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Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for
their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The
cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is
developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis.
Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a
nonlinear exponential deterministic trend, and experimental data from awind turbine drivetrain—are used to illustrate themethod
and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of
nonlinear trends form various types of data, allowing for possible condition monitoring applications.

1. Introduction

Recent forecasts show that renewable energy sources will
be generating more than 25% of world’s electricity by 2035,
with a quarter of this coming from wind [1]. The data imply
that wind energy is one of the fastest growing renewable
energy sources. The growing interest in wind energy sector
has led to the rapid expansion of onshore and offshore
wind farms.This expansion has drawn attention to operation
and maintenance of wind turbines (WTs), especially when
turbines are deployed offshore [1–3]. In addition, accurate
forecasting of long-term wind speed and annual wind power
production is greatly desired to minimize scheduling errors
and in turn increase the reliability of electric power grid and
reduce power production costs [4, 5].

It is well known that unexpected failures of turbine
components (or subsystems)—such as gearboxes, generators,
rotors, and electric systems—can lead to costly repair and
often months of machine unavailability, thereby increas-
ing operation/maintenance costs and subsequently cost of
energy. Therefore, condition monitoring (CM) and fault
diagnosis of WTs—in particular at the early stage of fault

occurrence—is an essential problem in wind turbine engi-
neering [2, 3].

Many CM techniques have been developed to detect and
diagnose abnormalities of WTs with the goal of improving
gearbox reliability and increasing turbine availability, thereby
reducing operation and maintenance costs, as reviewed in
the literature [2, 6–8]. This includes vibration analysis, oil
monitoring and analysis, acoustic emission, ultrasonic testing
techniques, strain measurement, process performance moni-
toring, radiographic inspection, and thermography. Another
solution—based on the use and analysis of Supervisory Con-
trol And Data Acquisition (SCADA) data—has been recently
employed in [3, 9–13].This technique is cost-efficient, readily
available, does not require investments related to dedicated
CM systems, and is beneficial for identifying abnormal WT
components since only key operational or process parameters
need to be tracked [3, 11, 12]. Monitoring of trends and
removal of undesired trends from these parameters is one of
the most important problems when SCADA approaches are
used. Various methods have been developed for data trend
analysis. Recent years have attracted numerous applications
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based on cointegration. The major idea used in these investi-
gations is based on the concept of stationarity. In a simplified
description, nonstationary processes are cointegrated if a
linear combination of these processes leads to a stationary
process. When cointegration is used for SHM and damage
detection, monitored variables (signals or features) are coin-
tegrated to create a stationary residual whose stationarity
represents intact (or normal) condition. Then any departure
from stationarity can indicate that monitored processes or
structures are no longer operating under normal condition.

The cointegration approach—originally developed in the
field of Econometrics in the late 1980s and early 1990s [14–
16]—has been successfully employed as a reliable tool for
dealing with the problem of operational and environmental
variability in Process Engineering [17] and Structural Health
Monitoring (SHM) [18–24]. All these applications utilized the
linear cointegration concept that is intimately connectedwith
the concept of linear error correction models. More recently,
research on linear cointegrated time series was extended
in Econometrics to two major nonlinear approaches, as
overviewed in [25]. The first approach focused on nonlinear
short-run dynamics in error correction models with the goal
being tomodel potentially nonlinear adjustmentmechanisms
to deviations from long-run equilibrium relations. The best-
known example of this approach is the concept of threshold
cointegration and its smooth versions that were intensively
studied in [26, 27]. The second approach attempted to make
the cointegrating relations themselves nonlinear. The model
used in this context is a nonlinear cointegrating regres-
sion or a nonlinear regression with integrated regressors,
as discussed in [28, 29]. The work in [30] brought the
concept of nonlinear cointegration to SHMwhere data trends
have nonlinear characteristics. This attempt has proposed
two possible approaches to nonlinear cointegration, that
is, an optimisation-based method and a variation of the
well-established Johansen’s procedure that is based on the
use of an augmented basis. Both methods were examined
using a simple theoretical example (i.e., time series with a
nonlinear quadratic deterministic trend) and experimental
vibration bridge data. Although this study demonstrates
some interesting results, two major problems were observed.
Firstly, with respect to the theoretical example, the variance
of cointegration residuals increased with time, although
cointegrated variables were mean stationary.This behavior—
known in mathematics as the heteroscedasticity—implied
that strictly stationary cointegration residuals could not be
obtained. Secondly, with respect to the bridge case study, to
avoid the problem of nonlinearity between modal frequen-
cies and temperature, the entire data set was not used in
the analysis and thus the nonlinear temperature dependent
trends were not completely removed. It is clear that reliable
trend removal and damage detection/monitoring methods—
based on nonlinear cointegration—will require homoscedas-
tic cointegration residuals—that is, residuals that are strictly
stationary—to avoid false monitoring and detection results.

The paper addresses the problem of trend removal/anal-
ysis of wind turbine operational data. A homoscedastic (or
variance stabilizing nonlinear cointegration) nonlinear coin-
tegration approach is proposed for this task. The objective

is to demonstrate a new approach that could be potentially
used for condition monitoring and fault detection of wind
turbines in the presence of nonlinearity between operational
parameters. It is important to note that—in the context
of material presented—the homoscedasticity relates to the
stable behavior of variance in cointegration residuals.

Previous approaches generally dealt with the existence
of heteroscedasticity in the primitive or original data before
performing any further analysis. However, in this paper,
we coped with the existence of heteroscedasticity in coin-
tegration residuals obtained from nonlinear cointegration
process of time series data. In more detail, we have solved the
problems of increasing (or unstable behavior) of the variance
of cointegration residuals. To the best of the authors’ knowl-
edge, the mentioned problems as well as heteroscedasticity in
nonlinear cointegration in general have not been previously
investigated in the literature.

The paper is structured as follows. Sections 2 and 3
introduce the concepts of linear and nonlinear cointegra-
tion, respectively. The latter addresses two existing prob-
lems with heteroscedasticity and nonlinear trend removal
in nonlinear cointegration method when used for trend
monitoring/analysis. Section 4 presents a new variance sta-
bilizing nonlinear cointegration method to overcome these
problems. An adapted procedure to test for the presence of
heteroscedasticity in cointegration residuals—obtained from
the nonlinear cointegration analysis—is proposed. Examples
using three different time series data sets—that is, one with
a nonlinear quadratic deterministic trend, another with a
nonlinear exponential deterministic trend, and one utilizing
experimental wind turbine data—are given in Section 5 to
illustrate the method and demonstrate possible wind turbine
condition monitoring applications. Finally, the paper is con-
cluded in Section 6.

2. Linear Cointegration

For the sake of completeness this section briefly introduces
the concept of linear cointegration. Firstly, stationarity and
nonstationarity of time series are discussed.

In mathematics the concept of stationarity can be intro-
duced using time series analysis. A given time series 𝑦

𝑡
can be

presented in the form of the first-order autoregressive AR(1)
process, which is defined as [31]

𝑦
𝑡
= 𝜙𝑦
𝑡−1

+ 𝜀
𝑡
, (1)

where 𝜀
𝑡
is an independent Gaussian white noise process with

zero mean, that is, 𝜀
𝑡
∼ IWN(0, 𝜎2). Then three different time

series can be distinguished for different values of coefficient
𝜙 [31]. These are (1) stationary time series (|𝜙| < 1); (2)
nonstationary time series (𝜙 > 1); and (3) random walk
(𝜙 = 1).

Any time series 𝑦
𝑡
that exhibits the form of random walk

without a trend is considered as an integrated series of order
1, denoted as 𝐼(1) [32]. For such a series (1) yields

Δ𝑦
𝑡
= 𝑦
𝑡
− 𝑦
𝑡−1

= 𝜀
𝑡
. (2)

Equation (2) shows that the first difference of 𝑦
𝑡
, that is,

𝑦
𝑡
− 𝑦
𝑡−1

, is just a stationary white noise process 𝜀
𝑡
. In other
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words, a nonstationary 𝐼(1) time series becomes a stationary
𝐼(0) time series after the first difference. By analogy, a
nonstationary 𝐼(2) time series would require differencing
twice to induce a stationary 𝐼(0) time series. The number of
differences required to achieve stationarity is called the order
of integration and therefore time series of order 𝑑 are denoted
as 𝐼(𝑑).

Following this short introduction, the concept of linear
cointegration can be introduced using a vector𝑌

𝑡
of 𝐼(1) time

series defined as 𝑌
𝑡
= (𝑦
1𝑡
, 𝑦
2𝑡
, . . . , 𝑦

𝑛𝑡
)
𝑇. This vector is lin-

early cointegrated if there exists a vector 𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
)
𝑇

such that

𝛽
𝑇
𝑌
𝑡
= 𝛽
1
𝑦
1𝑡
+ 𝛽
2
𝑦
2𝑡
+ ⋅ ⋅ ⋅ + 𝛽

𝑛
𝑦
𝑛𝑡

∼ 𝐼 (0) .

(3)

In otherwords, the nonstationary 𝐼(1) time series in𝑌
𝑡
are

linearly cointegrated if there exists (at least) a linear combina-
tion of them that is stationary, that is, having the 𝐼(0) status.
This linear combination, denoted as 𝛽𝑇𝑌

𝑡
, is referred to as a

cointegration residual or a long-run equilibrium relationship
between time series [32].The vector𝛽 is called a cointegrating
vector.The action of creating the cointegration residual (𝑢

𝑡
=

𝛽
𝑇
𝑌
𝑡
) is considered as the action of projecting the vector 𝑌

𝑡

on the cointegrating vector 𝛽. The cointegration relationship
given by (3) can be extended to multiple cointegration. Then
the vector 𝑌

𝑡
is cointegrated with 𝑟 (where 0 < 𝑟 < 𝑛) linearly

independent cointegrating vectors if there exists a matrix 𝐵
such that

𝐵
𝑇
𝑌
𝑡
= (

𝛽
𝑇

1
𝑌
𝑡

.

.

.

𝛽
𝑇

𝑟
𝑌
𝑡

) =(

𝑢
1𝑡

.

.

.

𝑢
𝑟𝑡

) ∼ 𝐼 (0) . (4)

The stationary linear combinations 𝑢
𝑟𝑡

= 𝐵
𝑇
𝑌
𝑡
are

referred to as the 𝑟 cointegration residuals that are formed
through projecting the vector 𝑌

𝑡
on the cointegrating matrix

𝐵.
In essence, testing for linear cointegration is testing for

the existence of long-run equilibriums (or stationary linear
combinations) among all elements of 𝑌

𝑡
. Such tests have two

important requirements [32]. Firstly, any analysed time series
must exhibit at least a common trend. Secondly, the analysed
time series must have the same degree of nonstationarity, that
is, being integrated of the same order.

In general, the linear cointegration test consists of two
steps.

(1) The first step is to determine the existence of coin-
tegration relationships and the number of linearly
independent cointegrating vectors among multivari-
ate (nonstationary) time series and to form the coin-
tegration residuals.

(2) The second step is to perform unit root tests on the
cointegration residuals found to determine if they are
stationary series (i.e., testing for stationarity).

For the first step, the Johansen cointegration method—
developed in [15]—has been widely used. It is a sequential
procedure based on maximum likelihood techniques, which
basically is a combination of cointegration and error correc-
tion models in a Vector Error Correction Model (VECM).
Two test statistics (i.e., trace and maximum eigenvalue statis-
tics) for determining the existence of cointegration and the
number of linearly independent cointegrating relationships
among the time series in 𝑌

𝑡
were developed in [15].These test

statistics are quite complex and thus are not presented in this
paper. For more detailed description of the entire procedure,
potential readers are referred to [15]. For the second step, the
augmented Dickey-Fuller (ADF) test—described in [33]—
is the most popular unit root test. The ADF test checks the
null hypothesis that a time series is nonstationary against the
alternative hypothesis that it is stationary, assuming that the
dynamics in the data have an AutoregressiveMoving Average
(ARMA) structure [32].

Linear cointegration has been successfully applied to
remove unwanted environmental and/or operational vari-
ability in various damage detection SHM applications when
data are linearly related and operational/environmental com-
mon trends are linear, as presented in [17–24].

3. Nonlinear Cointegration

It is well known that time series responses from engineering
structure often exhibit nonlinear behavior. Moreover, oper-
ational and/or environmental common trends are typically
believed to be nonlinearly related to response data used
for damage detection. If this is the case, then the linear
cointegration theory—described in Section 2—is in practice
no longer suitable for condition monitoring and structural
damage detection and therefore a nonlinear approach to
cointegration is needed. This section provides a brief intro-
duction to nonlinear cointegration and recalls one previously
investigated example from the literature. The latter is shown
to demonstrate the major difficulty associated with nonlinear
cointegration.

In the last twenty years, nonlinear cointegration has been
studied in many different contexts, as discussed in [25–30,
34–36]. Previous research work—summarized in [34, 35]—
has demonstrated that nonstationarities and nonlinearities
should be analysed simultaneously because in time series
analysis nonlinearities often exist in a nonstationary context.
However, it is not easy to reach this goal because the inherent
difficulties in analysing nonlinear time series models within
a stationary and ergodic framework are enhanced in non-
stationary contexts. This issue is also true for cointegration
analysis when it is used for nonlinear and nonstationary
processes. Hence, as discussed in [34, 35], other definitions
of stationarity and nonstationarity are needed in order to
characterise better the usual notion of stationary 𝐼(0) and
nonstationary 𝐼(1) time series and cointegration in nonlinear
contexts.The concepts of shortmemory and extendedmemory
variables are commonly used to ease this task.

A time series is said to be short memory if its information
decays through time. In particular, a variable is shortmemory
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in mean (or in distribution) if the conditional mean (or
conditional distribution) of the variable at time 𝑡 given the
information at time 𝑡 − ℎ converges to a constant as ℎ
diverges to infinity. Shocks in short memory time series
have transitory effects. In contrast, a time series is said to
be extended memory in mean (or in distribution) if it is
not short memory in mean (or in distribution). Shocks in
extended memory time series have permanent effects. This
means that the concept of short memory in this context
can be considered as a somewhat stronger condition than
stationarity; and the concept of extended memory can be
thought of as a fairly weaker condition than nonstationarity.

Following this introduction, a general definition of non-
linear cointegration has been proposed in [35]: “If two
or more series are of extended memory, but a nonlinear
transformation of them is short memory, then the series
are said to be nonlinearly cointegrated.” However, a simpler
and more common definition of nonlinear cointegration is
used in the current investigations. Two nonstationary time
series 𝑥

𝑡
and 𝑦

𝑡
are nonlinearly cointegrated if there exists a

nonlinear function 𝑓 such that 𝑧
𝑡
= 𝑓(𝑥

𝑡
, 𝑦
𝑡
) is stationary.

This simplified definition is still quite general to be fully
operative, and, moreover, identification problemsmight arise
in this general context [35]. Hence, in practice some classes
of function 𝑓 are often used to avoid such identification
problems. For example, one can consider a function of the
form 𝑧

𝑡
= 𝑔(𝑥

𝑡
) − ℎ(𝑦

𝑡
) and estimate 𝑔 and ℎ by using non-

parametric estimation procedures, as performed in [36].
Another approach is to consider transformations of the form
𝑧
𝑡
= 𝑓(𝑥

𝑡
) + 𝑦
𝑡
, 𝑧
𝑡
= 𝑓(𝑥

𝑡
) − 𝑦
𝑡
, or 𝑧

𝑡
= 𝑦
𝑡
− 𝑓(𝑥

𝑡
), as

discussed in [25, 35]. The second approach is believed to be
convenient for exploring nonlinear cointegration; therefore
it has been used in the current paper. However, the question
how to construct a nonlinear function 𝑓still remains. This
problem is further discussed in the following sections.

Nonlinear cointegration has been recently proposed for
SHM applications in [30]. The results showed that nonlinear
cointegrating vectors were created, the nonlinear trend was
successfully removed, and stationary residuals were found
for the analysed time series. However, the variance of
cointegration residuals was increasing with time, although
cointegrated variables were mean stationary. The analysed
cointegration residuals were not strictly stationary. It is
important to note that, regardless of the nature of the
driving trend, the approach used in [30] will always result in
cointegration residuals that lead to variances dependent on
that trend, as concluded in [30]. As a result, heteroscedasticity
will be always present in cointegration residuals obtained
from the proposed approach. When the method is used for
condition monitoring and damage detection, this can lead to
serious consequences.

It is well known that the variance—or volatility that is
the square root of variance—of time series often changes
over time [31, 32]. This characteristic—referred to as heter-
oscedasticity—was firstly recognized in the early 1960s [37].
The complementary notion of heteroscedasticity is called
homoscedasticity. In regression analysis, homoscedasticity
means a situation in which the variance of the depen-
dent variables is the same for all analysed data, whereas

heteroscedasticity means a situation in which the variance of
the dependent variables varies across the analysed data. Con-
sequently, homoscedasticity facilitates analysis because most
methods in regression analysis are based on an assumption
of equal variance, whereas heteroscedasticity complicates
analysis [38–40]. It is well known that serious violations
in heteroscedasticity, that is, the assumption that a given
distribution of data is homoscedastic when actually it is
heteroscedastic, can lead to invalid, imprecise, and ineffec-
tive analyses of heteroscedastic time series, as explained in
[32, 38–40]. For example, when statistical uncertainty or
probability of damage detection was analysed in SHM under
the assumption of homoscedasticity while the time series
data were actually heteroscedastic, the resulting confidence
intervals could be erroneous. It is also well known in
regression analysis that in the presence of heteroscedastic
disturbances the loss of efficiency in using ordinary least
squares could be substantial and,more importantly, the biases
in estimated standard errors could lead to invalid inferences
[32, 39]. In addition, the presence of heteroscedasticity may
signal inadequacy of the estimated model [32]. Hence, it is
important to test for the presence of heteroscedasticity in time
series before any analysis.

4. Homoscedastic Nonlinear Cointegration

4.1. Theoretical Background. A homoscedastic nonlinear
cointegrationmethod is proposed in this section.Themethod
overcomes the heteroscedastic problem related to cointegra-
tion residuals by offering a variance stabilizing nonlinear
cointegration.

Following the work presented in [30] two time series can
be defined as

𝑥
𝑡
= 𝑇
𝑡
+ 𝜀
1,𝑡
, (5)

𝑦
𝑡
= 𝐹 (𝑇

𝑡
) + 𝜀
2,𝑡
, (6)

where 𝑇
𝑡
is some deterministic trend caused by the external

disturbance; 𝜀
1,𝑡

and 𝜀
2,𝑡

are independent and identically
distributed random processes; and function 𝐹(𝑇

𝑡
) has a

continuous and differentiable first derivative. It is assumed
that 𝜀
1,𝑡

and 𝜀
2,𝑡

have zero mean and they are relatively small
to 𝑇
𝑡
. Then nonlinear cointegration can take the form

𝑧
𝑡
= 𝑓 (𝑥

𝑡
) − 𝑦
𝑡
. (7)

Substituting (5) and (6) to (7) yields the cointegration
residual as

𝑧
𝑡
= 𝑓 (𝑥

𝑡
) − 𝑦
𝑡

= 𝑓 (𝑇
𝑡
+ 𝜀
1,𝑡
) − 𝐹 (𝑇

𝑡
) − 𝜀
2,𝑡
.

(8)

It is clear that for 𝑧
𝑡
to become a zero mean series the

cointegrating function 𝑓 = 𝐹 can be used to obtain

𝑧
𝑡
= 𝐹 (𝑇

𝑡
+ 𝜀
1,𝑡
) − 𝐹 (𝑇

𝑡
) − 𝜀
2,𝑡
. (9)

The application of the first-degree Taylor approximation
formula—defined as

𝐹 (𝑥 + 𝑎) ≈ 𝐹 (𝑥) + 𝐹
󸀠
(𝑥) 𝑎 + 𝑂(|𝑎|

2
) (10)
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for 𝐹(𝑇
𝑡
+ 𝜀
1,𝑡
)—results in

𝐹 (𝑇
𝑡
+ 𝜀
1,𝑡
) ≈ 𝐹 (𝑇

𝑡
) + 𝐹
󸀠
(𝑇
𝑡
) 𝜀
1,𝑡

+ 𝑂(
󵄨󵄨󵄨󵄨󵄨
𝜀
1,𝑡

󵄨󵄨󵄨󵄨󵄨

2

) .

(11)

Then, substituting (11) into (9) yields

𝑧
𝑡
= 𝐹 (𝑇

𝑡
) + 𝐹
󸀠
(𝑇
𝑡
) 𝜀
1,𝑡
+ 𝑂(

󵄨󵄨󵄨󵄨󵄨
𝜀
1,𝑡

󵄨󵄨󵄨󵄨󵄨

2

)

− 𝐹 (𝑇
𝑡
) − 𝜀
2,𝑡
.

(12)

The above equation can be approximated as

𝑧
𝑡
≈ 𝐹
󸀠
(𝑇
𝑡
) 𝜀
1,𝑡
− 𝜀
2,𝑡
. (13)

Equation (13) shows that the cointegration residual 𝑧
𝑡

is zero mean, but its variance is not constant and strongly
depends on the deterministic trend 𝑇

𝑡
. Since 𝜀

2,𝑡
is indepen-

dent of 𝜀
1,𝑡

and 𝑇
𝑡
, the variance of 𝑧

𝑡
can be estimated as

Var (𝑧
𝑡
) ≈ Var(𝐹󸀠 (𝑇

𝑡
) 𝜀
1,𝑡
− 𝜀
2,𝑡
)

= Var(𝐹󸀠 (𝑇
𝑡
) 𝜀
1,𝑡
)

+ Var (−𝜀
2,𝑡
) 󳨐⇒

(14)

Var (𝑧
𝑡
) ≈ [𝐹

󸀠
(𝑇
𝑡
)]

2

Var (𝜀
1,𝑡
)

+ Var (𝜀
1,𝑡
)

= (1 + [𝐹
󸀠
(𝑇
𝑡
)]

2

)Var (𝜀
1,𝑡
)

= Var(𝜀
1,𝑡
√1 + [𝐹󸀠 (𝑇

𝑡
)]
2

) .

(15)

It should be noted that the term Var(−𝜀
2,𝑡
) in (14) was

replaced by the term Var(𝜀
1,𝑡
) in (15). This can be done

properly because of the fact that 𝜀
1,𝑡

and 𝜀
2,𝑡

are indepen-
dent and identically distributed random variables and as
mentioned above that 𝜀

2,𝑡
is independent of 𝜀

1,𝑡
and 𝑇

𝑡
.

Therefore without loss of generality one can make Var(𝜀
1,𝑡
) ≈

Var(−𝜀
2,𝑡
). Furthermore, substitutions in (15) were properly

made because 𝑇
𝑡
is deterministic and by using the formula

Var(𝐴 ∗ 𝑋) = 𝐴
2Var(𝑋) for a constant 𝐴.

From (5) one can take that 𝑥
𝑡
≈ 𝑇
𝑡
and then (15) becomes

Var (𝑧
𝑡
) ≈ Var(𝜀

1,𝑡
√1 + [𝐹󸀠 (𝑥

𝑡
)]
2

) . (16)

Equation (16) shows that variance Var(𝑧
𝑡
) is not constant

because it depends on √1 + [𝐹󸀠(𝑥
𝑡
)]2. This is where the

problem of heteroscedasticity appears. In order to solve this

problem, the transformation 𝑅 for the cointegration residual
𝑧
𝑡
can be proposed as

𝑅 =
1

√1 + [𝐹󸀠 (𝑥
𝑡
)]
2

. (17)

Finally, one obtains the transformed cointegration resid-
ual 𝑧𝑅
𝑡
that has the form

𝑧
𝑅

𝑡
=

𝑧
𝑡

√1 + [𝐹󸀠 (𝑥
𝑡
)]
2

. (18)

Equation (18) shows that √1 + [𝐹󸀠(𝑥
𝑡
)]2 is constant if

and only if 𝐹󸀠(𝑥
𝑡
) is constant. Moreover, when 𝐹

󸀠
(𝑥
𝑡
) is

constant then 𝐹(𝑥
𝑡
) is linear, which thus implies that 𝑥

𝑡

and 𝑦
𝑡
are linearly related. This explains why cointegration

residuals—created in the context of linear cointegration—are
homoscedastic without any modification.

When (7) is met together with the condition for 𝑧
𝑡
to

become a zero mean series (i.e., when 𝑓 = 𝐹) then (18)
becomes

𝑧
∗

𝑡
=

𝑓 (𝑥
𝑡
) − 𝑦
𝑡

√1 + [𝑓󸀠 (𝑥
𝑡
)]
2

. (19)

This equation presents themodified cointegration residual
𝑧
∗

𝑡
that is approximately zero mean and homoscedastic. The

proposed method is general and therefore can apply to any
heteroscedastic time series data.

4.2. Adapted Breusch-Pagan Test Procedure for Heteroscedas-
ticity in Cointegration Residuals. Various tests for het-
eroscedasticity can be used in practice [38–40].The Breusch-
Pagan test [39] is one of the most widely used procedures
in practice. In principle, the Breusch-Pagan test checks for
conditional heteroscedasticity; that is, it checks whether the
estimated variance of the residuals from a regression is
dependent on the values of the independent variables. The
procedure is based on the Lagrange Multiplier (LM) test
statistic with an assumption that the error terms are normally
distributed [32].

The linear time series regression model for one indepen-
dent variable 𝑥

1𝑡
can be written as

𝑦
𝑡
= 𝛼
0
+ 𝛼
1
𝑥
1𝑡
+ 𝜀
𝑡
, (20)

where𝑦
𝑡
is a dependent variable, 𝜀

𝑡
is a random error term (or

a residual), and (𝛼
0
, 𝛼
1
) are coefficients. In order to test for the

presence of heteroscedasticity in the residual 𝜀
𝑡
the auxiliary

regression model is formed as

𝜀
2

𝑡
= 𝛽
0
+ 𝛽
1
𝑥
1𝑡
+ error, (21)

where (𝛽
0
, 𝛽
1
) are coefficients.

The Breusch-Pagan heteroscedasticity test is performed
by regressing the squared residuals directly on the indepen-
dent variables. In the linear time series regression model, one
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can assume that themean of the residual 𝜀
𝑡
is zero. Hence, the

estimated variance of the residual (i.e., 𝜀2
𝑡
) in (21) is constant if

and only if it is independent of the independent variable 𝑥
1𝑡
.

If this is the case, then 𝛽
1
should be close/equal to zero. The

LM test statistic is used to evaluate the significance of 𝛽
1
.

It should be noted that only one independent variable
has been used in the current investigations. In general case—
when more than one independent variable is employed—the
test statistic equals 𝑁𝑅2, where 𝑁 is the sample size and 𝑅2
is the coefficient of determination in the auxiliary regression.
For more detailed description of the original Breusch-Pagan
test procedure in general case, potential readers are referred
to [39].

Because the original Breusch-Pagan test can only be used
to test for heteroscedasticity in a linear regression model,
hence the test has been adapted to be suitable for the work
presented in this paper, that is, to test for the presence
of heteroscedasticity in the cointegration residuals obtained
from nonlinear cointegration analysis. In order to achieve
this, the linear regression model in (20) is rewritten to the
form𝑦

𝑡
−𝑓(𝑥
𝑡
) = 𝜀
𝑡
, where𝑓(𝑥

𝑡
) = 𝛼
0
+𝛼
1
𝑥
1𝑡
. Next, in general

case, themean of 𝜀
𝑡
should not be assumed to be equal to zero

so that the estimated variance of the residual 𝜀
𝑡
can take the

form [𝜀
𝑡
− 𝐸(𝜀
𝑡
)]
2, where 𝐸(𝜀

𝑡
) is the mean of 𝜀

𝑡
, which can

be estimated by taking the average value of all residuals.Then
the auxiliary regression model can be formed as

[𝜀
𝑡
− 𝐸 (𝜀

𝑡
)]
2

= 𝛽
0
+ 𝛽
1
𝑦
𝑡
+ error. (22)

Following the same discussion as above, (22) shows that
the residual 𝜀

𝑡
is homoscedastic if the term on the left, that

is, [𝜀
𝑡
− 𝐸(𝜀

𝑡
)]
2, is independent of 𝑦

𝑡
. This implies that the

coefficient 𝛽
1
should be equal to zero. In this current work,

the significance of 𝛽
1
is assessed by using the Student 𝑡-test

statistic (instead of the LM test statistic) since it is more
common. The 𝑡-test statistic used for the adapted Breusch-
Pagan test procedure can be described as follows.

The hypotheses to be tested are the following.

(i) Null Hypothesis.The variances of cointegration residuals of
the auxiliary regression model are constant⇒Heteroscedas-
ticity is not present in the cointegration residual.

(ii) Alternative Hypothesis. The variances of cointegration
residuals of the auxiliary regression model are unequal ⇒
Heteroscedasticity is present in the cointegration residual.

More specifically, the null hypothesis is true (the coin-
tegration residual 𝜀

𝑡
is homoscedastic) if the coefficient 𝛽

1

is insignificant (𝑝 value > 0.05). Conversely, the alterna-
tive hypothesis is true (the cointegration residual 𝜀

𝑡
is het-

eroscedastic) if the coefficient 𝛽
1
is significant (𝑝 value ≤

0.05).
It should be noted that 𝑥

1𝑡
can be considered in the

auxiliary regression model in (22), instead of 𝑦
𝑡
. Since 𝑦

𝑡

has been considered in the auxiliary regression model, the
correlation between the absolute values of 𝜀

𝑡
and 𝑥

1𝑡
can be

checked to determine how the values of 𝑥
1𝑡
deviate from 𝜀

𝑡
.

5. Application Examples

Three examples that explain the homoscedastic nonlinear
cointegration method and illustrate its application to non-
linear trend removal and a possible condition monitoring
solution for wind turbines are presented in this section.These
examples use three different time series data sets, that is, one
piece of data with a nonlinear quadratic deterministic trend,
another with a nonlinear exponential deterministic trend,
and onemore piece of experimental data from awind turbine.

5.1. Quadratic Cointegrating Function. This section recalls
the nonlinear cointegrating function 𝑓(𝑥

𝑡
) = 𝑥

2

𝑡
that has

been used in [30]. The objective is to demonstrate that the
homoscedastic nonlinear cointegration method—presented
in Section 4.1—can remove the heteroscedasticity from coin-
tegration residuals.

When the nonlinear cointegration form given by (7) is
used the original cointegration residual can be calculated as

𝑧
𝑡
= 𝑓 (𝑥

𝑡
) − 𝑦
𝑡
= 𝑥
2

𝑡
− 𝑦
𝑡
. (23)

Similarly, the homoscedastic nonlinear cointegration—
given by (19)—can be also used to obtain the modified
cointegration residual:

𝑧
∗

𝑡
=

𝑓 (𝑥
𝑡
) − 𝑦
𝑡

√1 + [𝑓󸀠 (𝑥
𝑡
)]
2

=
𝑥
2

𝑡
− 𝑦
𝑡

√1 + [2𝑥
𝑡
]
2

. (24)

Figures 1(a) and 1(b) present the original cointegration
residual 𝑧

𝑡
and the modified cointegration residual 𝑧∗

𝑡
,

respectively. The results show that the nonlinear quadratic
deterministic trend was successfully removed in both cases.
However, the variance of 𝑧

𝑡
increases with time (i.e., 𝑧

𝑡

is heteroscedastic), whereas the variance of 𝑧∗
𝑡
is relatively

stable (i.e., 𝑧∗
𝑡

is homoscedastic). The adapted Breusch-
Pagan test procedure—described in Section 4.2—was used to
confirm these results. Consequently, the test statistic for 𝑧

𝑡
is

significant because 𝑝 value < 0.0001 < 0.05; therefore 𝑧
𝑡

is heteroscedastic. In contrast, the relevant test statistic for
𝑧
∗

𝑡
is insignificant because 𝑝 value = 0.579 > 0.05, so that

𝑧
∗

𝑡
is homoscedastic. In addition, the correlations between 𝑥

𝑡

and the absolute values of 𝑧
𝑡
and 𝑧∗
𝑡
were calculated as 0.567

and −0.006, respectively. This means that 𝑥
𝑡
contains less

information about deviation of 𝑧∗
𝑡
in comparisonwith 𝑧

𝑡
.This

simple example demonstrates that the proposed homoscedas-
tic nonlinear cointegration method can successfully remove
heteroscedasticity from cointegration residuals.

5.2. Exponential Cointegrating Function. Thedata used in this
example consist of two different time series variables 𝑥

𝑡
and

𝑦
𝑡
. The first variable 𝑥

𝑡
reacts linearly with respect to time

𝑡, whereas the second variable 𝑦
𝑡
reacts nonlinearly—in an

exponential way—with time 𝑡. The given variables take the
form

𝑥
𝑡
= 𝑡 + 𝜀

1,𝑡
,

𝑦
𝑡
= 𝑒
𝑡/50

+ 𝜀
2,𝑡
,

(25)
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Figure 1: Nonlinear cointegration results obtained for the time
series with a nonlinear quadratic deterministic trend 𝑓(𝑥

𝑡
) = 𝑥

2

𝑡
:

(a) original cointegration residual 𝑧
𝑡
; (b) modified cointegration

residual 𝑧∗
𝑡
.

where 𝜀
1,𝑡
and 𝜀
2,𝑡
are independent and identically distributed

random processes.
Following the homoscedastic nonlinear cointegration

method—presented in Section 4.1—the nonlinear cointegrat-
ing function 𝑓(𝑥

𝑡
) = 𝑒

𝑥
𝑡
/50 has been selected for this case.

The original cointegration residual—calculated by using the
nonlinear cointegration form given by (7)—has the form

𝑧
𝑡
= 𝑓 (𝑥

𝑡
) − 𝑦
𝑡
= 𝑒
𝑥
𝑡
/50

− 𝑦
𝑡
. (26)

In the same way, when the homoscedastic nonlinear
cointegration form—given by (19)—is used, the modified
cointegration residual takes the form

𝑧
∗

𝑡
=

𝑓 (𝑥
𝑡
) − 𝑦
𝑡

√1 + [𝑓󸀠 (𝑥
𝑡
)]
2

=
𝑒
𝑥
𝑡
/50

− 𝑦
𝑡

√1 + [𝑒𝑥𝑡/50/50]
2

.

(27)

Figures 2(a) and 2(b) present the original cointegration
residual 𝑧

𝑡
and the modified cointegration residual 𝑧∗

𝑡
,

respectively. The results show that the nonlinear exponential
deterministic trend was successfully removed in both cases.
However, the variance of 𝑧

𝑡
increases with time (i.e., 𝑧

𝑡

is heteroscedastic), but the variance of 𝑧∗
𝑡
is fairly stable

(i.e., 𝑧∗
𝑡
is homoscedastic). The adapted Breusch-Pagan test

procedure—described in Section 4.2—was used to confirm
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Figure 2: Nonlinear cointegration results obtained for the time
series with a nonlinear exponential deterministic trend 𝑓(𝑥

𝑡
) =

𝑒
𝑥𝑡/50: (a) original cointegration residual 𝑧

𝑡
; (b) modified cointegra-

tion residual 𝑧∗
𝑡
.

these results. As a result, the test statistic for 𝑧
𝑡
is signif-

icant because 𝑝 value < 0.0001 < 0.05; therefore 𝑧
𝑡
is

heteroscedastic. In contrast, the relevant test statistic for 𝑧∗
𝑡

is insignificant because 𝑝 value = 0.977 > 0.05, so that 𝑧∗
𝑡

is homoscedastic. Moreover, the correlations between 𝑥
𝑡
and

the absolute values of 𝑧
𝑡
and 𝑧∗
𝑡
were calculated as 0.384 and

0.0002, respectively. This implies that 𝑥
𝑡
contains less infor-

mation about deviation of 𝑧∗
𝑡
in comparison with 𝑧

𝑡
.Thus the

second example also demonstrates that the homoscedastic
nonlinear cointegration method has effectively removed the
heteroscedasticity from the cointegration residuals.

5.3. Experimental Wind Turbine Data from a Drivetrain.
Wind turbines are designed to operate in remote onshore
and/or offshore areas, where strong winds are available.
The WT converts wind kinetic energy into useful electrical
energy. The main components of a typical utility-scale WT
drivetrain consist of the gearbox, main shaft, main bearing,
brake, generator shaft, and generator. The gearbox is placed
between the hub and the generator and used to convert the
low-speed high-torque power from the WT rotor to high-
speed low-torque power used by the generator [2]. The wind
turbine data used in this paper originate from a series of
experimental measurements for a WT drivetrain—shown in
Figure 3—with a nominal power of 2MW.

Condition monitoring for the WT was continuously per-
formedduring thirty days inNovember 2012. Twelve different
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(a) (b)

Figure 3: Wind turbine drivetrain used in the current study: (a) generator and phase marker; (b) gearbox and transmission systems.

operational parameters were monitored. These parameters
can be grouped into three categories as follows.

(i) Speed Parameters. This category consists of three speed
parameters related to the wind speed (in mps, i.e., meters per
second), the rotor speed (in rpm, i.e., revolutions perminute),
and the generator speed (i.e., the generator shaft rotational
speed in rpm).

(ii) Energy Conversion Parameters. This category includes six
parameters related to the energy conversion process, that is,
the active power (in kW), the active power delivered (i.e.,
the generated power in kW), the reactive power (in kW), the
reactive power delivered (in kW), the generator voltage (in
V), and the generator current (in A).

(iii) Temperature Parameters. This category consists of three
temperature parameters (in ∘C) measured at turbine compo-
nents, that is, one in the gearbox and two at the generator (one
in the front and another in the back of the generator).

The SCADA data for the WT were collected at 10-minute
intervals in a period of thirty days. As a result, 4320 data
samples (or records) were acquired for each parameter for
a variety of different operating conditions. The wind speed
is a key operational parameter in wind energy systems [3–
5, 11]. Therefore the relations between this parameter and
the other parameters should be identified. Figures 4(a)–4(d)
display examples of four nonlinear relations between the
wind speed and the generator speed, the generated power, the
front generator temperature, and the gearbox temperature,
respectively. Since the relation between the generated power
(i.e., the power output) and the wind speed—referred to as
the power-wind speed curve [3, 11]—is generally used to
evaluate the health of WTs [3], this feature has been selected
for the analysis in this study. This nonlinear relation—shown
in Figure 5—has a shape of the sigmoid function representing
the relationship between the power produced by the WT (in
kW) under normal operating conditions for the wind speed
in the range between the starting speed (about 3.5mps) and
the rated speed (about 13.5mps). This characteristic—for the
positive generated power—was used for the nonlinear coin-
tegration analysis in the presented example. It is important

to note that only the experimental data from an intact wind
turbine was available and used in these investigations. The
objective was to demonstrate that the proposedmethod leads
to the homoscedastic cointegration residuals for an unfaulty
wind turbine drive, regardless of changes in the nonlinear
relation between the wind speed and the generated power.

The homoscedastic nonlinear cointegration method—
presented in Section 4.1—was applied to the selected exper-
imental data. The original cointegration residual 𝑧

𝑡
was

computed using (7), whereas the modified cointegration
residual 𝑧∗

𝑡
was calculated using (19). In this example, wind

speed is the variable𝑥
𝑡
, generated power is the variable𝑦

𝑡
, and

function 𝑓(𝑥
𝑡
) describes the relation between the generated

power and the wind speed. Since 𝑓(𝑥
𝑡
) is unknown, a local

regression algorithm was used to estimate this function.
An estimate of the function 𝑓 at 𝑥

0
—that is, 𝑓(𝑥

0
)—

was calculated using the nearest twelve values of 𝑥
0
from

the training data. Then, the least squares regression was
employed for this subset of values to estimate or predict
the value of 𝑓(𝑥

0
). The gradient (or slope) of the calculated

regression was considered as the first derivative of the
function 𝑓 at 𝑥

0
, that is, 𝑓󸀠(𝑥

0
). The entire procedure was

repeated for all remaining values, that is, 𝑥
1
, 𝑥
2
, . . ., which

resulted in the estimate of the function 𝑓. Only 40% of the
experimental data—corresponding to the first twelve days of
the condition monitoring process—were used for training to
avoid overfitting. Another important reason is to validate the
estimated function 𝑓(𝑥

𝑡
) when the entire data were used to

create cointegration residuals.
Figures 6(a) and 6(b) give the original 𝑧

𝑡
and modified

𝑧
∗

𝑡
cointegration residuals, respectively. The vertical dashed

lines in the figure show the bound of the training set used.The
results show that the amplitude of the original cointegration
residuals 𝑧

𝑡
in Figure 6(a) decreases a bit after crossing

the bound, whereas the amplitude of 𝑧∗
𝑡
in Figure 6(b) is

fairly stable. Another interesting observation of the results
indicatesmuch larger amplitude variability (amplitude ranges
from −20 to 20) for 𝑧

𝑡
if compared with 𝑧

∗

𝑡
(amplitude

variability ranges from −2 to 2). The adapted Breusch-Pagan
test procedure—described in Section 4.2—was used to test
for the presence of heteroscedasticity in both cointegration
residuals. As a result, the test statistic for 𝑧

𝑡
was significant
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Figure 4: Experimental wind turbine data showing the nonlinear relations between wind speed and other operational parameters: (a)
generator speed versus wind speed; (b) generated power versus wind speed; (c) generator temperature (front part) versus wind speed; (d)
gearbox temperature versus wind speed.

because 𝑝 value < 0.0001 < 0.05, indicating that 𝑧
𝑡
is het-

eroscedastic. In contrast, the test statistic for 𝑧∗
𝑡
was insignif-

icant because 𝑝 value = 0.425 > 0.05, indicating that 𝑧∗
𝑡

is homoscedastic. Moreover, the correlations between the
wind speed (𝑥

𝑡
) and the absolute values of 𝑧

𝑡
and 𝑧

∗

𝑡
were

calculated as 0.36 and 0.07, respectively. This means that the
wind speed 𝑥

𝑡
contains less information about deviation of 𝑧∗

𝑡

in comparison with 𝑧
𝑡
.

In summary, when the data from an intact wind turbine
were analysed, the modified cointegration residual 𝑧∗

𝑡
was

homoscedastic for the whole data set investigated, regardless
of changes in the relation between the wind speed and the
generated power. Clearly, the homoscedasticity is a sign of
undamaged condition. It is anticipated that the homoscedas-
tic characteristics would be broken if the data for faulty wind
turbine drives were available and analysed, as explained in
[18–24].

6. Conclusions

Monitoring of trends and removal of undesired trends
from operational/process parametric data in wind turbines
has been addressed in this paper. The recently proposed
homoscedastic nonlinear cointegration has been applied.The
method has been illustrated using three different time series
data sets, that is, one with a nonlinear quadratic deterministic
trend, another with a nonlinear exponential deterministic
trend, and one experimental data set from a wind turbine
drivetrain.

The results show that the proposedmethod can effectively
remove nonlinear trends from the analysed data and also
remove heteroscedasticity from cointegration residuals. For
the case study using experimental wind turbine data, the
modified cointegration residuals have been shown to be
homoscedastic for the data representing undamaged condi-
tion. It is expected that thesemodified cointegration residuals
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Figure 6: Nonlinear cointegration results obtained for the experi-
mental wind turbine data: (a) original cointegration residual 𝑧

𝑡
; (b)

modified cointegration residual 𝑧∗
𝑡
.

would instantly become heteroscedastic for the data from
damaged wind turbines, thereby providing an effective con-
dition monitoring and fault detection tool for wind turbines.

It is clear that further research work is required to test the
method for different types of wind turbine data and trends. In
particular, the proposed methodology should be investigated

for operational data representing various types of faults in
wind turbine drivetrains.

In this paper, the homoscedastic nonlinear cointegration
method was effectively used for condition monitoring of
wind turbines. However, because the proposed method is a
general approach—which is simply based on the analysis of
measurement data in terms of time series responses acquired
from investigated processes or structures by sensors—the
authors believe that this method can be properly applied
to other engineering applications. It is also possible that
researchers and practitioners from the field of Econometrics
might benefit from employing our proposed method when
they have problemswith the existence of heteroscedasticity in
economic and financial time series in general and particularly
in residuals obtained from linear or nonlinear cointegration
process.
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