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Abstract. Various kinds of decipherability of codes, weaker than unique de-

cipherability, have been studied since mid-1980s. We consider decipherability

of directed figure codes, where directed figures are defined as labelled polyomi-

noes with designated start and end points, equipped with catenation operation

that may use a merging function to resolve possible conflicts. This setting ex-

tends decipherability questions from words to 2D structures. In the present

paper we develop a (variant of) domino graph that will allow us to decide some

of the decipherability kinds by searching the graph for specific paths. Thus the

main result characterizes directed figure decipherability by graph properties.

1. Introduction

The term unique decipherability refers to a property of a set of words X whereas
every message composed from these words can be uniquely decoded, i.e. an exact
sequence of words is recovered; this corresponds to X∗ being free over X. The set X
is then called a uniquely decipherable (UD) code; the term code alone is also used.
Words in X are often called codewords.

However, in some applications it might be sufficient to decode the message with
respect to a feature weaker than the exact sequence of codewords – like the multiset,
the set or just the number of codewords – giving rise to three kinds of decipherability,
known as multiset (MSD), set (SD) and numeric decipherability (ND), respectively.

Multiset decipherability was introduced by Lempel in [1], whilst numeric deci-
pherability originates in [2] by Head and Weber. The same authors in [3] develop
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“domino graphs” providing a useful technique for decipherability verification. A pa-
per by Guzman [4] defined set decipherability and presented a unifying approach to
different decipherability notions using varieties of monoids. Decipherability litera-
ture is already quite rich and includes e.g. papers by Restivo [5], Blanchet-Sadri and
Morgan [6], Blanchet-Sadri [7], Burderi and Restivo [8, 9] and Salomaa et al. [10];
the latter is not directly concerned with decipherability, but uses ND codes (under
the name of length codes) to study prime decompositions of languages.

Extensions of classical words and codes have also been widely studied. For in-
stance, Aigrain and Beauquier introduced polyomino codes in [11]; two-dimensional
rectangular pictures were studied by Giammarresi and Restivo in [12], whilst in [13]
Mantaci and Restivo described an algorithm to verify tree codes. The interest in
picture-like structures is not surprising, given the huge amounts of pictorial data
in use. Unfortunately, properties related to decipherability rarely carry over. In
particular, decipherability testing (i.e. testing whether a given set is a UD code) is
undecidable for polyominoes and similar structures, cf. [14, 15].

In [16] we introduced directed figures defined as labelled polyominoes with desig-
nated start and end points, equipped with catenation operation that uses a merging
function to resolve possible conflicts. This setting is similar to symbolic pixel pic-
tures, described by Costagliola et al. in [17], and admits a natural definition of
catenation. The attribute “directed” is used to emphasize the way figures are cate-
nated; this should not be confused with the meaning of “directed” in e.g. directed
polyominoes. We proved that verification whether a given finite set of directed fig-
ures is a UD code is decidable. This still holds true in a slightly more general setting
of codes with weak equality (see [18]) and is a significant change in comparison to
previously mentioned picture models, facilitating the use of directed figures for e.g.
encoding and indexing of pictures in databases. On the other hand, a directed figure
model with no merging function, where catenation of figures is only possible when
they do not overlap, has again undecidable UD testing [19, 20].

In [21] we extended the previous results by considering not just UD codes, but
also MSD, SD and ND codes over directed figures. We proved decidability or unde-
cidability for each combination of the following orthogonal criteria: catenation type
(with or without a merging function), decipherability kind (UD, MSD, SD, ND)
and code geometry (several classes determined by relative positions of start and end
points of figures). Two combinations remained open.

In the present paper we define a variant of domino graphs that allows us to decide
some of the decipherability kinds by searching the graph for specific paths. Thus
the main result characterizes directed figure decipherability by graph properties.

We begin, in Section 2., with definitions of directed figures and their catenations.
Section 3. defines decipherability kinds and shows the relationship between codes of
that kinds. In Section 4. we summarize existing decidability results for decipher-
ability verification. Finally, in Section 5. we define the domino graph and state the
main result.
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2. Preliminaries

Let Σ be a finite, non-empty alphabet. A translation by vector u = (ux, uy) ∈ Z2 is
denoted by tru, tru : Z2 3 (x, y) 7→ (x + ux, y + uy) ∈ Z2. By extension, for a set
V ⊆ Z2 and an arbitrary function f : V → Σ define tru : P(Z2) 3 V 7→ {tru(v) | v ∈
V } ∈ P(Z2) and tru : ΣV 3 f 7→ f ◦ tr−u ∈ Σtru(V ).

Definition 1 (Directed figure, cf. [16]) Let D ⊆ Z2 be finite and non-empty,
b, e ∈ Z2 and l : D → Σ. A quadruple f = (D, b, e, l) is a directed figure (over Σ)
with

domain dom(f) = D,
start point begin(f) = b,
end point end(f) = e,
labelling function label(f) = l.

Translation vector of f is defined as tran(f) = end(f)− begin(f). Additionally, the
empty directed figure ε is defined as (∅, (0, 0), (0, 0), {}), where {} denotes a function
with an empty domain.

The set of all directed figures over Σ is denoted by Σ�. Two directed figures x, y
are equal (denoted by x = y) if there exists u ∈ Z2 such that

y = (tru(dom(x)), tru(begin(x)), tru(end(x)), tru(label(x))).

Thus, we actually consider figures up to translation.

Example 1 A directed figure and its graphical representation. Each point of the
domain, (x, y), is represented by a unit square in R2 with bottom left corner in (x, y).
A circle marks the start point and a diamond marks the end point of the figure.
Figures are considered up to translation, hence we do not mark the coordinates.

({(0, 0), (1, 0), (1, 1)}, (0, 0), (2, 1), {(0, 0) 7→ a, (1, 0) 7→ b, (1, 1) 7→ c})

aib
c�

Definition 2 (Catenation) Let x = (Dx, bx, ex, lx) and y = (Dy, by, ey, ly) be di-
rected figures. If Dx ∩ trex−by (Dy) = ∅, a catenation of x and y is defined as

x ◦ y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), l),

where

l(z) =

{
lx(z) for z ∈ Dx,
trex−by (ly)(z) for z ∈ trex−by (Dy).

If Dx ∩ trex−by (Dy) 6= ∅, catenation of x and y is not defined.
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Definition 3 (m-catenation) Let x = (Dx, bx, ex, lx) and y = (Dy, by, ey, ly) be
directed figures. An m-catenation of x and y with respect to a merging function
m : Σ× Σ→ Σ is defined as

x ◦m y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), l),

where

l(z) =

 lx(z) for z ∈ Dx \ trex−by (Dy),
trex−by (ly)(z) for z ∈ trex−by (Dy) \Dx,
m(lx(z), trex−by (ly)(z)) for z ∈ Dx ∩ trex−by (Dy).

Notice that when x ◦ y is defined, it is equal to x ◦m y, regardless of the merging
function m.

Example 2 Let π1 be the projection onto the first argument.

aib
c
� ◦π1

ai
b c�

=

aib
c
a

c�
Observe that ◦ is associative, whilst ◦m is associative if and only if m is associa-

tive. Thus for associative m, Σ�m = (Σ�, ◦m) is a monoid (which is never free).
Abusing this notation, we also write X� (resp. X�m) to denote the set of all

figures that can be composed by ◦ catenation (resp. ◦m m-catenation) from figures
in X ⊆ Σ�. When some statements are formulated for both ◦ and ◦m, we use the
symbol • and “x•y” should then be read as “x◦y (resp. x◦my)”. Similarly, “x ∈ X�•”
should be read as “x ∈ X� (resp. x ∈ X�m)”.

From now on let m be an arbitrary associative merging function.

3. Codes

In this section we define a total of eight kinds of directed figure codes, resulting from
the use of four different notions of decipherability and two types of catenation. Note
that by a code (over Σ, with no further attributes) we mean any finite non-empty
subset of Σ� \ {ε}.

Definition 4 (UD code) Let X be a code over Σ. X is a uniquely decipherable
code, if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality x1◦· · ·◦xk = y1◦· · ·◦yl implies
that (x1, . . . , xk) and (y1, . . . , yl) are equal as sequences, i.e. k = l and xi = yi for
each i ∈ {1, . . . , k}.

Definition 5 (UD m-code) Let X be a code over Σ. X is a uniquely decipherable
m-code, if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality x1 ◦m · · · ◦m xk = y1 ◦m
· · · ◦m yl implies that (x1, . . . , xk) and (y1, . . . , yl) are equal as sequences.
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In the remaining definitions, we use the obvious abbreviated notation.

Definition 6 (MSD code and m-code) Let X be a code over Σ. X is a multiset
decipherable code (resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality
x1 •· · ·•xk = y1 •· · ·•yl implies that { {x1, . . . , xk} } and { {y1, . . . , yl} } are equal
as multisets.

Definition 7 (SD code and m-code) Let X be a code over Σ. X is a set de-
cipherable code (resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality
x1 • · · · •xk = y1 • · · · •yl implies that {x1, . . . , xk} and {y1, . . . , yl} are equal as sets.

Definition 8 (ND code and m-code) Let X be a code over Σ. X is a numer-
ically decipherable code (resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X the
equality x1 • · · · • xk = y1 • · · · • yl implies k = l.

Proposition 1 If X is a UD (resp. MSD, SD, ND) m-code, then X is a UD (resp.
MSD, SD, ND) code. The converse does not hold.

Proposition 2 Every UD code is an MSD code; every MSD code is an SD code and
an ND code. Every UD m-code is an MSD m-code; every MSD m-code is an SD
m-code and an ND m-code.

The diagram illustrates inclusions between different families of codes, with all
inclusions strict. A similar diagram can be made for m-codes.

℘(Σ�)
↗ ↖

SD ND
↖ ↗

MSD
↑

UD
↑
∅

Definition 9 (Two-sided and one-sided codes) Let X = {x1, . . . , xn} be a code
over Σ. If there exist α1, . . . , αn ∈ N, not all equal to zero, such that

∑n
i=1 αitran(xi)

= (0, 0), then X is called two-sided. Otherwise it is called one-sided.

This condition can be interpreted geometrically as follows: Translation vectors
of a two-sided code do not fit in an open half-plane. For a one-sided code, there
exists a line passing through (0, 0) such that all translation vectors are on one side
of it.

Theorem 1 (cf. [21]) Let X be a code over Σ. If X is two-sided then X is not an
ND m-code (and consequently neither an MSD nor UD m-code).
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4. Summary of decidability results

In this section we summarize all non-trivial decidability results for the decipherability
verification. We also quote Theorem 4 of [21], including the proof, since we will use
the definitions of a configuration and a reduced configuration contained there.

In the following table decidable cases are marked with a +, undecidable ones
with a −. Combinations that are still open are denoted with a question mark.

UD MSD ND SD
1 One-sided codes + + + +
2 One-sided m-codes + + + +
3 Two-sided codes − − − −
4 Two-sided m-codes + + + ?
5 Two-sided codes with parallel vectors + + + +
6 Two-sided m-codes with parallel vectors + + + ?

Theorem 2 (cf. [21]) Let X be a one-sided code over Σ. It is decidable whether
X is a {UD, MSD, SD or ND} {code or m-code}.

Proof 3 Let X = {x1, . . . , xn} ⊆ Σ� and let begin(x) = (0, 0) for each x ∈ X.
Since X is one-sided, there exists a vector τ such that

∀x ∈ X : τ · tran(x) > 0.

We can assume that figures are sorted by angle in the following way:

∠(R−π2 (τ), tran(x1)) ≤ ∠(R−π2 (τ), tran(x2)) ≤ . . . ≤ ∠(R−π2 (τ), tran(xn)),

(∠ denotes an angle between two vectors, Rφ denotes a rotation by φ).
We choose constants rE , rN , rW , rS > 0 such that the vectors

τE = rEτ,

τN = rNRπ
2

(tran(xn)),

τW = −rW τ,
τS = rSR−π2 (tran(x1))

define a “bounding area” for figures in X, i.e.,

∀x ∈ X : dom(x) ∪ {end(x)} ⊆
⋂

u∈{τE ,τN ,τW τS}

{HP(u,begin(x))},

where for u, v ∈ Z2, HP(u, v) denotes a half-plane {w ∈ Z2 | u · (w − (v + u)) ≤ 0}.
For x ∈ X�• define

CE+(x) = HP(τs, end(x)) ∩HP(τn, end(x)) ∩HP(τw, end(x)),

CE−(x) = Z2 \ CE+(x),

CW+(x) =
⋃
v

{v + (CE+(x) ∩HP(τe, end(x)))},

CW−(x) = Z2 \ CW+(x),
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where the union in the definition of CW+(x) is taken over v ∈ Z2 lying within an
angle spanned by vectors −τ(x1) and −τ(xn).

Immediately from the definition we have following properties, for x, y ∈ X�• :

u ∈ CE−(x) ∩ dom(x) ⇒ label(x)(u) = label(x • y)(u),

u ∈ CE−(x) \ dom(x) ⇒ u 6∈ dom(x • y),

u ∈ CW−(x) ⇒ u 6∈ dom(x),

CE+(x • y) ⊆ CE+(x),

CW+(x) ⊆ CW+(x • y).

For x1, . . . , xk, y1, . . . , yl ∈ X�• we define a configuration as a pair of sequences
((x1, . . . , xk), (y1, . . . , yl)). A successor of such configuration is either ((x1, . . . , xk, z),
(y1, . . . , yl)) or ((x1, . . . , xk), (y1, . . . , yl, z)) for some z ∈ X. If a configuration C2

is a successor of C1, we write C1 ≺ C2. By ≺∗ we denote the transitive closure of
≺. For a configuration C = ((x1, . . . , xk), (y1, . . . , yl)) let us denote:

L(C) = {x1, . . . , xk},
L•(C) = x1 • . . . • xk,
R(C) = {y1, . . . , xl},
R•(C) = y1 • . . . • yl.

Now consider a starting configuration ((x), (y)), for x, y ∈ X, x 6= y. Assume
that there exists a configuration C such that L•(C) = R•(C) and ((x), (y)) ≺∗ C.
Now we know that X is not a UD (m-)code and we have the following conditions for
other decipherability kinds:

• if L(C) = R(C) as multisets then X is not an MSD (m-)code,

• if L(C) = R(C) as sets then X is not an SD (m-)code,

• if |L(C)| = |R(C)| then X is not an ND (m-)code.

 (1)

A configuration C ′ such that C ′ ≺∗ C and L•(C) = R•(C) for some C, is called
a proper configuration.

Our goal is either to show that there exists no proper configuration, or to find
such configuration(s). In the former case, X is a (m-)code of each kind. In the
latter case, if we find one of such configurations, X is already not a UD (m-)code.
To verify whether X is an MSD, SD or ND (m-)code, we have to check the above
conditions for all possible proper configurations.

Let
ρ = max

x∈X
min{n ∈ N | B(begin(x), n) ∩ dom(x) 6= ∅},

where for u = (ux, uy) ∈ Z2 and n ∈ N, B(u, n) denotes a ball on integer grid with
center u and radius r, i.e.,

B(u, n) = {(vx, vy) ∈ Z2 | |ux − vx|+ |uy − vy| ≤ n}.

The following properties of a proper configuration C are easily verified:

B(end(L•(C)), ρ) ∩ (CW+(R•(C)) ∪ CE+(R•(C))) 6= ∅, (2)

B(end(R•(C)), ρ) ∩ (CW+(L•(C)) ∪ CE+(L•(C))) 6= ∅, (3)
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and for the common domain D = CE−(L•(C)) ∩ CE−(R•(C)):

label(L•(C)) |D≡ label(R•(C)) |D . (4)

Notice that we do not need all of the information contained in configurations,
just those labellings that can be changed by future catenations. By (4), instead
of a configuration C we can consider a reduced configuration defined as a pair
(πRC(L•(C), R•(C)), πRC(R•(C), L•(C))) where

πRC(z, z′) = (end(z), label(z) |dom(z)\(CE−(z)∩CE−(z′))).

Obviously we need only consider configurations where the span along τe is bounded
by |τe|, i.e.,

|τe · (end(L•(C))− end(R•(C)))| ≤ |τe|2, (5)

since no single figure advances end(L•(C)) or end(R•(C)) by more than |τe|. More-
over, (2) and (3) restrict the perpendicular span (in the direction of R−π2 (τe)). Hence
the number of reduced configurations, up to translation, is finite and there is a finite
number of proper configurations to check. Consequently, we can verify whether X is
a UD, MSD, SD or ND (m-)code.

Conditions (2), (3), (4) and (5) appearing in the above proof will be called RC
criteria.

5. Domino graphs for decipherability testing

We now develop a variant of the domino graph as introduced by Head and Weber in
[2, 3]. It will allow us to decide some of the decipherability types by searching the
graph for specific paths.

Throughout this section we fix a “merging type” (i.e. either a merging func-
tion m, or no merging function) and use it for all catenations. Note that reduced
configurations, and hence the domino graph, depend on it. We also assume that
all codes are one-sided, since reduced configurations are not defined for two-sided
codes.

Let rc(C) denote the reduced configuration associated with a configuration C.
Given a figure z ∈ X we define an extension of a reduced configuration rc((x1, . . . , xk),
(y1, . . . , yl)) by (z, ε) as a new reduced configuration rc((x1, . . . , xk, z), (y1, . . . , yl)).
It is clear that the extension is well-defined, since rc((x1, . . . , xk), (y1, . . . , yl)) =
rc((x′1, . . . , x

′
k′), (y

′
1, . . . , y

′
l′)) implies rc((x1, . . . , xk, z) ,(y1, . . . , yl)) = rc((x′1, . . . , x

′
k′ ,

z), (y′1, . . . , y
′
l′)). Extension by (ε, z) is defined similarly. Note that in the non-

merging case a particular extension may be undefined.
A reduced configuration, as defined in Theorem 2, is a pair ((eL, lL), (eR, lR)) with

end points eL, eR ∈ Z2 and labellings lL, lR which are partial mappings Z2 → Σ.
Informally, the extension of ((eL, lL), (eR, lR)) by (z, ε) is the reduced configuration
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((e′L, l
′
L), (eR, lR)), where e′L = eL + tran(z) and l′L is obtained by “catenating” lL

with z and constraining the domain appropriately.
A reduced configuration is called final, if it is of the form ((e, l), (e, l)), i.e. its left

and right components are equal. Note that rc(C) is final iff L•(C) = R•(C).
Let RC(X) be the set of all reduced configurations over X which satisfy the

RC criteria, i.e. RC(X) = {rc((xi), (yj)) | (xi), (yj)}, with (xi) and (yj) ranging
over all finite, non-empty sequences of elements of X satisfying the RC criteria. By
Theorem 2, RC(X) is finite for every one-sided code X.

Definition 10 (Domino graph) Let X be a one-sided code over Σ. A domino
graph of X is the directed graph (V,E) with V = RC(X) ∪ {0} and E = E0 ∪ E1,
where

• E0 contains all edges (0, v) such that v ∈ RC(X) and v = rc((x), (y)) for some
x, y ∈ X, x 6= y,

• E1 contains all edges (v1, v2) such that v1, v2 ∈ RC(X), v1 is not final and v2
is an extension of v1 by (z, ε) or (ε, z), for some z ∈ X.

Additionally, we define a domino function d : E → ℘((X ∪ {ε}) × (X ∪ {ε})) that
associates labels to the edges:

d(0, v) = {(x, y) ∈ X ×X | v = rc((x), (y))}
d(v1, v2) = {(x, y) ∈ (X × {ε}) ∪ ({ε} ×X) | v2 is an extension of v1 by (x, y)}.

Observe that for an edge (v1, v2) with v1 6= 0, d(v1, v2) either contains pairs of
the form (z, ε), or (ε, z), but not both. Moreover, if for instance (z, ε) and (z′, ε) ∈
d(v1, v2) then tran(z) = tran(z′) 6= (0, 0), since X is one-sided and two reduced
configurations v1 and v2 determine a unique translation vector required to extend
v1 to v2. Hence, d(0, v) are the only values of d that contain pairs with both figures
non-empty.

The domino function can be extended to paths in a domino graph G: given
a path p = (e1, e2, . . . , en), where ei’s are edges in G, define

d(p) = d(e1) • d(e2) • · · · • d(en),

with • denoting the obvious extension of figure catenation to sets of figure pairs, i.e.
for A,B ⊆ X ×X

A •B = {(xA • xB , yA • yB) | (xA, yA) ∈ A, (xB , yB) ∈ B}.

Given a path p = (e1, e2, . . . , en), we also define a realization of p to be any
sequence of figure pairs ((x1, y1), (x2, y2), . . . , (xn, yn)) such that (xi, yi) ∈ d(ei).
Note that xi, yi ∈ X ∪ {ε}.

For a path p starting in the vertex 0, d(p) describes an attempt at constructing
two distinct factorizations of some figure. If p can be made to reach a final vertex,
this is indeed accomplished (p is “successful”) and we know that X is not a UD
(m-)code. To check for other decipherability kinds, all successful paths have to be
checked for specific properties, similar to conditions (1) in the proof of Theorem 2.
This is reflected in the following theorem:
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Theorem 4 Let X be a one-sided code over Σ.

1. X is not a UD (m-)code iff the domino graph of X contains a path from 0 to
a final vertex.

2. X is not an MSD (m-)code iff the domino graph of X contains a path p from 0
to a final vertex such that there exists a realization of p, ((x1, y1), . . . , (xn, yn)),
with { {x1, . . . , xn} } and { {y1, . . . , yn} } being different as multisets.

3. X is not an SD (m-)code iff the domino graph of X contains a path p from 0 to
a final vertex such that there exists a realization of p, ((x1, y1), . . . , (xn, yn)),
with {x1, . . . , xn} and {y1, . . . , yn} being different as sets.

4. X is not an ND (m-)code iff the domino graph of X contains a path p from 0 to
a final vertex such that there exists a realization of p, ((x1, y1), . . . , (xn, yn)),
with the number of non-empty xi’s different than the number of non-empty
yi’s.

Proof 5 (1) If X is not a UD (m-)code then there exist x1, . . . , xk, y1, . . . , yl ∈ X
such that x1 • · · · • xk = y1 • · · · • yl, with (x1, . . . , xk) 6= (y1, . . . , yl). In particular,
x1 6= y1 can be taken.

Now the path can be constructed by starting at 0, going to rc((x1), (y1)) and then
adjoining consecutive xi’s or yi’s so that a bounded span is maintained within the
configuration, as imposed by the RC criteria. More formally, the path is (v0, . . . ,
vk+l−1), where v0 = 0, v1 = rc((x1), (y1)) and vi+1 is an extension of vi by (xs, ε)
or (ε, yt); the extension is chosen so that the span is kept within limit; xs and yt
denote the next unused figure from the appropriate sequence. Clearly the path will
eventually arrive at vk+l−1 = rc((x1, x2, . . . , xk), (y1, y2, . . . , yl)), which is final.

Note that we cannot allow the configurations to “grow” beyond the span limit.
Hence the following construction could be invalid:

0,
rc((x1), (y1)),
rc((x1, x2), (y1)),
. . .
rc((x1, x2, . . . , xk), (y1)),
rc((x1, x2, . . . , xk), (y1, y2)),
. . .
rc((x1, x2, . . . , xk), (y1, y2, . . . , yl)).

Conversely, if the domino graph of X contains a path from 0 to a final vertex,
take any realization of p, ((x1, y1), (x2, y2), . . . , (xn, yn)), and define two sequences
of figures by taking the xi’s with empty figures omitted and yi’s with empty figures
omitted. Since the last vertex on the path is final, it follows that the two sequences
have equal (m-)catenations, hence X is not a UD (m-)code.

(2) If X is not an MSD (m-)code then there exist x1, . . . , xk, y1, . . . , yl ∈ X such
that x1 • · · · • xk = y1 • · · · • yl, with { {x1, . . . , xk} } and { {y1, . . . , yl} } being
different as multisets. It is clear that a path can now be constructed as in (1) with
a realization explicitly constructed to contain pairs of the form (xi, ε) and (ε, yi).
Hence, { {x1, . . . , xn} } 6= { {y1, . . . , yn} }, n = k + l − 1.



37

Conversely, if the domino graph of X contains a path from 0 to a final ver-
tex with a realization ((x1, y1), (x2, y2), . . . , (xn, yn)) such that { {x1, . . . , xn} } 6=
{ {y1, . . . , yn} }, two sequences of figures with equal (m-)catenations, but different
as multisets, can be constructed. Hence X is not an MSD (m-)code.

(3, 4) Analogous to (1).

The following examples show domino graphs for a UD m-code and a non-deci-
pherable code. Both examples assume alphabet Σ = {a} and a merging function
m = {(a, a) 7→ a}. Edge labels denote values of the domino function d; note that
in both examples |d(e)| = 1 for all edges. For the sake of brevity, the notation of
reduced configurations omits inner parentheses and commas.

Example 3 Consider

X = {x = ai�, y = ai� }
and take τE = (1, 1), τW = (− 1

2 ,−
1
2 ), τS = (0,− 1

2 ), τN = (− 1
2 , 0). Now RC(X)

contains just two elements, rc(x, y) and rc(y, x). Further candidates, i.e. (xx, y),
(x, yx), (xy, y), (x, yy) and their symmetrical pairs, fail the RC criteria. Thus the
domino graph of X, depicted below, contains no final vertices and X is a UD m-code.

i -(x, y)
rc(x, y)

?
(y, x)

rc(y, x)

Example 4 Consider

X = {w = aia
�

, x = aia�, y = aia�, z =
ai
a
�
}

and set τE = (1, 1), τW = (− 1
2 ,−

1
2 ), τS = (0,−1), τN = (− 1

2 , 0). In this example we
omit pairs that can be obtained from another pair by exchanging the elements; this
does not prevent us from discovering any of the properties characterized by Theo-
rem 4. Final vertices are underlined. Note that the graph contains two successful
paths, 0 → rc(w, y) → rc(wx, y) → rc(wx, yz) and 0 → rc(w, y) → rc(wz, y) →
rc(wz, yz) → rc(wzz, yz). The former disproves UD, MSD and SD decipherability
of X (but not ND); the latter disproves all four decipherability kinds.
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i -(w, x)
rc(w, x)

?
(w, y)

rc(w, y)

?
(w, ε)

?
(x, ε)

?
(z, ε)

rc(ww, y) rc(wx, y) rc(wz, y)

?
(ε, z)

?
(ε, z)

?
(ε, z)

rc(ww, yz) rc(wx, yz) rc(wz, yz)

?
(x, ε)

?
(z, ε)

rc(wzx, yz) rc(wzz, yz)

?
(ε, x)

rc(wzx, yzx)

?
(x, ε)

rc(wzxx, yzx)

-

(ε, x)

6. Final remarks

Theorem 4 allows to express some of the decipherability kinds in terms of domino
graph properties. Hence, decipherability verification can now be performed as
a graph search. Note that the graph searches are obviously polynomial in the size
of the domino graph, but the size of the graph is hard to estimate. It depends, for
instance, on the maximum angle α spanned by translation vectors of figures. When
α tends to 0, the graph becomes smaller, and when α = 0, catenations resemble
catenations of words and the vertices of the graph correspond to suffixes, giving
an obvious size bound |V | = O(‖X‖), where ‖X‖ is the total size of figures in X.
However, when α increases, the graph grows as well, and in general |V | → ∞ as
α→ π.
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