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Abstract. Support Vector Machines (SVM) with RBF kernel is one of the most
successful models in machine learning based compounds biological activity pre-
diction. Unfortunately, existing datasets are highly skewed and hard to analyze.
During our research we try to answer the question how deep is activity concept
modeled by SVM. We perform analysis using a model which embeds compounds’
representations in a low-dimensional real space using near neighbour search with
Jaccard similarity. As a result we show that concepts learned by SVM is not
much more complex than slightly richer nearest neighbours search. As an addi-
tional result, we propose a classification technique, based on Locally Sensitive
Hashing approximating the Jaccard similarity through minhashing technique,
which performs well on 80 tested datasets (consisting of 10 proteins with 8 differ-
ent representations) while in the same time allows fast classification and efficient
online training.

Keywords: Support Vector Machines, Locally Sensitive Hashing, Jaccard sim-
ilarity.

1. Introduction

One of the most popular machine larning methods in ligand-based virtual screening [1]
(process of automated selection of chemical compounds being new drug candidates)
is Vapnik’s Support Vector Machine (SVM [2]). Despite its good numerical results
relatively small amount of attention has been paid to actual activity concepts modeled
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by this method when using the RBF kernel. In this paper we try to answer the
following question:

Is Support Vector Machine with RBF kernel learning any complex data
patterns exploiting compound activity or does it degenerate to nearly near-
est neighbour search?

There are at least few reasons to raise such a question. Chemical compounds ac-
tivity datasets are gathered in a highly biased way which heavily violates the i.i.d.
assumption of machine learning models. These datasets are mostly obtained through
analysis of published results of pharmacologists who do not publish negative results
unless inactive compound is extremely similar to some known active one. Similarly,
due to the bias on the already known drugs, enormous parts of input space are com-
pletely not investigated. In order for a machine learning model to be effective in the
process of automated drug design it should be able to model the concept of activity
which can be then applied to underresearched parts of the molecules space. However,
if current models actually degenerate to the near neighbour search, then their fitness
for chemical applications is very limited.

In this paper we show that RBF based SVM, which achieves high evaluation scores
(between 80% and 100% of balanced accuracy) is actually a slightly enriched nearest
neighbour model. We do this by constructing an efficient, low dimensional embedding
of chemical datasets in real space, where linear models can only base their decision on
a very limited, local neighbourhood of each molecule. Through evaluation on many
proteins and fingerprints we show that obtained results are very similar to the ones
obtained by SVM with RBF kernel.

As an additional result our low-dimensional embedding followed by the linear
classifier appears to be a robust model for such a problem, which has much smaller
classficiation complexity than kernel SVMs and can be efficiently trained in an online
scenario due to the utilization of locality sensitive hashing and logistic regression.

2. Methods

In order to show that RBF based SVM learns very simple concepts of compounds
activity we will construct an extremely simplified model which embeds each point in
the 8-dimensional real space and build a linear model on such a representation. Our
main goal is to show that such simple classifier performs nearly identical to the state
of the art method (which supports our claim) and as a side result – we show that it
might be a very effective (in terms of classification time and future online learning)
alternative.

We start with some basic description of RBF based SVM and then introduce
Localy Sensitive Hashing, a procedure which makes our embedding computationally
feasible, finally we describe whole method and discuss its properties.
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2.1. Support vector machines

Support Vector Machines (SVM), model proposed by Vapnik et al. [2], is one of the
most successful classifiers of the last decade mostly thanks to two characteristics: first,
its well motivated regularization method in the linear case, second, its quite efficient
delinearization. Further is achieved using so called kernel trick, where we substitute
each scalar product between elements of the input space with the appropriate kernel
function which is simply a scalar product in some (potentially much richer) space. One
of the most commonly used kernels (due to its simplicity and general applicability) is
a Gaussian (RBF) kernel
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for an appropriate normalizing constant A and N (m,σ2) denoting the normal prob-
ability distribution function with mean m and variance σ2. Such an approach has
numerous theoretical advantages [3], however also has one big flaw, it increases train-
ing time up to O(N3) and classification time to O(N). It is worth noting, that kernel
trick is much deeper modification than simply transforming the input dataset X to
K(X,X) and runing a linear SVM on such N -dimensional data, reconstruction of the
underlying Reproducing Hilbert Kernel Space (RHKS, feature space) is much more
complex task [4]. In particular as one can see from Eq. 1 RHKS consists of Gaussian
mixture models leading to infinitely dimensional feature space. Such complexity be-
comes impossible to use once training set size grows over few thousands (especially
concerning that we need to fit two hyperparamters). One of the possible approaches
to reduction of training time is direct construction of the feature space projection
which does not require kernel trick to create non-linear classification in the input
space. While there are some existing methods (including so called Nystroem kernel
approximation [5]) we will show very simple approach which can achieve compara-
tive results with SVM RBF while in the same time maps input space to R8, making
training procedure extremely robust.

2.2. Low-dimensional near neighbour embedding

The core idea behind our embedding is to encode each data point based only on its
very limited neighbourhood. This way any classifier trained on such data can not
construct any global concept of compounds activity. We propose to analyze k-nearest
neighbours of a given points. We could simply concatenate the representations of these
neighbours to create a new representation of our point however this would lead to an
explosion of problem’s dimensionality (kd for data in Rd) and resulting classification
problem might be even harder than the original one. Instead, we propose to simply
take some basic similarity based statistics of this neighbourhood, namely we analyze



12

number of samples of each class and their mean, minimum and maximum similarity
under some measure. This way we get 8 dimensional representation as a result of
non-linear transformation of the input space. Let us put this in a more formal way.

Definition 1 (Local Statistics Embedding) For a given dataset and arbitrary simi-
larity measure S we define a Local Statistics Embedding (LSE) as

τk(x) = [ |N−(x)| |N+(x)| meanS(N−(x)) meanS(N+(x))
minS(N−(x)) minS(N+(x)) maxS(N−(x)) maxS(N+(x)) ]T

,

where N l(x) is a sequence of samples with label l of the k nearest neighbours of x in
terms of S.

Figure 1 shows an example embedding of a point with k = 5 and using some
similarity denoted as J , positive samples are white and negative are black.
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Figure 1. LSE embedding visualisation.

It is worth noting that training a linear model on LSE generalizes a kNN approach
in a natural way. Following observation makes it more clear.

Observation 1 Class of hypotheses representable by LSE embedding followed by a
linear model is a strict superset of the kNN hypotheses space as well as similarity
weighted kNN hypotheses space.

In general, kNN search for an arbitrary similarity measure requires O(N) oper-
ations for each query, so in particular embedding of the dataset takes O(N2) and
classification is O(N) which resembles the SVM RBF complexity of classification.
Fortunately exploiting LSH technique we can reduce this time to sublinear per query,
leading to sublinear data embedding followed by training of the linear model on low-
dimensional space which is linear itself [6]. Assuming that LSH query complexity is
O(Np) [7] (where p = log(1/p1)

log(1/p2)
and p1 is a lower bound on the probability that two

points within neighbourhood hash to the same bucket and p2 is the upper bound of
the probability that two points outside this neighbourhood hash to the same bucket)
we get a training time of O(N1+p) and classification time of O(Np).

One of the interesting properties of this classifier is the fact that we can efficiently
train this model in an online scenario. Given built LSH and trained linear model (for
example Logistic Regression) and given new point (x, y) which should be added to the
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train set we can simply update existing LSH by querying 2k nearest points and we
update only those points. Then we can train our linear classifier in an online fashion,
as the solution should not change much, this operation is also sublinear [8].

2.3. Localy Sensitive Hashing for LSE and Jaccard similarity

Localy Sensitive Hashing (LSH [7]) technique is an approximate technique for building
a data structure able to answer near-neighbourhood querying in sublinear time. Its
basic idea is to group points in buckets using hashing techniques in such a way that
they approximate known metrics. In particular one can use random hyperplanes hash
functions to build cosine similarity LSH, or other function for Euclidean metric. In
our case we use MinHash [7] functions which approximate the Jaccard similarity1 as it
is a good measure for compounds (represented with binary fingerprints) similarity [9].

In a typical application of LSH we query for points that are similar to given
x above some predefined threshold of interest. In our case we are interested in retriev-
ing a k element neighbourhood of a compound which is impossible to answer using
single basic LSH if data is non-uniformly distributed. To support such a query we
constructed multiple LSHs with sequentially adjusted thresholds and query thenm in
a descending order. In other words we query for very similar points, and if there are
less than 2k such results we broaden our query until at least 2k neighbours are found,
from which we pick k nearest neighbours.

3. Evaluation

Our problem consists of predicting compound activity so it is a binary classification
task. One of the main issues is choosing appropriate representation. We evaluated
our models on 8 popular fingerprints [10]: EstateFP, ExtFP, KlekFP, KlekFPCount,
MACCSFP, PubChemFP, SubFP, SubFPCount. Each fingerprint is used to predict
compound’s activity of 10 proteins: 5-HT7, 5-HT6, SERT, 5-HT2C , 5-HT2A, HIVi,
H1, hERG, Cathepsin, M1. Each fingerprint–protein pair is a separate experiment for
which we evaluate all of the models. This gives us significant statistical robustness of
our conclusions.

Fingerprints differ significantly in terms of sparsity, length and existence of non-
binary values. The shortest fingerprint is EstateFP (with length of 36) and the longests
are KlekFP and KlekFPCount (with length of 1452). KlekFP and KlekFPCount are
also the most sparse fingerprints.

For each LSE based model raw dataset is converted to a binary representation
(by binning values into constant length bins). Then sequential LSH is trained on the

1 For two sets A and B Jaccard similarity is defined as J(A,B) = |A∩B|
|A∪B| .
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whole dataset and LSE embedding is constructed. Figure 2 presents kernel density
estimation of LSE features distribution per class for 5-HT2C protein with MACCSFP
fingerprint.

Figure 2. Comparision of distributions of LSE parameters.

As one can see, even separation based on projections on each axis might lead
to a good discrimination, for example minimum similarity to the positive samples is
a good discriminative measure, in fact SVM bases 45% of all weights on this particular
feature when trained on this protein-fingerprint pair (and 40% on average across all
protein-fingerprint pairs).

We used seven models during this evaluation, namely: kNN (with Jaccard simi-
larity, denoted as kNN), kNN using LSH for querying for neareast points (denoted as
LSH+kNN), SVM with RBF kernel (denoted as SVM RBF), SVM with Jaccard ker-
nel (denoted as SVM Jaccard), proposed embedding followed by linear SVM (denoted
as LSE+SVM) and proposed embedding followed by Logistic Regression (denoted as
LSE+LR). All methods were implemented in Python with the use of numpy, scipy and
scikit-learn. All hyperparameters of SVM RBF (C and γ), rest of the SVMs (C and
k of LSE), LR (C) and KNN (k) were fitted using grid search technique. C was looked
in the range 10−5 . . . 106, γ was looked in the range 10−14 . . . 100 and LSE K values
15, 20 and 30 were checked. LSH used 1000 MinHash functions and sequential cascade
consisted of 10 LSH models. Each model was trained with a time-out, however for
SVM RBF we trained it also without the time-out to make sure that it can achieve
its best results.

Evaluation was performed in 10-fold stratified cross validation fashion under the
balanced accuracy (BAC) metric2 which is a popular balanced metric for binary
classification [11].

Table 1 consists of summarization of results obtained by each model. We measure
amount of experiments in which given method achieved better BAC than SVM RBF
method. We also report how big is this difference on average.

One should notice that on 5 out of 8 fingerprints SVM Jaccard is significantly
better than SVM RBF and our models based on proposed embedding are often even

2 BAC = 1
2

(
TP

TP+FN + TN
TN+FP

)
.
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stronger (even on datasets where SVM Jaccard performs well). Second, our models are
better than SVM RBF in most cases. They perform slightly worse on long fingerprints
which should be subject for further research. Finally, surprising strength of LSE based
models is supporting our claim that SVM RBF doesn’t learn any deep concepts but
rather degenerates to the nearest neighbour search. This is probably the result of
the fact that analyzed type of data violates the basic ML assumption of i.i.d. data
generation.

Table 1. Comparison of how many times given model achieved better BAC than
SVM RBF. For each model fraction of times it is better than the baseline model SVM
RBF and average BAC score loss is reported.

Fingerprint kNN (%) LSE + kNN (%) RBF Nystroem (%)

EstateFP 20 =2.5 0 =6.8 0 =3.5
ExtFP 0 =2.0 0 =2.6 0 =5.5

KlekFP 0 =2.5 0 =3.4 0 =5.6
KlekFPCount 10 =1.2 0 =2.0 0 =4.8

MACCSFP 10 =0.8 0 =1.7 0 =4.8
PubChemFP 0 =2.9 0 =3.7 0 =5.7

SubFP 50 =0.8 20 =2.4 0 =3.8
SubFPCount 0 =3.3 60 =0.6 0 =4.1

Best 0 =2.4 0 =2.9 0 =4.9

Fingerprint LSE + SVM (%) LSE + LR (%) SVM Jaccard (%)

EstateFP 100 1.7 100 1.9 90 0.7
ExtFP 40 =0.0 40 0.0 20 =0.4

KlekFP 10 =0.7 10 =0.8 40 0.0
KlekFPCount 70 0.7 80 0.9 100 1.3

MACCSFP 100 0.7 100 0.7 90 0.7
PubchemFP 0 =1.0 20 =0.8 20 =0.0

SubFP 100 2.5 90 2.5 90 1.1
SubFPCount 100 3.0 100 3.1 100 2.2

Best 40 =0.4 50 =0.3 60 0.0

Joint BAC results is reported in 3, where each row corresponds to one of the 10
evaluated proteins, and each column corresponds to one of the 8 fingerprints. The last
column represents maximum over all representations of a given compound.

It is important to note that LSE + SVM and LSE + LR are in the vast majority
of cases better than much more complex SVM RBF model (80% of experiments, with
at most 0.7% average BAC lost). This is a strong empirical argument that we can use
simple, robust LSE + LR model instead in such tasks. Second, there is no significant
difference between LSE + SVM and LSE + LR, which is interesting as Logistic
Regression is again much simpler model. It might be the result of very dense data
representation (we recall that LSE maps input data to just 8 dimensions), while SVMs
seems to work better than LR on sparse data with many redundant (highly correlated)
features. Finally, kNN is surprisingly strong model given its simplicity and seems to
be underestimated in the cheminformatics field [1].
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Testing complexities of our LSE models are drastically lower. Models only need
to remember separating hyperplane and bias. Other SVMs have memorised up to
92% of training data as support vectors (on average), which have to be used during
classification as the kernelized SVM rule for labeling given point iterates over all
support vectors.

Figure 3. Results. The last two bars represent LSE + SVM and LSE + LR models.

Obviously single fact that models using local knowledge are stronger is not defini-
tive proof of SVM RBF simplicity, or in general degenerative characteristics of data.
Here we present additional justification of our claim, which together with classifiers
accuracies comparision is in our view strong enough evidence to support our claim.
First, number of support vectors memorized by SVM RBF and SVM RBF Nystroem
is big, on average SVM RBF memorizes as support vectors 90% of training data, and
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SVM RBF Nystroem 92%. This means that SVM RBF is learning something very
heavily dependent on local neighbourhood, which explains why often kNN results are
similar. Second, on average SVM RBF evaluated on incorrectly classified compounds
by LSE + SVM achieves 34.7% BAC, which is worse than random classifier. This
indicates that SVM RBF is learning similar concepts to classifier using only local
knowledge.

Additional result of our research is coming up with a robust, order of magnitude
faster model, that additionally allows for online learning. Table 2 presents training
time of particular models and model parameters estimation as the average number of
training points being used during classification.

Training of Jaccard SVM is obviously quadratic as it requires kernel computation.
Computation of LSE is approximately O(N1+p), but for such a small dataset it is
comparable. It is also due to the fact that kernel computation is done via efficient
C++ code, and our LSH is prototypical and done largely in much slower Python.
Training Jaccard SVM took on average 5660s per experiment, whereas LSE compu-
tation took 2630s. However, on the largest protein LSE computation took 6000s and
kernel computation took 4 times longer (7 hours).

It is very interesting to note that LSE + LR has almost identical accuracy as LSE
+ SVM and also has a very low training time (which is almost equal to the time of
construction of the LSE embedding). All of the results are very promising, because
main time complexity comes from constructing embedding which can be significantly
improved.

Table 2. Model complexities as measured by the number of parameters used during
classification of the new point. d is fingerprint size and h is Nystroem feature space
size (in our experiments set to 100).

Model Model parameters Training time [h] Testing time [h]

SVM RBF ∼ 2000 · d 233.27 21.8
SVM RBF Nystroem ∼ 2000 · h 67.10 2.5
SVM Jaccard ∼ 1000 · 8 11.69 0.4
LSE + SVM ∼ 100 · 8 27.60 0.0
LSE + LR ∼ 100 · 8 16.1 0.0

4. Conclusions

The main purpose of this paper was to address the following question Is Support Vec-
tor Machine with RBF kernel learning any complex data patterns exploiting compound
activity or does it degenerate to nearly nearest neighbour search?. We constructed
method which selects models from the family of hypotheses limited to the nearest
neighbour search with Jaccard similarity and showed that even though SVM RBF
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is capable of returning models from outside of this set, for the particular problem
of drugs activity prediction with use of fingerprints representation it does not. The
most probable reason of this phenomen is a strong violation of the i.i.d. assumption
during dataset generation. In other words, samples are generated using a complex
pattern emerging from pharmacologists’ publication practices and this creates points
distribution that cannot be well modeled using classical machine learning methods.
We have shown nearly equivalent model in terms of both achieved results and repre-
sented knowledge and the answer is (assuming representativness of used proteins and
fingerprints):

Support Vector Machine with RBF kernel degenerates to nearly nearest
neighbour search when applied to compound activity prediction.

As an additional result we proposed a classifier consisting of embedding step and
linear model. Low-dimensional embedding technique maps fingerprints to 8 real di-
mensions resulting in a simple, efficient representation. A linear model (in particu-
lar Logistic Regression) using this representation behaves as well as state of the art
method, while in the same time is much simpler and conveniently allows for fast online
training.
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