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ON INTEGRAL ZARISKI DECOMPOSITIONS OF

PSEUDOEFFECTIVE DIVISORS ON ALGEBRAIC SURFACES
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(Communicated by Igor Dolgachev)

Abstract. In this note we consider the problem of integrality of Zariski

decompositions for pseudoeffective integral divisors on algebraic surfaces. We

show that while sometimes integrality of Zariski decompositions forces all neg-
ative curves to be (−1)-curves, there are examples where this is not true.

1. Introduction

In this note we work over an arbitrary algebraically closed field K, unless other-
wise specified. By a negative curve, we mean a reduced irreducible divisor C with
C2 < 0 on a smooth projective surface. By a (−k)-curve, we mean a negative curve
C with C2 = −k < 0.

There has been a recent resurgence of interest in the so-called local negativity
for reduced curves on algebraic surfaces. One of the most important and intriguing
conjectures around negativity questions is the Bounded Negativity Conjecture.

Conjecture 1.1 (BNC). Let X be a smooth projective surface over a field of char-
acteristic 0. Then there exists an integer b(X) ∈ Z such that for all reduced curves
C ⊂ X one has C2 > b(X).

Counterexamples are known in positive characteristics, but they are very special.
In particular, none are known for rational surfaces, so even in positive characteris-
tics the question of which surfaces have bounded negativity is of interest. Moreover,
bounded negativity has connections to substantial open conjectures. For example,
for a surface X obtained by blowing up P2 at any finite set of generic points, the
Segre-Harbourne-Gimigliano-Hirschowitz Conjecture (i.e., the SHGH Conjecture)
[6] asserts that h1(X,OX(F )) = 0 for every effective nef divisor F and in addition
that all negative curves on X are (−1)-curves. The Bounded Negativity Conjec-
ture (BNC) is another, even older, still open conjecture which asserts that smooth
complex projective surfaces all have bounded negativity. It is also an open question
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in any characteristic whether all smooth projective rational surfaces have bounded
negativity.

Recent work has established a connection of bounded negativity with a certain
property of Zariski decompositions. Indeed, in [1] the second author with Th. Bauer
and D. Schmitz studied the following question for algebraic surfaces. (Recall that
on a surface X, a divisor D is pseudoeffective if D ·B > 0 for nef divisors B.)

Question. Let X be a smooth projective surface. Does there exist an integer
d(X) > 1 such that for every pseudoeffective integral divisor D the denominators
in the Zariski decomposition of D are bounded from above by d(X)?

Such a question is natural when one studies Zariski decompositions [8] of pseu-
doeffective divisors since we have the following geometric interpretation. Given a
pseudoeffective integral divisor D on X with Zariski decomposition D = P + N ,
for every sufficiently divisible integer m > 1 we have the equality

H0(X,OX(mD)) = H0(X,OX(mP )),

and hence |mD| = |mP | + mN . Sufficiently divisible is required in order to clear
denominators in P and obtain Cartier divisors.

If such a bound d(X) exists, then we say that X has bounded Zariski denomina-
tors. It is an intriguing question as to whether a given smooth surface satisfies this
boundedness condition. Somewhat surprisingly, boundedness of Zariski denomina-
tors on a smooth projective surface X is equivalent to X having bounded nega-
tivity [1]. The equivalence of boundedness of Zariski denominators and bounded
negativity provides a new perspective on these conjectures and also sheds some
light on links between numerical information about divisors on a given surface X
and the possible negative curves on X.

Let us say that a pseudoeffective integral divisor D has an integral Zariski de-
composition D = P + N if P and N are defined over the integers (i.e., all coeffi-
cients occurring in P,N are integers). An interesting criterion for surfaces to have
bounded Zariski denominators was given in [1] as follows:

Proposition 1.2. Let X be a smooth projective surface such that for every reduced
and irreducible curve C one has C2 > −1. Then all integral pseudoeffective divisors
on X have integral Zariski decompositions.

This raises the converse question:

Question 1.3. Let X be a smooth projective surface having the property that

every integral pseudoeffective divisor D has an integral Zariski decomposition. (∗)

Is every negative curve then a (−1)-curve?

The condition (∗) at first glance seems to be very restrictive, so it is plausible
that Question 1.3 could have an affirmative answer. However, by our main result
we see that the answer is negative.

Theorem A. There exists a smooth complex projective surface X having the prop-
erty that all integral pseudoeffective divisors have integral Zariski decompositions
yet all negative curves on X have self-intersection −2.

On the other hand, sometimes the answer is affirmative:
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Theorem B. Let X be a smooth projective surface such that every integral pseudo-
effective divisor D has an integral Zariski decomposition (i.e., d(X) = 1) and such
that |∆(X)| = 1, where ∆(X) is the determinant of the intersection form on the
Néron-Severi lattice of X. Then all negative curves on X are (−1)-curves, that is,
b(X) = 1.

This follows from [1, Thm. 2.3], which gives the bound b(X) 6 d(X) d(X)! |∆(X)|.
Thus, for example, if X is a blow up of P2 at a finite set of points, then |∆(X)| = 1,
so if Zariski decompositions are integral on X, then d(X) is also 1 and hence
b(X) = 1. Because of the recent interest in blow ups of P2 at finite sets of points
(see, for example, [3, 2, 4]), a direct proof in the special case of blow ups of P2 may
be useful. We provide such a proof below in Theorem C.

2. Results

Before we present the main result of this note, let us recall the definition of
Zariski decompositions.

Definition 2.1 (Fujita-Zariski decomposition [5, 8]). Let X be a smooth projective
surface and D a pseudoeffective integral divisor on X. Then D can be written
uniquely as a sum

D = P +N

of Q-divisors such that

(i) P is nef,
(ii) N is effective with negative definite intersection matrix if N 6= 0, and

(iii) P · C = 0 for every component C of N .

Now we are ready to produce the surface whose existence is asserted in Theo-
rem A.

Theorem 2.2. There exists a smooth complex K3 surface X of Picard number 2
having intersection form (

−2 4
4 −2

)
such that all integral pseudoeffective divisors on X have integral Zariski decompo-
sitions.

Proof. The existence of such a surface X is a consequence of [7]. Indeed, by [7,
Theorem 1.1], one can find a smooth hypersurface X of degree 4 in P3

C containing
a smooth curve C1 of degree 2 (hence C1 is contained in a hyperplane section H)
and such that Pic(X) = ZH + ZC1. By adjunction we have C2

1 = −2. Since
H = C1 + C2, where C2 is also a plane conic, we have C1 · C2 = 4 and Pic(X) =
ZC1 + ZC2. If C2 were reducible, it would consist of two lines, say C2 = L1 + L2,
so L1 = mC1 + nC2 and hence 1 = L1 · H = (mC1 + nC2) · C1. But the latter
is even, and therefore this is impossible. Thus C2 is also smooth and irreducible
with C2

2 = −2. So, up to numerical equivalence, every prime divisor D (and hence
every effective divisor) is of the form mC1 + nC2 with m,n > 0 (since any divisor
of the form mC1 +nC2 with m < 0 or n < 0 will meet either C2 or C1, respectively,
negatively and thus cannot be the class of a prime divisor other than C1 or C2).
In particular, a divisor D is effective if and only if it is pseudoeffective, and no
negative curve can meet both C1 and C2 nonnegatively (i.e., C1 and C2 are the
only negative curves). Also, every nef divisor is in the cone dual to the effective
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cone; i.e., every nef divisor is a rational nonnegative linear combination of C1 +2C2

and 2C1 + C2. It is not hard to check that therefore an integral divisor D is nef if
and only if it is a nonnegative integer linear combination of C1 +C2, 2C1 +C2 and
C1 + 2C2.

Say D is pseudoeffective and integral; i.e., D = mC1 + nC2 for m,n > 0. By
symmetry, it is enough to assume that m > n. If 2n > m, then D is nef and the
Zariski decomposition D = P + N of D is integral since P = D and N = 0. Now
assume m > 2n. Take P = n(2C1 + C2) and N = (m − 2n)C1. Then P is nef, N
clearly has negative definite intersection matrix, and P ·N = 0, so D = P + N is
again an integral Zariski decomposition of D. �

Now we provide a proof of Theorem B in the special case mentioned above.

Theorem C. Let π : X → P2 be the blow up (over an algebraically closed ground
field K of arbitrary characteristic) of a finite set of points p1, . . . , ps (possibly in-
finitely near). Suppose that every integral pseudoeffective divisor D has an integral
Zariski decomposition. Then all negative curves on X have self-intersection −1,
i.e., are (−1)-curves.

Proof. Denote π−1(pi) by Ei and the total transform of a line by H. We will
consider two cases: in the first case we assume that none of the points pi is infinitely
near any other (so the points pi are distinct points of P2), and in the second case
we assume that some point is infinitely near another. To accommodate this second
case, we define X1 to be the blow up of X0 = P2 at any point p1 ∈ X0; X2 the blow
up of X1 at any point p2 ∈ X1, so p2 can be infinitely near to p1; etc. Continuing
in this way we eventually have that X = Xs is the blow up of Xs−1 at any point
ps ∈ Xs−1. In order to avoid confusion, we indicate the exceptional curve for the
blow up of pi ∈ Xi−1 by Ei,i ⊂ Xi and its total transform on Xj for j > i by Ei,j .
For simplicity, we denote Ei,s by Ei. Thus Ei,i is always irreducible, and Ei,j is
irreducible if and only if no point p` for i < ` 6 j is infinitely near to pi.

We begin with case 1. Suppose to the contrary that X has a (−k)-curve C with
k > 1. First note that C ·H > 0. (If C ·H = 0, then, since C is a prime divisor and
none of the points are infinitely near, we would have C = Ei for some i and hence
C2 = −1.) Now, since the classes of H,E1, . . . , Es give a basis for the divisor class
group of X, we can (up to linear equivalence) write C = dH −

∑r
j=1 bijEij , where

bij > 0 and the sum is over the r 6 s exceptional curves Ei with C · Ei > 0. In

particular, C2 = d2 −
∑r
j=1 b

2
ij

= −k.

We claim that there is a big integral divisor D such that D = P + aC with
a ∈ Q \ Z. To see this, note that if d′ � 0 and ai > 0 are integers, then

A = d′H −
s∑
i=1

aiEi

will be an integral ample divisor. (We pause to justify this. We may assume that
d′ >

∑
i ai. Note that H and H − Ei are nef with H2 > 0, hence A2 > 0. Now

assume G is some effective, nonzero divisor. Since H is nef, we have G ·H > 0. If
G·H = 0, then, since the Ei are effective prime divisors of negative self-intersection,
we have G =

∑
i giEi for integers gi > 0 with some gj > 0. Thus G · (−Ei) > 0

for all i and G · (−Ej) > 0, hence G · A > G · (−Ej) > 0. So assume G · H > 0.
Since B =

∑
i ai(H − Ei) is nef, we have G · A = G · ((d′ −

∑
i ai)H + B) >

G ·(d′−
∑
i ai)H > 0. Thus A ·G > 0 for all effective divisors G, hence A is ample.)
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For D, we take D = A+ eC for e ∈ Z, e > 0, where we choose a number e such
that D · C < 0 and so that we have

0 > D · C = (A+ eC) · C = A · C − ek = d′d−
r∑
j=1

aij bij − ke.

Finding the Zariski decomposition of D boils down to computing a. Observe that

a =
dd′ −

∑r
j=1 aij bij − ke
−k

= e+

∑r
j=1 aij bij − dd′

k
.

We just need to show that k does not divide
∑
j aij bij − dd′.

Suppose that k divides
∑
j aij bij − dd′. Then we replace A by A + H so d′

becomes d′ + 1. If k does not divide
∑
j aij bij − dd′ − d, then we are done. If

k divides this new number, then it means that k | d. In this case we replace A
instead by A + H − Ei1 . Since H − Ei1 is nef, A + H − Ei1 is ample, and we get
d′ + 1 in place of d′ and ai1 + 1 in place of ai1 . If k does not divide the number∑
j aij bij +bi1−d(d′+1), then we are done. If k divides this number, then it means

that k | bi1 . We proceed along the same lines for all j; we are done unless k | bij
for all j. But this is impossible because then k would divide d and each bij , so

k2 would divide k = −(d2 −
∑
j b

2
ij

), where k is an integer bigger than 1.

Now consider the case in which one of the points p1, . . . , ps is infinitely near
another. Let pj be the first such point, and let pi be the point pj is infinitely near
to. Thus p1, . . . , pj−1 are points of P2 and pj is on the exceptional locus Ei,j−1 of
pi for some i < j. After reindexing, we may assume that i = 1 and j = 2. (The
only constraint on reindexing is that if pv is infinitely near to pu, then v > u.) On
X2, the curve E1,2 has two irreducible components, E2,2 and E = E1,2 − E2,2, so
E1,2 = E + E2,2. Thus we have E2 = −2.

Here we take D = 3H − E1,2 − 2E2,2 so up to linear equivalence we can write
2D = 6H − 2E1,2 − 4E2,2 = 6(H − E1,2) + 4E = (6(H − E1,2) + 3E) + E
and D = 2(H − E1,2 − E2,2) +H + E1,2. Since all three terms of the latter are
the classes of effective divisors, D is pseudoeffective. Since H − E1,2 is nef and
(6(H − E1,2) + 3E) · E = 0, we see that D = P +N for P = (6(H −E1,2) + 3E)/2
and N = E/2 is a non-integral Zariski decomposition on X2.

However, π factors as π : X
π2−→ X2 → P2, where π2 is the sequential blow up of

the points p3, . . . , ps. Take the pull-back

2π∗2(D) = π∗2(2D) = π∗2(2P + 2N) = π∗2(2P ) + π∗2(2N)

and note that this is a Zariski decomposition. Indeed, observe that the pull-back
of a nef divisor is nef, so π∗2(2P ) is nef and π∗2(2P ) · π∗2(2N) = 4P ·N = 0. It only
remains to show that the intersection matrix of π∗2(2N) is negative definite and that
π∗2(2N)/2 is not integral. However, up to linear equivalence, N = E = E1,2 − E2,2,
and the total transforms of E1,2 and E2,2 under π2 are in the span (in the divisor
class group) of E1, . . . , Es. (In the same way that the components of the total
transform of E1,1 under X2 → X1 are E2,2 and E = E1,2 − E2,2, every component
of Ei = Ei,s on X = Xs is a linear integer combination of Ei = Ei,s, . . . , Es = Es,s.)

Since π∗2(2N) is in the span of Ei, . . . , Es and this span is negative definite, the
intersection matrix for the components of π∗2(2N) is also negative definite. Since
((π∗2(2N))/2)2 = N2 = (E/2)2 = −1/2, we see that π∗2(2N))/2 is not integral.
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Thus π∗2(D) = π∗2(2P )/2 + π∗2(2N)/2 gives a non-integral Zariski decomposition
on X. �

We end by posing the following problem.

Problem 2.3. Classify all algebraic surfaces with d(X) = 1.
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