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Several classes of self-similar, spherically symmetric solutions of rela-
tivistic wave equation with a nonlinear term of the form sign(ϕ) are pre-
sented. They are constructed from cubic polynomials in the scale invariant
variable t/r. One class of solutions describes the process of wiping out the
initial field, another an accumulation of field energy in a finite and growing
region of space.
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1. Introduction

Symmetry transformations for a given equation act within the space of
its solutions. Especially interesting are fixed points of such transformations,
i.e., the solutions that remain invariant. In the case of continuous sym-
metries they depend on a reduced number of independent variables. This
significantly simplifies the task of finding the solutions, the task that so of-
ten is formidably difficult in the case of nonlinear field equations. Apart
from the rudimentary examples of rotational and translational symmetries,
in certain models there is also a one-parameter scaling symmetry. The cor-
responding invariant solutions, called the self-similar ones, play important
role in mathematical analysis of nonlinear evolution equations, as well as
in physics oriented investigations, see, e.g., the books [1, 2] and a sample of
recent research papers [3].
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The present paper is a sequel to papers [4], where self-similar solutions
in the signum-Gordon model with a real scalar field in 1+1 dimensions were
analyzed. Rich variety of such solutions was found. Certain related models
were investigated in [5]. Derivation and a general discussion of the signum-
Gordon model can be found in [4]. The model is very interesting, there is no
doubt that its investigations should be continued in several directions, such
as finding classical solutions of various kinds, applications, or quantization.

As is well known, field theories in 1+1 dimensions have rather special
properties. Therefore, it is not clear whether the amazing picture of the
space of self-similar solutions found in [4] is valid also in higher dimensions.
This is our main motivation for the present work. Another attraction is
the possibility of obtaining several exact analytic solutions to the signum-
Gordon equation in 3+1 dimensions, and to have new insights into rather
intriguing dynamics of the scalar field in that model.

We have found several families of self-similar, spherically symmetric an-
alytic solutions. They are composed from cubic polynomials in the scale
invariant variable u = t/r. Our results show that there is a qualitative simi-
larity between the 3+1 and 1+1 dimensional cases, but significant differences
appear. First, the lack of translational invariance in the radial variable r
results in the absence of counterparts of certain classes of 1+1 dimensional
solutions. Second difference, perhaps not so unexpected, is that the perti-
nent calculations are a bit more complicated because we have to look for
zeros of cubic polynomials, while in the 1+1 dimensional case only the sec-
ond order polynomials were present. The exact solutions we have found
provide examples of nontrivial evolution of the scalar field ϕ. Especially in-
teresting seem to be solutions of the types II and III, presented in Section 3,
which show how the field settles exactly at the vacuum value ϕ = 0.

The plan of our paper is as follows. In Section 2 we describe the method
of constructing the self-similar solutions in the signum-Gordon model. Ex-
plicit solutions in the 3+1 dimensional case are presented in Section 3. Sec-
tion 4 is devoted to discussion of our results.

2. Scale invariant Ansatz and the method
of constructing the solutions

The signum-Gordon equation for the real scalar field ϕ in D + 1 dimen-
sional space-time reads

∂µ∂
µϕ(x) + sign(ϕ(x)) = 0 . (1)

The sign function takes the values ±1, 0, sign(0) = 0. It is clear that Eq. (1)
implies that the second derivatives of ϕmay not exist if ϕ vanishes at isolated
points, but even at such points one-sided second order derivatives do exist.
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The proper mathematical framework for discussing equations of such kind is
well-known: one should consider the so-called weak solutions, see, e.g., [6].
All solutions constructed below have been checked in this respect.

From a given solution ϕ(x) of Eq. (1) one can obtain one-parameter
family of solutions of the form

ϕλ(x) = λ2ϕ
(x
λ

)
, (2)

where λ > 0 is a constant. The solution is self-similar if ϕλ(x) = ϕ(x) for
all λ > 0. Taking λ = r, where r is the radius, and assuming the spherical
symmetry, we may then write

ϕ(x) = r2 G

(
t

r

)
, (3)

where t = x0 is the time. With this Ansatz, Eq. (1) gives(
u2 − 1

)
G′′ − (D + 1)uG′ + 2DG− sign(G) = 0 , (4)

where u = t/r and G′ = dG/du. This equation has the particular solutions

G = 0 , G = ± 1
2D

,

which are trivial, but nevertheless play important role below.
Let g(u) be a solution of auxiliary linear (!) equation(

u2 − 1
)
g′′ − (D + 1)ug′ + 2Dg = 0 . (5)

Then G+(u) = g(u)+1/(2D) is a solution of (4) on the interval of u defined
by the condition G+(u) > 0, and G−(u) = g(u) − 1/(2D) on the interval
in which G−(u) < 0. It turns out that patching together a number of such
partial solutions and, in some cases, including also the trivial solution G = 0,
one can cover the whole interval 0 ≤ u < ∞. In this way we obtain a self-
similar solution of Eq. (1) valid for all r ∈ [0,∞) and t ∈ [0,∞). The values
G(0), G′(0) determine the initial data for ϕ(t, r)

ϕ(0, r) = r2G(0) , (∂tϕ)(0, r) = rG′(0) . (6)

When patching the partial solutions we demand continuity of G(u), and
also continuity of G′(u), unless u = 1. G′(u) at u = 1 does not have to be
continuous because G′′ in Eq. (1) is multiplied by the factor u2 − 1 which
vanishes at that point. This is not surprising because u = 1 corresponds to
the light-cone r = t, the characteristic hypersurface for equation (1).
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Equation (5) has two linearly independent solutions

g1(u) = Du2 + 1 , g2(u) =
∞∑
l=0

clu
2l+1 , (7)

where the coefficients cl are determined from the recurrence relation

cl+1 =
(2l − 1)(2l + 1−D)

2(l + 1)(2l + 3)
cl . (8)

Note that in the case of odd space dimension D the series for g2 is, in fact,
a polynomial of the order of D, because cl = 0 for all l > (D − 1)/2. In
particular, g2 = u for D = 1, g2(u) = u3 + 3u when D = 3, and g2 =
u5 − 10u3 − 15u for D = 5, apart from overall multiplicative constants.

In the next section we consider in detail the D = 3 case.

3. Explicit self-similar solutions in the case D = 3

In the case of three space dimensions the general form of the partial
solutions reads

G = ±1
6 + α

(
3u2 + 1

)
+ β

(
u3 + 3u

)
, (9)

or equivalently,
G = ±1

6 + γ(u− 1)3 + δ(u+ 1)3 , (10)

where α, β, γ, δ are constants. The sign in front of 1/6 has to be equal to
sign(G).

Let us begin our exploration of the space of the self-similar solutions
by checking their asymptotic behavior at u → ∞. It turns out that G has
to have a constant sign if values of u are large enough — we prove in the
Appendix the following lemma.
Lemma. Suppose that u1 > 1 is a zero of the polynomial (9). Then, that
polynomial does not have any zeros larger than u1.
It follows that in the region u ≥ u1 the solution has a fixed form with
certain fixed coefficients α, β. The just excluded option was that of having
an infinite sequence of polynomials with alternating signs. Now, let us recall
that the region u → ∞ corresponds to r → 0 (t > 0). Therefore, the
polynomial u3 + 3u would give a singular field ϕ = r2G ∼ 1/r with a
divergent, nonintegrable at r = 0 energy density. For this reason, we put
β = 0 in formula (9). Note also that by taking into account the symmetry
ϕ → −ϕ, we may consider just two cases of the asymptotic form of G at
large values of u: G(u) > 0, or G(u) = 0. The latter case is considered
in the second and third subsections (solutions of the types II and III). The
former case is named type I.



Note on Scale Invariance and Self-similar Evolution in . . . 83

3.1. Solutions of type I

In this case, for arbitrary large values of u

G(u) = 1
6 + α

(
3u2 + 1

)
> 0 .

This implies that α ≥ 0, and then such G(u) does not have any zeroes down
to u = 1, where it can be glued with another polynomial of the form (9) or
(10). We conclude that all type I solutions on the interval u ∈ [1,∞) have
the form

G∞(u) = 1
6 + α∞

(
3u2 + 1

)
(11)

with arbitrary constant α∞ ≥ 0.
At the point u = 1 the solutionG∞ can be glued with another polynomial

(9) or (10), taken with the +1/6 because G∞(1) > 0. We denote it by G+

and its constants by γ+, δ+ (here we prefer the form (10)). The gluing
condition at u = 1, G∞(1) = G+(1) gives δ+ = α∞/2. Hence,

G+(u) = 1
6 + γ+(u− 1)3 + 1

2α∞(u+ 1)3 . (12)

Now we have to determine the lower end of the interval on which G+ is the
solution (the upper end is u = 1). The first possibility, denoted as Ia, is that
G+ > 0 for all u ∈ [0, 1). This occurs if γ+ < 1/6 + α∞/2. In this case, G+

and G∞ cover the whole interval [0,∞), and these functions together give
the complete solution. It has the shape sketched in Fig. 1 with the dashed
line.

Fig. 1. Solutions of the type I.
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The other possibility, denoted as Ib, is that there exists u0 ∈ (0, 1) at
which G+(u0) = 0. Simple calculation gives in this case

γ+ =
1 + 3α∞(1 + u0)3

6(1− u0)3
. (13)

Moreover, it turns out that u0 has to be the first order zero of G+. Therefore,
at the point u0 we may glue G+ with a negative polynomial

G− = −1
6 + γ−(u− 1)3 + δ−(u+ 1)3 ≤ 0 , (14)

and not with the trivial solution G = 0. The matching conditions

G−(u0) = 0 , G′−(u0) = G′+(u0)

give

γ− =
u0 + 3α∞(1 + u0)3

6(1− u0)3
, δ− =

α∞
2

+
1

6(1 + u0)2
. (15)

It turns out that G−(u) found above does not have any zeros in the interval
[0, u0). Therefore, the three functions: G∞ for u ≥ 1, G+ for u0 ≤ u ≤ 1,
and G− for 0 ≤ u ≤ u0, form the complete solution of Eq. (4). It is sketched
in Fig. 1 with the solid line.

The values of G(0), G′(0), which specify the initial values of the scalar
field through formula (6), read as follows.
Type Ia:

G+(0) = 1
6 − γ+ + α∞

2 , G′+(0) = 3γ+ + 3α∞
2 .

Type Ib:

G−(0) = −1
6 − γ− + δ− , G′−(0) = 3(γ− + δ−) .

Varying α∞ in the interval [0,∞) and u0 in the interval [0, 1) we obtain
certain sets in the (G(0), G′(0)) plane. They are shown in Fig. 2. We
have denoted them Ia, Ib, identically as the corresponding solutions. The
regions −Ia, −Ib are obtained by the reflection in the origin, (G(0), G′(0))→
(−G(0),−G′(0)), related to the symmetry ϕ→ −ϕ. The half-infinite curve
that separates the regions Ib from IIb is obtained for α∞ = 0. It has the
following parametric form with u0 ∈ [0, 1) as the parameter

G(0) =
1

6(1 + u0)2
− u0

6(1− u0)3
− 1

6
, G′(0) =

1
2(1 + u0)2

+
u0

2(1− u0)3
.

The curve starts at the point (0, 1/2) that corresponds to u0 = 0, and it
approaches its asymptote, that is the straight half-line

G(0)(σ) = −1
8
− σ , G′(0)(σ) =

1
8

+ 3σ , σ ∈ [0,∞) ,

when u0 → 1.
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Fig. 2. The map of the self-similar solutions. The regions Ia, IIa are separated from
Ib, IIb by the G′(0) axis. The infinite region III extends over all area encompassed
by the stripes IIa, IIb, −IIa, −IIb, except for the origin (0, 0) which corresponds
to the trivial solution G = 0. The stripe IIb asymptotically approaches the stripe
−IIa, similarly IIa approaches −IIb.

3.2. Solutions of type II

Solutions of the type II are obtained by taking the trivial solution
G(u) = 0 for u ≥ u1 > 1, and gluing it at the point u1 with the polynomial
(10) taken with the + sign (the other sign can be obtained by the symmetry
transformation ϕ→ −ϕ). Because u1 > 1, the matching condition includes
the first derivative,

G(u1) = 0 , G′(u1) = 0 .

Solving these conditions, we obtain the following polynomial

Gd(u) =
(u1 − u)2

(
2u1u+ u2

1 − 3
)

6(u2
1 − 1)2

. (16)

It has strictly positive values in the whole interval u ∈ [1, u1). At u = 1 that
polynomial is glued with another positive polynomial G+(u) of the form (9).
The matching condition Gd(1) = G+(1) gives

G+(u) =
1
6
− α+(u− 1)3 −

u
(
u2 + 3

)
6(1 + u1)2

, (17)
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where α+ is an arbitrary constant. Similarly as for the type I solutions,
there are two possibilities. The first, denoted as IIa, with G+(u) strictly
positive on the whole interval (0, 1], occurs when α+ ≥ −1/6. In this case
we already have the complete solution: G = 0 for u ≥ u1, Gd for u ∈ [u1, 1],
and G+ given by formula (17) for u ∈ [0, 1]. It is sketched in Fig. 3 with the
dashed line. The values of G+, G

′
+ at u = 0, i.e.,

G+(0) = 1
6 + α+ , G′+(0) = −3α+ −

1
2(1 + u1)2

,

where α+ ∈ [−1/6,∞), u1 ∈ (1,∞), fill a semi-infinite straight-linear stripe
in the (G(0), G′(0)) plane. It is denoted as IIa in Fig. 2.

Fig. 3. Solutions of the type II.

The second possibility is that G+(u) has a zero at some u0 ∈ (0, 1). If
this is the case, then

α+ =
u0

(
u2

0 + 3
)

6(1− u0)3(1 + u1)2
− 1

6(1− u0)3
.

Formula (17) implies that the zero can only be of the first order. The
matching conditions at u0 determine the two coefficients in the negative
polynomial

G−(u) = −1
6 + γ−(u− 1)3 + δ−(1 + u)3 (18)
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which is glued at that point with G+(u). Simple calculations give

γ− =
u0

6(1−u0)3
− (1 + u0)3

12(1+u1)2(1−u0)3
, δ− =

1
6(1+u0)2

− 1
12(1+u1)2

.

It turns out that G−(u) is strictly negative in the whole interval u ∈ [0, u0)
for all choices of u0 ∈ (0, 1), u1 ∈ (1,∞). Thus, we have obtained again the
complete solution: G = 0 for u ≥ u1, Gd for u ∈ [1, u1], G+ for u ∈ [u0, 1],
and G− for u ∈ [0, u1]. We denote it as IIb. It is sketched in Fig. 3 with the
solid line.

The points (G−(0), G′−(0)) with u0 ∈ (0, 1), u1 > 1 fill in the (G(0), G′(0))
plane the region denoted as IIb, see Fig. 2. It borders the region IIa along
the segment (3/8, 1/2) of the G′(0) axis. The region IIb is bounded from
below by the curve obtained by putting u1 = 1 in formulas for G−(0), G′−(0)
for the solution (18). The curve is obtained in the parametric form, namely

G−(0) = −u0(2 + u0)
6(1 + u0)2

− u0(1 + u0)
24(1− u0)2

, G′−(0) =
1

2(1 + u0)2
+

3u0 − 1
8(1− u0)2

,

where u0 varies in the interval (0, 1). The asymptote of this curve, ap-
proached when u0 → 1−, coincides with the upper boundary of the region
−IIa in Fig. 2 (the semi-infinite straight line that starts from the point
(0,−3/8) on the G′(0) axis).

3.3. Solutions of type III

Thus far we have not found solutions for which the points (G(0), G′(0))
would lie in the central part of the map presented in Fig. 2. In fact, we have
not exhausted yet all possibilities for having the solutions of the type II
because we have assumed that u1 > 1. Simple calculations show that the
partial solution of the form Gd, formula (16), does not exist if u1 < 1.
Thus, we are left with the last possible choice, namely u1 = 1. In this case
G(u) = 0 for u ≥ 1. The matching condition with the trivial solution G = 0
at u = 1 does not involve the first derivative. For this reason, we regard
such solutions as essentially different from the ones already constructed, and
we classify them as the type III.

As for the general form of such solutions we are guided by the results
obtained for the signum-Gordon model in 1+1 dimensions, [4]. Thus, in the
present case we expect an infinite sequence {G0, G1, G2, . . .} of polynomials
of the form (10) with alternating signs, glued at the points u0, u1, u2, . . .
lying in the interval (0, 1) and converging at u = 1. These points are the
first order zeros of the pertinent polynomials, and the matching conditions
include the first derivatives. Unfortunately, we have not been able to fully
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construct these solutions in exact, analytic form because the cubic polyno-
mials pose significant problems in explicit calculations. One can relatively
easily construct several first polynomials with the desired properties, but
the infinite sequence of cubic polynomials is a different matter.

Numerical calculations support our expectations. An example of such
a numerical solution is shown in Fig. 4. It has been calculated up to the
point u = 0.9996, determined by numerical accuracy of the computation.
Of course, the numerical results for this kind of a problem, where we need
to check an infinite sequence of polynomials, are not decisive, even if they
are quite suggestive. For this reason, the given above description of the
solutions of the type III has, strictly speaking, the status of a conjecture, as
opposed to the status of the solutions of the types I and II.

Fig. 4. Example of numerical solution of the type III.

4. Discussion

1. We have found the three families of self-similar solutions of the signum-
Gordon equation in the D = 3 case. Comparing with the analogous results
in 1+1 dimensions [4], we see certain similarity. In particular, in both cases
there exist solutions of the type III (i.e., solutions vanishing for all u ≥ 1)
and of the type II (vanishing for all u ≥ u1 > 1). This seems to be a univer-
sal feature of the signum-Gordon equation. Solutions of the type I were not
found in [4], but this may be a consequence of certain ad hoc restrictions on
the form of solutions adopted there. On the other hand, in the D = 3 case
we have not found spherically symmetric solutions that would correspond to
the presented in [4] solutions with a negative velocity v. This can be related
to the lack of translational invariance in the radial coordinate r.
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2. The solutions presented above describe quite interesting processes, es-
pecially the type II solutions. The region u ≥ u1 > 1 in which ϕ = 0
corresponds to r ≤ t/u1. Thus, the field retreats completely from the region
surrounding the origin. The radius of the spherical region with the vanishing
field increases linearly with time. The corresponding radial velocity is equal
to 1/u1, and it is smaller than 1. The presence of such subluminal velocities
shows that actually the model should not be regarded as massless, in spite
of the presence of the scale invariance. In truly massless models, such as
the free massless scalar field discussed in the next point, wave fronts always
move with the velocity ±1.

The type I solutions give ϕ(r, t) = (1/6 + α∞)r2 + 3α∞t2 in the region
r ≤ t. Thus, in this case we have an accumulation of the field energy around
the origin.

3. It is interesting to compare the solutions described in Section 3 above with
self-similar radial solutions of the free wave equation which is obtained by
dropping the sign(ϕ) term from Eq. (1). It is clear that the general solution
of the free wave equation is given by linear combination of the functions
g1(u), g2(u) introduced in Section 2. It turns out that solutions of the type II
do not exist. Solutions of the type III have the form G(u) = α(1 − u)3

for u ≤ 1, G(u) = 0 for u ≥ 1, where α is an arbitrary constant. On the
plane (G(0), G′(0)) these solutions are represented by the points lying on the
straight line G′(0) = −3G(0), shown as the dashed line in Fig. 2. All other
points in that plane would correspond in the case of the free wave equation
to solutions of the type I, which have the following form: G(u) = 2β(3u2+1)
for u ≥ 1 and G(u) = β(1 + u)3 + α(1− u)3 for u ≤ 1, where β 6= 0. Thus,
the rather nontrivial shape of the region occupied by the solutions of the
type III in Fig. 2, as well as the presence of the regions IIa, IIb, reflect the
presence of the sign(ϕ) term.

Appendix A

The proof of Lemma

1. If u1 is the second order zero, the polynomial has the form (16) modulo
the overall sign. The factor 2u1u+ u2

1 − 3 is strictly positive for all u > u1

because u1 > 1. Therefore, Gd does not vanish for any u > u1.

2. In the case u1 is the first order zero, we have G(u1) = 0, G′(u1) 6= 0.
Because of the symmetry ϕ→ −ϕ we may consider only the case G′(u1) > 0.
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Then, for u ≥ u1 we have the polynomial

G+(u) =
1
6
− 1 + 3u2

6
(
1 + 3u2

1

) + β+

(
u3

1 + 3u1

) [ u3 + 3u
u3

1 + 3u1
− 1 + 3u2

1 + 3u2
1

]
,

where
β+ >

u1

3
(
u2

1 − 1
)2

in order to ensure thatG′+(u1) > 0. Direct calculation shows thatG′′+(u) > 0
for all u > u1. Therefore, G′+(u) > 0 for all u > u1, and in consequence the
values of G+(u) do not return to 0 for any u > u1.
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