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Abstract
1-Methylnicotinamide (MNA), which was initially considered to be a biologically inactive

endogenous metabolite of nicotinamide, has emerged as an anti-thrombotic and anti-inflam-

matory agent with the capacity to release prostacyclin (PGI2). In the present study, we char-

acterized the effects of MNA on exercise capacity and the endothelial response to exercise

in diabetic mice. Eight-week-old db/db mice were untreated or treated with MNA for 4 weeks

(100 mg·kg-1), and their exercise capacity as well as NO- and PGI2-dependent response to

endurance running were subsequently assessed. MNA treatment of db/db mice resulted in

four-fold and three-fold elevation of urine concentrations of MNA and its metabolites (Met-

2PY + Met-4PY), respectively (P<0.01), but did not affect HbA1c concentration, fasting glu-

cose concentration or lipid profile. However, insulin sensitivity was improved (P<0.01). In

MNA-treated db/db mice, the time to fatigue for endurance exercise was significantly pro-

longed (P<0.05). Post-exercise Δ6-keto-PGF1α (difference between mean concentration in

the sedentary and exercised groups) tended to increase, and post-exercise leukocytosis

was substantially reduced in MNA-treated animals. In turn, the post-exercise fall in plasma

concentration of nitrate was not affected by MNA. In conclusion, we demonstrated for the

first time that MNA improves endurance exercise capacity in mice with diabetes, and may

also decrease the cardiovascular risk of exercise.

Introduction
1-methylnicotinamide (MNA) is major product of nicotinamide (vit B3, PP) metabolism, and
is generated by nicotinamide N-methyltransferase (NNMT) and then further converted into
1-methyl-2-pyridone-5-carboxamide (Met-2-PY) and 1-methyl-4-pyridone-5-carboxamide
(Met-4-PY) [1, 2]. It has been reported that MNA is a biologically active compound, and
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experimental studies in in vivo animal models have demonstrated that the anti-thrombotic [3],
anti-inflammatory [4] and gastroprotective [5] effects of MNA are mediated by a prostacyclin
(PGI2)-dependent mechanism. Additionally, chronic administration of MNA in animal models
of hypertriglyceridemia and diabetes resulted in improvement of nitric oxide (NO)-dependent
endothelial function [6].

It is well known that PGI2 production is increased during exercise [7, 8] and PGI2 release
from the vascular endothelium in response to exercise appears to be an important factor regu-
lating exercise tolerance and exercise capacity [9]. Furthermore, Zoladz et al. [9] have suggested
that impairment of the exercise-induced release of PGI2 may be responsible for the increased
cardiovascular risk of vigorous exercise. Since it has been reported that diabetic patients have
decreased ability to release PGI2 during exercise [10], and are characterized by higher cardio-
vascular risk during vigorous exercise [11] pharmacological stimulation of post-exercise PGI2
production may prove beneficial.

NO is also involved in the regulation of exercise capacity, and NO generated by NO
synthase is metabolized in the body to inorganic anions: nitrite (NO2

-) and nitrate (NO3
-) [12].

On the other hand, nitrite may be reduced back to NO by enzymatic and non-enzymatic path-
ways, particularly in acidic environments with low oxygen availability [12], which occurs dur-
ing exercise [13]. It has been reported that single bout of strenuous physical exercise had no
effect on plasma nitrate concentrations in humans [14]. However, others have demonstrated a
small post-exercise increase in plasma nitrate concentrations [15] or increase in plasma nitrite
concentrations [16]. Furthermore, exogenous nitrate and the subsequent increase in plasma
nitrite concentrations was accompanied by enhanced exercise tolerance in humans [17]. Thus,
enhanced NO bioavailability appears to enhance exercise capacity in humans.

We previously showed that endogenous MNA was involved in the regulation of exercise
capacity, since the NNMT-MNA pathway was activated by a single bout of strenuous exercise,
with an elevated post-exercise plasma concentration of MNA [18]. Considering the pharmaco-
logical profile of MNA, including PGI2 release and improvement of NO-dependent function,
one could speculate that MNA supplementation could improve exercise capacity in diabetics
and therefore, could be considered as a protective agent against cardiovascular risk during
physical activity.

Accordingly, the aim of this work was to characterize the effects of MNA supplementation
on exercise capacity and endothelial-, PGI2- and NO-dependent response to exercise in dia-
betic db/db mice. For this purpose, db/db mice were treated with MNA in drinking water (100
mg. kg-1) for 4 weeks, their exercise capacity during an endurance running test and post-exer-
cise MNA, nitrite, nitrate and 6-keto-PGF1α concentrations were subsequently assessed.

Materials and Methods

Animals
Male C57BL6/Jdb/db mice (henceforth referred to as db/db mice) purchased from Charles River
Laboratories were housed with five mice per cage and a 12-hours light/dark cycle. Animals had
free access to drinking water and standard rodent chow. All procedures involving animals were
approved by the Local Bioethics Committee in Krakow, Poland (Permit Number: 914/2012;
127/2014) and conducted in accordance with the institutional guidelines.

Experimental protocol
The scheme of the protocol is presented in Fig 1. 8-week-old db/db mice were randomly
assigned into the following experimental groups: sedentary or exercised mice not treated with
MNA (sedentary or exercised control) and sedentary or exercised mice treated with MNA
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(sedentary or exercised MNA). MNA was given in drinking water for 4 weeks at a dose of 100
mg·kg-1. Mice were weighed once a week in order to adjust the MNA dosage. After 4 weeks of
MNA supplementation, the animals assigned into the exercised groups were subjected to
endurance running tests as described below.

For the assessment of their running performance capacity, a closed two-line treadmill
equipped with an electrode was used (Columbus Instruments, Columbus, OH, USA). Three
days before the exercise experiment, the mice were acclimatized. On the first and second day of
acclimatization, the mice were placed on the immobile treadmill for 5 min; on the third day,
they spent 5 min on the immobile treadmill, followed by 10 min of walking at a velocity of 5
m·min-1. The exercise capacity of the db/db mice supplemented and non-supplemented with
MNA was evaluated by measuring their endurance running time on the treadmill at 5° incline.
The treadmill was started at 5 m �min-1 and the speed was incrementally increased by 1 m �
min-1 every 2.5 minutes to a final velocity of 8 m �min-1. The animals were run on the treadmill
until they reached fatigue, which was defined as when they being unable to keep running for at
least 10 s despite electrical stimulation (current 0.34 mA, voltage 25 V, electrical stimulation
frequency 3 Hz). The time from start to finish was recorded. Simultaneously, sedentary mice
were placed on the immobile treadmill. The endurance exercise protocol described above was
established in the preliminary study.

Immediately after completion of endurance running to fatigue, the mice were anaesthetised
with pentobarbital (50 mg·kg-1, i.p.), and blood samples were then taken from the right heart
ventricle on EDTA-anticoagulant and centrifuged (1000 x g, 10 min, 4°C) to obtain plasma
samples. After blood sampling, the mice were euthanized with an excessive dose of pentobar-
bital (100 mg·kg-1, i.p.). Plasma samples were deep frozen (-80°C) and stored until further
analysis.

Fig 1. Diagram depicting experimental protocol. Briefly, 8-week-old db/db mice were randomly assigned into four experimental groups: sedentary,
exercised mice treated with MNA (sedentary or exercised MNA) and sedentary, exercised mice not treated with MNA (sedentary or exercised control). See
text for details of the experimental protocol.

doi:10.1371/journal.pone.0130908.g001
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Furthermore, one day before the endurance running test, mice from the sedentary control
and MNA groups were placed in individual metabolic cages for 24 h urine sample collection.
Urine samples were deep frozen (-80°C) and stored until further analysis.

Intraperitoneal Glucose Tolerance Test (IPGTT)
4-h-starved male db/db (C57BL6/Jdb/db) mice were given an intraperitoneal injection of glucose
(2 g·kg-1). Tail blood samples were collected on anticoagulant (trisodium citrate, 3,8%, 9:1) at
0, 15, 30, 45, 60 and 120 minutes after glucose load and subsequently centrifuged (10 000 rpm
for 5 minutes at 4°C) to obtain plasma samples. Plasma glucose levels were determined using a
biochemical analyser (ABX Pentra 400, Horiba, Germany). IPGTT was performed for all mice
before (at 8 weeks of age) and after (at 12 weeks of age) supplementation with MNA.

Blood cell count and biochemical parameters
Blood cell count was assessed by an Animal Blood Counter (ABC Vet, Horiba, Germany). Bio-
chemical parameters including glucose, HbA1c, creatinine concentrations and lipid profile
were determined using automatic biochemistry analyser (ABX Pentra 400, Horiba, Germany).

Measurement of MNA, Met-2PY and Met-4PY
Concentrations of MNA, Met-2PY and Met-4PY in plasma and urine samples were deter-
mined using the LC/MS/MS method. Prior to analysis, plasma samples were deproteinized
with acidified acetonitrile. Chromatographic analysis was performed on an UltiMate 3000
HPLC system (Thermo Scientific Dionex, Sunnyvale, CA, USA). Chromatographic separation
was carried out on an Aquasil C18 analytical column (4.6 mm x 150 mm, 5 μm, Thermo Scien-
tific, Waltham, MA, USA). The mobile phase consisted of acetonitrile (A) and water (B), with
the addition of 0.1% formic acid. The flow rate was set at 0.8 ml·min-1 with isocratic elution (A:
B, 20/80).

Urine samples were diluted 1:10. HPLC analysis was performed on the Transcend TLX-2
system with an HTS PAL System autosampler (Thermo Scientific). Compounds were separated
from the matrix using a TurboFlow Cyclone-P polymer column (0.5 x 50 mm, Thermo Scien-
tific). From the TurboFlow column, the analytes were eluted with acidified acetonitrile onto an
Aquasil C18 4.6 x 150 mm, 5μm analytical column. The mobile phase consisted of acetonitrile
(A) and acidified water (0.1% formic acid) (B) with the following linear eluting steps: 0.0 min
(A:B, 80/20)– 1.5 min (A:B, 80/20)– 5.5 min (A:B, 50/50) –6.5 min (A:B, 50/50)– 7.0 min (A:B,
80/20)– 10.0 min (A:B, 80/20). The flow rate was set at 0.8 ml·min-1.

Detection was performed on a TSQ Quantum Ultra triple quadrupole mass spectrometer
(Thermo Scientific) equipped with a heated electrospray ionization interface (HESI II Probe)
operating in the positive ion mode. Data acquisition and processing were accomplished using
Xcalibur 2.1 software.

Measurement of 6-keto-PGF1α, nitrite and nitrate in plasma
For the measurement of PGI2, the plasma concentration of its stable metabolite 6-keto-PGF1α
was determined using a commercially available ELISA kit according to the manufacturer’s
instructions.

The concentration of nitrite and nitrate were measured using ENO-20 –NOx Analyzer
(Eicom Corp., Kyoto, Japan). The ENO-20 uses a liquid chromatography method with post-
column derivatisation using Griess reagent. Nitrite and nitrate were separated from other sub-
stances in matrices on an NO-PAK column, 4.6x50mm (Eicom Corp.). Nitrate was reduced to
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nitrite using a cadmium-copper column (NO-RED, Eicom Corp.). Nitrite was mixed with
Griess reagent to form a purple azo dye in a reaction coil placed in a column oven at 35°C, and
the absorbance of the dye product was measured at 540 nm. The flow of the mobile phase (Car-
rier Solution) was 0.33 ml·min-1. The Griess reagent (Reactor A and B Solution) was delivered
by the pump at a rate of 0.11 ml·min-1. The plasma sample was precipitated with methanol at a
ratio of 1:1 (v/v), and centrifuged at 10 000 x g for 10 min, and the supernatant was used for
analysis.

Chemicals and drugs
Pentobarbital (Vetbutal, Biowet, Pulawy, Poland), trisodium citrate dihydrate and ethylenedi-
aminetetraacetic acid (EDTA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). N-
methyl-4-pyridone-3-carboxamide (Met-2-Py), N-methyl-2-pyridone-5-carboxamide (Met-
4-Py) and deuterated internal standard (Met-2-Py-d3 and Met-4-Py-d3) were purchased from
TLC PharmaChem (Vaughan, Ontario, Canada). 1- methylnicotinamide chloride and MNA-
d3 were kindly provided by Dr. Adamus from the Technical University in Lodz, Poland. HPLC
gradient grade acetonitrile, HPLC gradient grade methanol and formic acid were purchased
from Sigma-Aldrich. Ultrapure water was delivered by the MiliQ Water Purification System
fromMerck (Darmstadt, Germany). Ready-to-use reagents for blood cell count and for bio-
chemical parameters determination were used in the study (Horiba, Germany). 6-keto-PGF1α
ELISA kit was purchased from ENZO Life Science (Farmingdale, NY, USA).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 5. The area under the curve (AUC)
was calculated using the trapezoidal rule in Microsoft Excel. P values< 0.05 were considered
as statistically significant.

Results

Effects of MNA treatment on glucose and lipid profile in db/db mice
At the beginning of current experiment 8-week-old db/db mice were diabetic, as evidenced by
higher blood glucose area under the curve (AUC) in IPGTT in comparison with wild-type
mice (75.70±2.76 vs. 60.58±4.10 in wild-type mice, P<0.05, n = 39–6). As shown in Fig 2A and
2B, 4 weeks of treatment with MNA (100 mg·kg-1) significantly reduced insulin resistance in
12-week-old db/db mice as compared to 12-week-old untreated db/db mice (90.2±4.0 vs. 112.9
±6.9, respectively, P<0.01, n = 18). However, there were no differences between MNA-treated
and MNA-untreated 12-week-old db/db mice as regards to HbA1c concentration (14.02±0.87
vs. 13.81±1.17%, respectively, n = 7, Fig 2C) and fasting glucose concentration (1.545±0.087 vs.
1.410±0.092 mmol. l-1, respectively, n = 18). Furthermore, MNA treatment did not affect the
lipid profile (Fig 2D), blood cell count or the haematocrit (HCT) and haemoglobin (HGB) con-
centrations (Table 1). Finally, treatment with MNA did not diminish but rather tended to
increase body weight gain in db/db mice (3.97±0.67 vs. 6.03±1.10 g for MNA-treated group,
n = 10). In MNA-treated mice MNA and Met-2PY + Met-4PY concentrations in the urine
were elevated by approximately four-fold and three-fold, respectively, as compared with
untreated mice (e.g. the MNA concentration increased from 0.687±0.065 to 2.606±0.602 μmol.
μmol creatinine-1, P<0.01, n = 7–6, Fig 3).
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Effect of MNA treatment on exercise capacity in diabetic (db/db) mice
As shown in Fig 4, db/db mice treated with MNA displayed improved exercise capacity as evi-
denced by the prolonged endurance running time (P = 0.025). Improved exercise capacity by
MNA was not related to changes in post-exercise blood cell count, HCT, HGB, total cholesterol
(TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL) or triglycerides (TG)
concentrations (Table 1, Fig 5). However, HCT significantly increased in post-exercise MNA-
treated db/db mice (from 56.83±1.978 to 61.98±0.954%, P<0.05, n = 6–9), while post-exercise
leukocytosis was substantially inhibited (for untreated mice, 3.150±0.452 vs. 1.367±0.226 K.
μl-1, P<0.05, n = 8–6, and for MNA-treated mice, 2.100±0.298 vs. 2.350±0.343 vs. K. μl-1, for
post-exercise and sedentary groups, respectively, n = 10–6, Table 1). Endurance exercise

Fig 2. Effect of 4 weeks treatment with MNA on diabetic profile. Intraperitoneal glucose tolerance test (IPGTT) (A) (n = 18–20), blood glucose area under
the curve (AUC) for IPGTT (B) (n = 18–20), blood HbA1c concentration (C) (n = 7), lipid profile (D) (n = 7). TC (total cholesterol), LDL (low-density lipoprotein),
HDL (high-density lipoprotein), and TG (triglycerides). MNA-treated db/db mice were supplemented with MNA in drinking water for 4 weeks at a dose of 100
mg·kg-1. The effects of MNA on blood HbA1c concentration and lipid profile were evaluated in sedentary db/db mice. Data are presented as the mean ±SEM.
Statistical analysis was performed using the Mann-Whitney test or unpaired t-test depending on the results of the normality test. ***P<0.001 vs. control db/
db mice at 8 weeks of age, ##P<0.01 vs. control db/db mice at 12 weeks of age.

doi:10.1371/journal.pone.0130908.g002
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resulted in a substantial increase in MNA plasma concentration in untreated db/db mice (from
1.115±0.156 to 3.351±0.280 nmol·ml-1, P<0.001, n = 7–10, Fig 6A). In MNA-treated db/db
mice, the post-exercise increase in MNA plasma concentration was also significant (from 3.019
±0.918 to 5.479±0.328 nmol·ml-1, P<0.01, n = 7–11). Interestingly, the relative exercise-
induced increase in the plasma MNA concentration was similar in both the MNA-treated and
untreated db/db mice (Δ = 2.46 and Δ = 2.24 nmol·ml-1 in MNA-treated and untreated groups,
respectively), although the pre-exercise MNA plasma concentration was approximately
2.5-fold higher in MNA-treated db/db mice as compared to untreated db/db mice (3.019
±0.918 vs. 1.115±0.156 nmol·ml-1, P = 0.063, n = 7, Fig 6A). The pattern of exercise-induced
changes in the plasma concentration of the MNAmetabolites (Met-2PY and Met-4PY) was
similar to that of MNA (Fig 6B).

Effect of MNA treatment on exercise-induced PGI2 release and nitrate
utilization
Endurance exercise induced a significant increase in 6-keto-PGF1α plasma concentration in
both untreated (4862±684.9 vs. 6828±419 pg·ml-1, P<0.05, n = 7–10) and MNA-treated db/db
mice (3263±860.7 vs. 9204±1716 vs. pg·ml-1, P<0.05, n = 7–12) (Fig 7A). The post-exercise
6-keto-PGF1α plasma concentration in MNA-treated db/db mice was not significantly different
from untreated db/db mice, however, the post-exercise increase in 6-keto-PGF1α (Δ6-keto-
PGF1α) plasma concentration was higher in MNA-treated animals (Δ6-keto-PGF1α = 5941 in
MNA group vs. 1966 pg·ml-1 in control group, Fig 7A). There were no significant differences in
nitrite and nitrate plasma concentrations between sedentary untreated and sedentary MNA-
treated db/db mice (Fig 7B and 7C), although in untreated and MNA-treated mice, the post-
exercise plasma concentrations of nitrate were significantly lower (Fig 7C). The post-exercise
fall in plasma nitrate concentration was similar for both untreated and MNA-treated groups
(for untreated group ΔNO3

- = 49.48 and for MNA-treated group Δ = 51.85, Fig 7C). The post-
exercise concentration of nitrite only tended to fall in the untreated and MNA-treated groups,
and there was no difference between groups (Fig 7B).

Discussion
In the present work, we demonstrated for the first time that long-term supplementation with
MNA improved endurance exercise capacity in diabetic mice. We suggest that this MNA-induced

Table 1. Blood cell count in untreated and MNA-treated db/dbmice.

Sedentary Exercised

Control MNA Control MNA

WBC [K � μl-1] 1.367±0.226 2.350±0.343 3.150±0.452* 2.100±0.298

RBC [M � μl-1] 11.09±0.163 11.17±0.327 11.28±0.169 11.58±0.164

HGB [g � dL-1] 16.17±0.199 16.11±0.560 16.48±0.378 17.07±0.214

HCT [%] 56.83±1.014 56.83±1.978 60.11±1.265 61.98±0.954#

PLT [K � μl-1] 1315±68.78 1465±156.6 1252±46.85 1282±68.45

WBC, white blood cells; RBC, red blood cells; HGB, haemoglobin; HCT, haematocrit; PLT, platelets. Data are expressed as mean ±SEM. Statistical

analysis was performed using the Mann-Whitney test or unpaired t-test depending on the results of the normality test.

*P<0.05 vs. sedentary control group
#P<0.05 vs. sedentary MNA group (n = 6–11)

doi:10.1371/journal.pone.0130908.t001
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effect could be linked to PGI2 and improvement of insulin sensitivity, but not to direct anti-dia-
betic effects of MNA.

It has been previously reported that anti-thrombotic, anti-inflammatory and gastroprotec-
tive effects of MNA are mediated by PGI2 [3–5]. In the present study, we demonstrated that
there were no statistically significant differences in post-exercise 6-keto-PGF1α plasma concen-
trations between untreated and MNA-treated mice (Fig 7A). However, increases in plasma
6-keto-PGF1α concentrations induced by exercise were remarkably greater in the MNA-treated
group (the magnitude of the Δ increase was augmented by approximately 45%). On the other
hand, MNA did not appear to have any effects on fasting glucose, HbA1c concentrations or

Fig 3. Concentrations of MNA and its metabolites in urine in untreated and MNA-treated db/dbmice.
To determine the effect of 4 weeks MNA supplementation on the urine concentrations of MNA and its
metabolites, urine samples were collected from sedentary untreated and MNA-treated db/db mice for 24 h,
one day before the endurance running test. Data are presented as the mean ±SEM. Statistical analysis was
performed using the Mann-Whitney test or unpaired t-test depending on the results of the normality test.
**P<0.01 (n = 7–6).

doi:10.1371/journal.pone.0130908.g003
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lipid profile, although an increase in insulin sensitivity was observed (Fig 2A–2C). At the start
of current experiment 8-week-old db/db mice were diabetic, as evidenced by significant insu-
lin resistance in comparison with wild-type mice. The lack of the effect of MNA on HbA1c

concentrations but the apparent effect on insulin resistance may be due to the short period of
MNA supplementation. It may have been long enough to improve insulin sensitivity but not
HbA1c. On the other hand, changes in HbA1c concentrations caused by anti-diabetic treat-
ment, e.g. pioglitazone, has been shown to occur after 4-week-long treatment in a rat model of
diabetes [19], suggesting that MNA may affect insulin resistance rather than directly causing
hypoglycemia, in line with the previous work by Watala et al. [20]. Altogether, our results sug-
gest that the MNA-induced effect on exercise capacity could perhaps be partially linked to the

Fig 4. Effect of MNA treatment on exercise capacity in db/dbmice.Untreated db/db mice and db/db mice
treated with MNA for 4 weeks were subjected to endurance running at 8 m·min-1 on a treadmill with 5°
inclination. The graph shows Kaplan-Meier curves of running mice in percentage for the two experimental
groups: untreated mice (dashed line) and MNA-treated mice (solid line). Censored observations are marked
with circles or triangles for the untreated and MNA-treated groups, respectively. Running time analysis was
performed with Kaplan-Meier estimation using the log-rank Mantel-Cox test (n = 10–12).

doi:10.1371/journal.pone.0130908.g004

Fig 5. Post-exercise lipid profile in untreated and MNA-treated db/dbmice. TC (total cholesterol), LDL
(low-density lipoprotein), HDL (high-density lipoprotein), and TG (triglycerides). To determine the MNA effect
on post-exercise lipid profile, blood samples were taken from exercised untreated and MNA-treated db/db
mice. Data are presented as the mean ±SEM. Statistical analysis was performed using the Mann-Whitney
test or unpaired t-test depending on the results of the normality test (n = 10–11).

doi:10.1371/journal.pone.0130908.g005
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improvement in insulin sensitivity, although it was most likely associated with PGI2-mediated
mechanisms.

It is commonly accepted that exercise alone leads to an increase in PGI2 release as assessed
by measuring stable metabolites in human plasma [7, 21] and urine [8]. Moreover, the magni-
tude of the increase in PGI2 concentration in the interstitial muscle fluid in response to exercise

Fig 6. Post-exercise concentrations of MNA and its metabolites in plasma from untreated and MNA-
treated db/dbmice.Delta (Δ) denotes the difference between the mean concentration of a given metabolite
determined at rest in the sedentary group and in the exercised group of mice after completing the fatiguing
run. Data are presented as the mean ±SEM. Statistical analysis was performed using the Mann-Whitney test
or unpaired t-test depending on the results of the normality test. **P<0.01, ***P<0.001 vs. corresponding
sedentary group; ^P<0.05, ^^P<0.01, ^^^P<0.001 vs. corresponding control group (n = 7–11).

doi:10.1371/journal.pone.0130908.g006
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Fig 7. Post-exercise plasma concentration of 6-keto-PGF1α (A) nitrite (B) and nitrate (C) in untreated
andMNA-treated db/dbmice.Delta (Δ) denotes the difference between the mean concentration of a given
metabolite determined at rest in the sedentary group and in the exercised group of mice after completing the
fatiguing run. Data are presented as the mean ±SEM. Statistical analysis was performed using the Mann-
Whitney test or unpaired t-test depending on the results of the normality test. *P<0.05, **P<0.01,
***P<0.001 vs. corresponding sedentary group (n = 6–12).

doi:10.1371/journal.pone.0130908.g007
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depends on exercise intensity [22]. Recent data suggest that PGI2 plays a role in the regulation
of exercise capacity, as PGI2 release in response to exercise was positively correlated with
V’O2max in healthy men [9]. Moreover, the training-induced increase in V’O2max was accompa-
nied by increased PGI2 release during exercise in the responders group. Interestingly, in the
group of subjects in whom no increase was found in V’O2max after training (non-responders),
no changes were observed in the exercise-induced release of PGI2 after training [23]. These
findings strongly suggest that PGI2 plays a role in the training-induced regulation of V’O2max

in humans. It is also well known that PGI2 alone or its stable analogue iloprost are able to
increase exercise capacity in patients with pulmonary hypertension [24, 25] and stable angina
pectoris [26]. It is important to add that, such individuals unaccustomed to habitual physical
activities who undertake vigorous exercise have a 50-fold increase in the risk of sudden death
and a 100-fold increase in the risk of acute myocardial infarction [11]. For example, patients
suffering from diabetes have impaired ability to release PGI2 during exercise [10] and are char-
acterized by high cardiovascular risk during vigorous exercise [11]. Accordingly, the magnitude
of exercise-induced PGI2 release is an important factor that determines exercise tolerance, as
well as the cardiovascular risk of vigorous exercise [9]. PGI2-mediated safeguarding effects of
MNA on exercise capacity may rely on the protection of coronary, pulmonary and peripheral
microcirculation through the inhibition of platelets from forming aggregates during vigorous
exercise or/and the improvement of cardiac output [9].

In the present study, we did not find any differences in post-exercise 6-keto-PGF1α plasma
concentrations between untreated and MNA-treated mice (Fig 7A). However, the relative val-
ues of Δ increase in plasma 6-keto-PGF1α concentration induced by exercise, were remarkably
greater in the MNA-treated group. It might be that the post-exercise peak of the plasma
6-keto-PGF1α concentration reflecting PGI2 production occurs immediately after the end of
exercise, and quickly declines. This could explain why we did not see any evidence for the
release of PGI2 by MNA after exercise in the blood taken within 3–5 minutes, the period of
time needed for anaesthesia (pentobarbital) and blood sampling. Catheter placement and
instant post-exercise sampling would be required to confirm the effect of MNA on PGI2 release
during exercise. Additionally, in contrast to humans, measurement of pre-exercise (baseline)
and post-exercise plasma concentrations of 6-keto-PGF1α in the same mice is technically chal-
lenging. It is also important to note that plasma 6-keto-PGF1α might be quickly metabolized
during exercise into 2,3-dinor-6-keto-PGF1α, and excreted into the urine. It is not possible to
collect urine from mice during and immediately after endurance running in order to compare
the urine concentrations of 2,3-dinor-6-keto-PGF1α between MNA-treated and untreated mice
after endurance running.

In contrast to the increase in the post-exercise concentration of 6-keto-PGF1α, the concen-
tration of nitrate decreased. Interestingly, this exercise-induced response was not modified by
MNA treatment. Our data seem to be discordant with data from other studies showing an
increase or preservation of post-exercise plasma nitrite and nitrate concentrations in healthy
humans [14–16].

It is well established that under hypoxic conditions, nitrite and nitrate can be reduced back
to NO in vivo, thereby being an alternative source of NO for the NOS-dependent pathway [12].
These conditions, with lower oxygen tension, occur in skeletal muscle during exhaustive exer-
cise [13]. In particular, NO2

--derived NO may be important in the setting of impaired endothe-
lial NO production, as was the case for db/db mice at the age of 12 weeks [27], that were used
in the present experiments.

Our data showing a pronounced fall in the post-exercise plasma concentration of nitrate
may suggest that exercise in db/db mice with endothelial dysfunction may indeed activate the
reductive pathway of NO generation, i.e. NO3

--NO2
--NO. Accordingly, it appears as though
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exercise-induced NO formation in diabetic mice was mainly sustained by this reductive pathway,
not by endothelial NO production, which was obviously impaired in diabetic mice. If so, it seems
obvious that MNA did not modify the post-exercise fall in the plasma concentration of nitrate.

It is well known that the total number of white blood cells is increasing after exercise [28–
30]. This phenomenon most likely occurs in response to exercise-induced skeletal muscle dam-
age. The post-exercise increase in neutrophil count is correlated with increases in markers of
skeletal muscle damage, such as plasma myoglobin concentration and plasma creatine kinase
activity [30]. This notion is also supported by reports showing, leukocyte accumulation in
exercised muscles, which was associated with a local inflammatory response resulting from
exercise-induced muscle damage [31]. Interestingly, the function of the immune system is sup-
pressed by acute bouts of endurance exercise, increasing the susceptibility to upper respiratory
illness [32]. On the other hand, leukocytosis may be caused by sympathetic system-mediated
mechanisms [33]. In the present study, we demonstrated that MNA decreased post-exercise
leukocytosis, suggesting anti-inflammatory or/and anti-sympathetic profile of MNA activity.

Schmeisser et al. [34] has suggested that MNA increased the speed of crawling in nematodes
C. elegans by reactive oxygen species (ROS)-dependent mechanism. This group also discovered
that MNA, generated through the sirtuin-dependent pathway, extended the lifespan of nema-
todes by the induction of ROS and subsequent hydrogen peroxide generation by an aldehyde
oxidase, GAD-3 [34]. It still remains to be established whether ROS-dependent mechanisms
are involved in the MNA-induced effects on exercise capacity in db/db mice.

In conclusion, in the present work, we demonstrated for the first time that long-term sup-
plementation with MNA results in an improvement of exercise capacity in diabetic mice, most
likely by PGI2-dependent pathways. However, the underlying mechanisms need to be further
investigated. As the release of PGI2 in response to exercise appears to play a role in the regula-
tion of exercise capacity [9], the impairment of exercise-induced PGI2 release may lead to an
increase in cardiovascular risk during high-intensity exercise. We assume that MNA-depen-
dent stimulation of PGI2 release not only improves exercise capacity in pathological states with
impaired endothelial function and compromised exercise tolerance but also protects the coro-
nary, pulmonary and peripheral microcirculation against the formation of platelet microaggre-
gates, thereby preserving adequate tissue perfusion in skeletal muscle, as well as sustaining
optimal cardiac output. Safeguarding the pro-aggregatory platelet response seems to be crucial
for the safety of exercise in patients at high cardiovascular risk. In summary, we suggest that
MNA affords protection against cardiovascular risk caused by long moderate-intensity exercise
sessions as implemented in the current study, but may also protect diabetic or cardiovascular
patients with impaired endothelial function during exercise of higher intensity and shorter
duration. Further studies in humans are warranted to translate our findings to humans.
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