
gameplay graph, which is currently in some unspecified
location, where in turn some unspecified item is lying around.

Figure 7. Dropping an item

Fig. 7 displays an opposite production, which describes
the action of dropping an item.

Figure 8. Eating a sheep

Fig. 8 illustrates operations on node attributes. Let us
assume that all characters have a numerical attribute
“strength”. A monster which has eaten a sheep should
increase its strength (of course only if it has not died earlier
because of sulfur hidden in the sheep – see next example).

The left-hand side can be matched to any character which
is a monster (i.e., it is connected by an edge to the “monster”
node in the plot layer), and which has (as in “has in its
stomach”) a sheep item. The right-hand side does not contain
a corresponding “sheep” node, thus the matched sheep and
its edge are deleted from the gameplay graph. Then the
instruction specified on the right-hand side is executed, and
changes the value assigned to the “strength” attribute of the
matched character.

Figure 9. Death of a monster

Fig. 9 is also concerned with monsters. This time, a monster
has eaten something which contained sulfur, and now has a
piece of sulfur in its stomach. It dies of poisoning, leaving in
the location of its demise a part of its corpse – the head.

V. APPLICATIONS AND ADVANTAGES

Using formal, graph-based model of gameplay structure
should provide many advantages. Using graph rules to
represent dynamic changes of the game state is the main
one, as various dynamic changes are essential for games.
Additional advantages include also some practical
applications.

A. Aditional mechanism
Graphs are widely used in software engineering. There

are many libraries and tools for graph processing. There are
also many well-understood additional formalisms which
extend their power or help with solving particular problems.

For example: control diagrams can be used for
representing sequences of actions of Non-Player Characters
(NPCs). Players’ and NPCs’ actions can be represented in the
same way (as productions – mutual influences between the
player and NPCs are significant), but with schemes of
proceedings defined for non-playable elements of virtual
reality.

The same mechanism can be used to prioritize selected
actions. It helps to avoid an inappropriate order of actions

38



Full Paper

Proc. of Int. Conf. on Advances in Communication and Information Technology 2012

© 2012 ACEEE
DOI: 03.CSS.2012.3.27

expressed as graph productions.

B. Formal ways of proving properties
Representing gameplay models and their modifications

in mathematical terms of graph grammars should provide an
opportunity to formally reason about their properties. Some
of them are of obvious practical importance.

For example, if a given graph rewriting system can
generate an infinite language, then this is a game which can
reach an infinite number of states, and thus can crash (because
the computer running the game has finite memory). If the
language is finite, but it is possible to construct infinite
production sequences, then the game will not crash, but may
never end. The game has no dead ends (does not become
unwinnable in the middle of a play) if for every state where
the player character is alive a sequence of productions which
transforms the graph model into a state where the player
wins can be found.

C. Automatic generation of different gameplays
Automation provides an opportunity to test new game

concepts before resources are spent on creating new game
and before trials with human testers are conducted. It can be
checked if there is no useless loops, dead ends and other
storyline mistakes.

D. Designing for single- and multiplayer game structures at
the same time

Modeling structure of gameplay can be made easier by
using graph-based models, because all character activities
(for PCs and NPCs both) are modeled in the same way.
Differences appear only on the level of control diagrams and
not on the level of productions.

E. Comparative description of different games and transition
from gameplay structure to metastructure of players’
behaviors

By using formal models game researchers can make
comparative description of game structures and search for
distinctive differences between various categories of games.
The proposed graph model gives them also capabilities to
systematic description of both behaviors and decisions of players.
In this approach winning a game means to find a sequence of
productions which leads the player from the beginning to the
victorious end. An example of this network is shown in Fig. 10.
There are many ways of winning a game, if a plot is a real nonlinear
structure.

Figure 10. Traces of players’ activities – network of production
sequences

A linear game has one winning sequence with possibly
some small loops and deviations. A truly nonlinear game has
a very sophisticated structure of winning paths, but multitude
of possibilities can be overwhelming for an average player –
there are many loops and long paths between key
productions developing actions. Graph and network tools
can describe and measure all that features.

VI. CONCLUSIONS

The real limitation of using narrative structures is designer
imagination and inclination to linear thinking and duplicating
narration structures. It is hard to compose a coherent structure
with many chances for taking part in the story. There are
many possibilities of implementation nonlinearity and quasi-
nonlinearity. There are problems with describing differences.

The proposed graph-based model is an attempt to help to
overcome these limitations. It allows both game designers to
organize and visualize dependencies in game structures and
researchers to make description and analysis more precise and
comparison of game structures easier.

Up to now promising simulation results based on similar
graph-models have been obtained for CAD-problems [9] and
the hp-adaptive Three Dimensional Finite Element Method
[10]. The system engine for game structures is now being
implemented. Simulation results for computer games will be
the next step of the proposed approach.

REFERENCES

[1] A. A. Berger, Video games: a popular culture phenomenon,
New Brunswick, Transaction Publishers, 2002.

[2] M. Eskelinen, “The gaming situation”, Game studies, vol. 1,
no. 1, 2001.

[3] J. Huizinga, Homo Ludens, Boston, The Beacon Press, 1955.
[4] V. Propp, Morphology of the folktale, 2nd edition, University

of Texas Press, Austin, Texas, 1958.
[5] E. Adams, Fundamentals of Game Design , 2nd edition,

Peachpit, 2009.
[6] E. Grabska, W. Palacz, B. Strug, and G. Ślusarczyk, “A Graph

Based Generation of Virtual Grids”, LNCS, vol. 7203, pp.
451-460, 2012.

[7] W. Palacz, “Algebraic hierarchical graph transformation”, JCSS,
vol. 68, issue 3, pp. 497-520, 2004.

[8] G. Rozenberg, Handbook of Graph Grammars and Computing
by Graph Transformation, vol. 1-3, World Scientific, 1997-
99.

[9] W. Palacz, E. Grabska, Sz. Gajek, “Conceptual Designing
Supported by Automated Checking of Design Requirements
and Constraints”, D. D. Frey et al. (eds.), Improving Complex
Systems Today, Advanced Concurrent Engineering, pp. 257-
265, Springer-Verlag, 2011.

[10] A. Paszyńska, E. Grabska, M. Paszyński: “A Graph Grammar
Model of the hp Adaptive Three Dimensional Finite Element
Method”, Part I. Fundam. Inform. 114(2), pp. 149-182, 2012.

39


