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Abstract In our paper we consider an infinite horizon consumption-investment prob-
lem under a model misspecification in a general stochastic factor model. We formulate
the problem as a stochastic game and finally characterize the saddle point and the value
function of that game using an ODE of semilinear type, for which we provide a proof
of an existence and uniqueness theorem for its solution. Such equation is interested
on its own right, since it generalizes many other equations arising in various infinite
horizon optimization problems.
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1 Introduction

A major weakness of a portfolio optimization is a huge sensitivity to estimation errors
and a model misspecification. The concern about a model uncertainty should lead the
investor to design a strategy which is robust to model imperfections. In this paper
a max—min robust version of the classical Merton optimal investment-consumption
model is presented. We consider a financial market consisting of a stock and a bond.
A stock and a bond dynamics are assumed to be stochastic differential equations.
In addition coefficients of our model are affected by a non-tradable but observable
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stochastic factor. The investor trades between these assets and is supposed to consume
part of his wealth. Instead of supposing that this is the exact model, we assume here
that the trader knows only that the correct model belongs to a wide class of models,
which will be described later. To determine a robust consumption-investment controls
the investor maximizes his worst case total expected discounted HARA utility of
consumption. In our paper the problem is formulated as a stochastic game between the
market and the investor. To solve it we use a nonlinear Hamilton—Jacobi—-Bellman—
Isaacs equation. After several substitutions we are able to reduce it to a semilinear
equation of the Hamilton—Jacobi—Bellman type, for which we provide a proof of an
existence and uniqueness theorem.

Infinite horizon consumption-investment problems in stochastic factor models, but
without a model uncertainty assumption, were considered, among others by Fleming
et al. [5,6], and Pang [16,17], Hata et al. [12]. Most of these papers use a sub- and
supersolution method to prove that there exists a smooth solution to the resulting
equation. The exception is Fleming et al. [5] paper, where the solution to the infinite
horizon HJB equation is approximated by a solution to finite horizon problems. Our
approach is closest to the latter and in the proof we use stochastic methods to obtain
estimates needed to apply the Arzel-Ascolli Lemma. Moreover, our paper extends
many other aforementioned papers, since to prove that there exists a smooth solution
to the resulting equation we do not need any differentiability assumption on model
coefficients.

The finite horizon analogue of our problem was considered and solved by Schied
[18]. For literature review about finite horizon max—min problems we refer to Zawisza
[21].

Max—min infinite horizon optimization methods has recently gained a lot of attrac-
tion in the theoretical economics and finance. A variety of modifications to our issue
were considered among others by Anderson et al. [1], Faria et al. [4], Gagliardini et
al. [9], Hansen et al. [11], Trojani et al. [19,20]. Most of these works consider usu-
ally the problem from an economical/financial point of view only. Even if our model
description can be treated as a special case of their setting, they do not provide strict
mathematical proofs of their findings.

It is worth mentioning also the work of Knispel [14], where the robust risk-sensitive
optimization problem is solved.

2 Model Description

Let (2, F, P) be a probability space with filtration (F;,0 < t < +00) (possi-
bly enlarged to satisfy usual assumptions) generated by two independent Brown-
ian motions (th, 0 <t < +00), (W20 <t < +00). We assume that investor
has an imprecise knowledge about the dynamic economic environment and therefore
the measure P should be regarded only as an approximate probabilistic description
of the economy. Our economy consists of two primitive securities: a bank account
(B:,0 <t < 400) and a share (S;, 0 <t < +00). We assume also that the price of
the share is modulated by one non-tradable (but observable) factor (¥;, 0 <t < +00).
This factor can represent an additional source of an uncertainty such as: a stochastic
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volatility, a stochastic interest rate or other economic conditions. Processes mentioned
above are solutions to the system of stochastic differential equations

dBt = r(Yt)B,dt,
dS, =b(Y,)Sdt +o(Y)S;dW], Q2.1
dY, = gYydt+aY)(pdW! + pdW?).

The coefficients r, b, g, a, o > 0 are continuous functions and they are assumed
to satisfy all the required regularity conditions, in order to guarantee that the unique
strong solution to (2.1) exists. We treat p € [—1, 1] as a correlation coefficient.

As it was mentioned, the investor believes that his model is an imprecise description
of the market. A common approach in describing a model uncertainty over the finite
horizon T is to assume that the probability measure is not precisely known and the
investor knows only a class of possible measures. In many papers (Cvitanic, Karatzas
[2] and Herndndez, Schied [13]) it is usually assumed that this class is equal to

dor.
dP

Qr =107 ~P| =5(/m,,dw£+nz,tdvv,2) , (771,772)6/\/1},
T

(2.2)

where £(-); denotes the Doleans—Dade exponential and M denotes the set of all
bounded, progressively measurable processes n = (11, n2) taking values in a fixed
compact, convex set I' C R2. In our setting we will follow that type of the problem
formulation.

The dynamics of the investors wealth process (X f “0<t<4o00)is given by the
stochastic differential equation

(2.3)

{dxt =YX, + 7, (b)) —r(Yy)))dt + ﬂtU(Yt)thl — cdt,
Xo=x,

where x denotes a current wealth of the investor, 7 we can interpret as a capital invested
in S;, whereas c is a consumption per unit of time.

Formulation of the Problem

We consider a hyperbolic absolute risk aversion (HARA) utility function U (x) = %
with a parameter 0 < y < 1, with y # 0. The negative parameter case (y < 0)
is discussed at the end of our paper. The objective we use is equal to the overall
discounted utility of consumption i.e.

ATy y ot (Ct)y

ATy

7,0 — 1 .t —wt — 1 0,1

J (x,y):= tl—l>IgoEx’y/0 e U(C’)dt_,l_l,ngoEx’Y/o e y dr,
2.4)
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where w > 0 is a discount rate, 7, , = inf{t > 0, X;"“" < 0}, E]"} denotes the
expectation with respect to the measure Q;. Note that we use the short notation for
Ty,y, Whereas full form is 7y y .

Definition 2.1 A control (or a strategy) (7, ¢) = ((5ry, ¢1), 0 <t < 400) is admissi-
ble for a starting point (x, y), (7, ¢) € A, , if it satisfies the following assumptions:

(1) the process (c;, 0 <t < 400) is nonnegative,
(2) (m, c)isprogressively measurable with respect to the filtration (F;, 0 < t < 4-00),
(3) there exists a unique solution to (2.3) and

E"’ty sup (X;T"')y < 400

X, )
0<s<tATT:C

forallr > 0,n e M.

Our investor uses the Gilboa and Schmeidler [10] type preferences to maximize his
overall satisfaction. More precisely he uses a minimax criterion and tries to maximize
his objective in the worst case model i.e.

maximize inf J™%"(x, y) (2.5)
neM

over the class of admissible strategies A .

The problem (2.5) is considered as a zero-sum stochastic differential game problem.
Process 7 is the control of player number 1 (the “market”), while strategy (7, ¢) is
the control of player number 2 (the “investor”). We are looking for a saddle point
((r*, ¢*), n*) € Ax,y x M and a value function V (x, y) such that

TR (e, y) ST, y) < I, ),
and
Vix,y) =J7 T (x, y).

As usually we will seek optimal strategies in the feedback form ((7 (X, ¥;), c(X;, Y1),
n(X:, ¥1)),0 < t < +o00), where m(x,y), c(x,y), n(x,y) are Borel measur-
able functions and X; and Y; are solutions to the system (2.3). Such controls
are often called Markov controls and are denoted simply by (7 (x,y),c(x,y),

n(x, y)).

3 HJBI Equations and Saddle Point Derivation

We will use the standard HJB approach to solve the robust investment problem stated
in the previous section. Let £ denotes the differential operator given by

1 1
LTV (x,y) = 5a2<y>vyy + Enzoﬂ(y)vxx + pro(y)a(y) Vy

+(om1 + pm2)a(MVy + gWVy + 7 (b(y) — r(y)
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+n10 (M) Ve +r(y0)xVy — cVy.

For simplicity, we omit (x, y) variables in the functions’ notation. To establish a link
between this operator and a saddle point of our initial problem, we need to prove a
verification theorem. The following one seems to be new in the literature.

Theorem 3.1 Suppose there exists a function V€ C>2((0, +00) x R)NC([0, +00) x
R), an admissible Markov control (7*(x,y), c*(x,y),n*(x,y)) and constants
Dy, Dy > 0 such that

(c*(x, y)” >0

En*(x,y)w*(x,y),nv(x’ y) —wV(x,y) + , 3.
. c’
LTCTENY (x y) —wV(x,y) + — <0, (3.2)
14
* K * * 9 ¥
L7 y).et(xy)m (x’y)V(x, ) —wV(x,y) + M =0, 3.3)
Dix? < (c*(x, )", G4
V()C, y) < sz)’ (3.5)
foralln €T, (w,c) € R x (0, +00), (x,y) € (0, +00) x R and
T = oo, (3.6)
B (s e o) < 4o 37
" \0<s<tArTe

forall (x,y) € (0,400) xR, t € [0, +00), (1, ¢) € Ay y, n € M. Then
TR ) S Vi y) T, y)
forallmw € Ay y, n € M, and
Vi, y) =70 (),

Proof Assume that (x, y) € (0, +00) x R are fixed. Let’s fix first 5 € M and consider
the system (Q" dynamics of (X;, ¥;)):

Idx, =r(Y)X,dt + 7} (b(Y)) — r(Yy) 4+ 10 (Yy))dt + n;*o(Y,)dW)’” — cidt, (3.8)

dY, = (8(Y) +a(¥) (1 1p + n2:P)dt + a(Y) (pd W + pd W™,

where 7} = n*(X;, }), ¢ = c*(X;, Y;). If we apply the 1td formula to (3.8) and the
function e """V (x, y), we get

Ezly (e—szTn V(XinT, YinT, ))
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AT,

(AT, * %
=V, y) + Eg;’y/ VS (LT —w)V (X, Yo)ds + Eg;’y/ MdW?,
0 0

where (T,,n = 1,2,...), (T, — +00) is a localizing sequence of stopping times
such that

(AT,
ETY / M dW! = 0.
©Jo
Applying (3.1) yields
AT,
EX (e NIV (Xipt,, Yin,)) = V(x, y) — ]E:Zity/o e " U(c})ds.
By letting (n — o00) and using (3.7) we get
t
EZ’; (e—wfV(Xt, Yt)) —|—E¥’ty/0 e_wsU(C:f) ds > V(x, y). (3.9)

We should consider two cases
Casel

t
lim E"’t/ e W (Xs)Vds < +oo.
0

t—+o0
Since we have (3.5), then
Exy(e ™ V(Xs, Y1) < DBy ye ™ (X)),

which means that E , (e """V (X, Y;)) is convergent to 0.

Case II
t
lim JE"’/ e W (X5)Vds = +oo.
t——+00 0
Note that U (x) = and (3.4) can be used to obtain
D1 t t
400 =— lim EI! / eV (X4)’ds < lim Ezl}/ e U () ds.
Y t—>—+400 0 t——+400 ’ 0

In both scenarios (Cases I, IT) we can deduce from (3.9) that
4 * *
V(x,y) < lim Ex,y/ e~ U (chHhds = 7 (x, y).
t—+00 0 :

In addition (3.6) holds, which gives us the desired inequality

Te y Al .
Vx,y) < hm EZ;/ e U (chHds = J™ 1 (x, y).
0
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If we use n* instead of 1 and use (3.3) then instead of (3.9) we have
* * 4
E7 (e™™V(X(, Y1) +IE§Z’;/ eTSU(ch)ds = V(x,y),
0
which means that

t t
D; lim Ez*}’,’/ e " (Xg)"ds < lim E! ;/ e U (chds < +oo.
> Jo t—+o0 V[,

t—+00

Hence, Case I is satisfied also for = n* and consequently after passing t — 400
and using (3.6) we conclude that

t
V(x,y) = lim IE)'Z*;’/ eTU(cHds = T (x, y).
t—+o0 7 Jq ’
Next we choose (7, ¢) € Ay, and apply the Itd formula to the system

[dX, = r(Y)Xidt + 7 (b(Yy) — r(Yy) + 0} 0 (Y0))dt + mo (Y)W, — cidt,
ay, = (g +a(¥) (nf .o + 13,,0))dt + a(¥) (od W, + pd W)

Repeating the method presented above and using (3.2) we get
]Ex,y (e—w(lATnA‘L'x,}') V(X;TA’;«”/\,[XJ N Yt/\Tn/\Tx,y))

INTH ATy
Ve -, | U (ey) ds.
0
Since V is nonnegative, we get

Vix,y) 2

li
t—+00 Y

. ATy .
m IEZ’/ e W U(cg)ds = J (x, ).
0

O

Let us point out that conditions (3.1)—(3.3) hold if the upper and the lower Hamilton—
Jacobi-Bellman—Isaacs equations are satisfied:

%
max max min (E”’c"’V —wV + c_)

meR ¢>0 nel’ y
. . ¢’
= minmaxmax { 7TV —wV + — ) =0.
nell ;eR ¢>0 1%

To find the saddle point it is more convenient for us to use the upper Isaacs equation.
Once we verify that it has a unique solution V, it is also necessary to prove that V is
also a solution to the lower equation. To do that we use the following minimax theorem
proved by Fan [3, Theorem 2].
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Theorem 3.2 Let X be a compact Hausdorff space and Y an arbitrary set (not topol-
ogized). Let f be a real-valued function on X x Y such that, for everyn € Y, f(mw,n)

is lower semi-continuous on X. If f is convex on X and concave on Y, then

min sup f (T, n) = sup min f (7, n).
N€EX rey rey neX

3.1 Saddle Point Derivation

As announced, to find explicit forms of the saddle point ((x *(x,y), c*(x,y)), n*(x,y)),

we start with the upper Isaacs equation

. c’
minmaxmax { LTV —wV + — ) =0,
nel’ meR ¢>0 Y

i.e.

1 . 1
307 ()Vyy + min %(Enzaz(y)v” + P o (Ma () Vay

+(om1 + pm)a()Vy + g Vy + 7 (b(y) —r(y) + ma(y))Vx)

14
+r()xVy + max(—cVy + —) —wV =0,
c>0 Y

(3.10)

This type of reasoning is well known in the literature and therefore we do not present
it with all details. Note that if there exists V € C2’2((O, 00) X R), Vir < 0, then the

maximum over (77, ¢) in (3.10) is well defined and achieved at

pa(y) Vay () = () +mo () Ve
o(y) Vix Gz(y) Vix

Vi)
o= ()
4

The HARA type utility motivates us to seek the solution of the form

ﬂ*(x,yv'?)z_

s

‘xy
Vix,y) = —F().
14

Substituting (3.11) and (3.12) in (3.10) yields

pa(y)x Fy Q) +n)x
A=y F A=y’

1
c*(x,y)=F7Tx,

7 (x,y,n) =

b(yv) —
where A(y) := M and F should satisfy the following equation

o(y)
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2

1 P’y Fy Py
SO Fyy + z(l—_y)“z(”% + (g(y) +1 ya(y)uy)) Fy (3.14)
. _ 14 )4 2
+ (mI’I%lzr)lEr(Pﬂza(y)Fy + ma()’)any + 2(1—_)/)()»()’) + 771) F)

FyrF 4+ (1 — y)F7T =0.

Assuming that there exists a smooth solution to (3.14) we can determine a saddle
point candidate (7t *(x, y), ¢*(x, y), n*(x, y)) by finding a Borel measurable function
n*(x, y) such that

- CV
min max max (C”"’”V(x, y)—wVi(x,y)+ —)
nel meR ¢>0 14

7eR ¢>0

o Y
= max max (ﬁ”’c”’ ENV(x,y) —wV(x,y) + C—)
Y
and Borel measurable functions (7t *(x, y), ¢*(x, y)) such that

- Cy
max max min (ﬁ”’C’"V(x, y)—wV(x,y) + —>
14

meR ¢>0 nell

= min (E”*(X’y)’c*“"y)’”v (r.3) — WV, ) +
ne

(c*(x, y)) )

Y
From calculations (3.10)-(3.14), it follows that n*(x,y) does not depend on
x and is equal to the minimizer of (3.14). Moreover, (7*(x,y),c*(x,y)) =
(r*(x, y,n7(y)), c*(x, y)), where (*(x, y, ), c*(x, y)) is given by (3.13). The last
claim is a consequence of the following two facts:

(1) the minimax equality holds:

oY
min max max (E”’C’”V(x, y)—wV(x,y)+ —)
nel’ 7eR ¢>0 Y

%
= max max min (ﬁ”’c"’V(x, y)—wV(x,y)+ C—)
Y

7eR ¢>0 nel’
(c*(x, y))y)
Y

)

— (ﬁn*(x,y),c'*(x,y),n*(x.y)V(x’ V) —wVi(x,y) +

(2) LT MmNy (5 y) = max LT N Y (y, y) and therefore
g

(r*(x, y), c*(x, y)) is the unique solution to the equation

y * Y
LECTENY (x)y) 4 S = LT EDCEN @Dy ) 4 (" (x. ) .
14
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4 Smooth Solution to the Resulting PDE

In this section, we use stochastic methods to derive existence and uniqueness results
for classical solutions to differential equations which play a key role in the solution to
our initial problem. Let’s recall it once more

1 py Fy py
SO Fyy + 2(1—_y)a2(y>7’ + (g(y) + 1 Va(ymy)) Fy 1)
. - 14 Y 2
+ (nlr};;r)ler(pnza(y)Fy + a_ y)a(y)mFy + m(k(y) +m) F)
Fyr()F 4+ (1 — y)F7T —wF =0.
WF

. . a .
Assume now that there exists F' — a solution to Eq. (4.1) such that Y is bounded.
In this case there exists R > 0 such that

2

F?
max (—Fg®+2 F = a*(y)—2.
jmax (=Fg”+2a(0)Fyq) = a" ()

Therefore, it is reasonable to consider equations of the form

1 2 2
74 (M) Fyy + qer[ria}?R](—qu +20a(y)Fyq)

+ min (L) + LmaIFy + h(y, ) F) + max (= ycF+¢”) —wF =0,
n c>

where 0 > 0. This type of equation can be rewritten into

1a®(Vyuyy + maxsep minger ([i (y) + 18, ma(luy + h(y, 8, mu)  (4.2)
+ max;~g ( —ycu + CV) —wu =0,

where D C R”, T’ C R* are compacts. To the best of our knowledge, subsequent
results on classical solutions to (4.2) have not been available so far under assumptions
given here.

We make the following two assumptions.

Assumption 1 Functions a, & and i, [ are continuous, a2(y) > ¢ > 0 and there exist
Ly > 0, Ly > 0 such that

|h(y,8,m) = h(y, 8, M| +1i(y) —i(M| = Lily = yl,

lh(y, 8, mI < Ly, [i(y)+1(5, ma(y)l = Li(1+ 1y, (4.3)
1

O = NEG) +16. maly) = i(y) = 18, ma()]+ Slaly) - a()|* < Laly — yI*.

(4.4)

Remark Assume for a moment that a is constant. If (4.3) is satisfied then also (4.4)
holds with L, = L. Nevertheless in some models the constant L, can be much lower
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than L, for instance it is worth to notice the case i (y) + (8, n)a(y) = —y +n, where
L, can be set to zero.

Assumption 2 There exist a Borel measurable function n*(8, y, u, p) and a Borel
measurable function §*(y, u, p) such that

n @, y,u, p) €argmin G, n, y,u, p), 8 (y,u, p) € argmaxmin G(8, 7, y, u, p),
nel’ seD nel’

where

G@,n,y,u, p) =[i(y) + 16, ma(y)]p + h(y, s, nu.

Remark By classical measurable selection results all conditions of Assumption 2 are
satisfied for instance, when h(y, 8, n) = h1(y,8) + ha(y, n), [(8,n) = 11(8) + L (n)
and hy, ho, [, [ are continuous functions.

To construct a candidate solution to our problem we use a sequence of solutions to
finite time horizon problems of the form

1
ur + Eaz(y)”yy + max rnnelp ([i () + 16, ma(y)luy + h(y, s, n)u) 4.5

+ max (—ycu+c’)—wu=0, (y,1)eRx[0,T),

mjp=c=mp

with terminal condition u(y, T) = 0.

Lemma 4.1 Suppose that h and i are continuous, all conditions of Assumption I and
Assumption 2 are satisfied and there exists u—a polynomial growth solution to (4.5).
Then u is a unique polynomial growth solution to (4.5), which in addition is bounded
and strictly positive. Moreover it admits a stochastic representation of the form

T "S
wy.)=  sup  inf EGT® (/ ol (h(yk,ak,n(ak>>—y(:k—w)dkcsyds), 4.6)

8€D, c€Cmymy " t

where dY, = [i(Y;) + 18, n(8)a(Y)1dt + a(Y)dW' ®"® D is the class of
all progressively measurable processes taking values in D, N is the family of all
functions:n : D x [0, +00) x Q — " with the property that for all 5 € D the process
n(8;) =18, t,-)] 0 <t < +00) is progressively measurable and Cp,, 1n, denotes
the class of all continuous processes (¢;| 0 <t < 400) that my < ¢; < my.

Proof Under conditions of Assumption 2 for all functions n : I' — D and for all
e D,(y,u,p)ce R3, we have

GG, n" (S, y,u, p),y,u, p) <maxminG(8,n,y,u, p)
seD nel’
< G(@*(y,u, p).n(8*(y,u, p)), y, u, p).

In addition let ¢*(y) be a Borel measurable function, which maximize (4.5). Then for
alln e N,8 € D, c € [m1,mz2], y € R, we get
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KM By 4y < ) < JCOT )G D)y oy, ).

where

1
KMy, ) = u; + Eaz(ywyy + [i(y) + 18, ma(y)lu,y

_ Yy _
+h(y,$, n)u—i—mggmz( yeu +c’) — wu.

Recall that the solution u satisfies a polynomial growth condition and all conditions
of Assumption 1 are satisfied, which gurantees that for all n € A and § € D

1(8,n(8
]Ey(,t 7o sup |u(Ys)| < o0,

t<s<T

(for the proof see Appendix D of Fleming and Soner [7]). Therfore, we can use the
standard verification argument, which leads us to the conclusion

T )
Ely(isn*(S)) (/ ef: (h(Yk,8k,n™ (8k))—y ck—w) dkC;/dS)

t

* * T o) * *
<u(y.1) < B 1D (/ eli (h(Y’“‘Sk’”(‘Sk))_”c"_w)dkcgds),
t

whichis true forallé € Dandn € NV, ¢ € CAm1 ,my- Here 6m1,m2 denotes the class of all
progressively measurable processes taking values in the interval [m, m3], n*(8) is the
abbreviationof n* (8, Y, u(Y), uy(Y)) and §* is the abbreviation of §* (Y, u(Y), u,(Y)).
For more details about the verfication reasoning, which was used here, see for example
the proof of Theorem 6.1 from Zawisza [22].

This implies that

T
inf sup Eiz(,ét’n(a)) (/ ef,"(h(Yk,ak,n(sk))—yck—w)dkC;/ds)

neN 5ep, ce@ml my t

T
<u(y,t) < sup. in/{/Ely(,i’n(a)) (/ eli (h(Yk"s’“”(‘sk))_yck_w)dkc;'ds).
8€D, c€Cinym, ne t

Since the oposite inequality

T S
wp g ECIO) (/ o (h(Yk,ak,n(ak))_yck—w)dkcxyds)
8eD, ceCA’ml,m2 neN - 1

T
< inf sup Ely(i,n(é)) (/ eft (h(Yk,8k,n(8k))—yck—w) dkc;/ds)
t

ne 8eD, ceé\mlvmz

is always satisfied, we get

T
u(y,t) = sup inj{[Ely(i’”(a)) (/ el (h(y""sk’“‘sk))”ckw)dkads). 4.7
€ t

8€D, c€Cnymy !
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This representation confirms the uniqueness, the boundedness and the strict positivity
of u(y,t).

Finally, we are able to notice that instead of the class €m L.mo 10 (4.7), we can limit
ourselves to the class Cy,, m,, since when u is strictly positive, then the maximum with
respect to ¢ in (4.5) is achieved at

1
—1

mi, it ur=-T(y) <my,
1 1
O = qurT(y) if mp SuvT(y) < my,
1
ma if ur=1(y) > ma,
which is a continuous function. O

It is also possible to rewrite Eq. (4.5) in the following form
1
u; + Eaz(y)uyy + H(y,u,uy) —wu =0,

where

mip=<c<mjp

H(y,u, p)= mag{ynln([t(y)+l(8 ma(y)lp+h(y, s, n)u)+ max (—ycu+cy)~

Lemma 4.2 [f Assumption 1 is satisfied then H is continuous and there exists K > 0
that

|H(y,0,0)| = K,

|H(y,u, p) = H(y, u, p)| < Klu —ul, 4.8)
|H(y,u, p) = H(y,u, p)| < K(1+|pDly =yl

|H(y,u, p) = H(y,u, p)| < K(1+1yDIp — pl.

Proof 1t is sufficient to note thatif D ¢ R", " C RK and f is a continuous function
then

max min ,8,n) —max min f(z, 9, < max max ,8,1m) — f(zZ,8,1)|.
| seD nel’ S 8m) seD nel’ f@é.ml 5eD nel’ | f(z,8,n) — f(Z,68,m)]

O

Theorem 4.3 Suppose that for each T > 0 there exists a unique bounded solution to
(4.5), all conditions of Assumptions 1 and 2 are satisfied with L1 > 0, Ly > 0 and
w > sup, 5 h(y, 8, n) + La. Then there exists a unique bounded solution to

1
74 2(Y)iyy +magl;11n([l(y)+l(5 ma(y)luy +h(y, s, ﬂ)u)

4+  max (—ycu + cy) —wu =0, 4.9)

mjp=c=my

which, in addition, is bounded together with the y-derivative and bounded away from
zero.
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Proof The solution will be constructed by taking the limit in a sequence of solutions
to finite horizon problems (4.5).

Suppose that T > 0 is fixed and let u be the solution to (4.5). To use the Arzel—
Ascolli Lemma we need to prove uniform estimates for # and all its derivatives. We
can use a stochastic control representation to obtain

T S
u(y, 1) = sup inf ]Ely(ivﬂ(a)) (/ ef, (h(Yk,ék,n((Sk))yckw)dkC;/ds)'
8€D, ce€Cpymy 1€ t

Since & is bounded and w > sup,, 5.y h(y, 8, n) then there exists « > 0 that

T
lu(y, )| < sup inf Ei,(i’”(s)) (/ el —e=ver ‘”‘cfds)

8€D, ceCpymy 1€ t

T m)/
< mg/ e gy < —2
t a

A bound for u, will be obtained by estimating the Lipschitz constant. Note that if
w > sup, h(y,n) + La, then wy := w — Ly > sup,, h(y, n). Moreover we will
use the fact that [e* — e¥| < |x — y| for x, y < 0. For a notational convenience we
will write EXG-10)) £(¥,(y, 5)) instead of B\ " £ (¥,).

T ‘
u(y,0) —u(3, 0l < sup  sup EC1O) / cf = i ratla) dk,
c€Cpny.my NEN,8€D t

ef,x(h(Yk(y’t),b‘ka((sk))—wl)dk _ ef,x(h(Yk()_”t),aka(ak))—wl)dk ds

T

S g

< sup  sup ]E’(‘S”?@))/ ) o= I vetLa) dk
Cecml,mz WE.N’,(SED t

/ [h(Yi(y, 1), 8k, n(8k)) — h(Yi(3, 1), 8k, n(dk))| dk ds
t

T .
<Ly sup  sup ]El(‘s’”(‘s))/ e i vendk
c€Cny.my NEN ,8€D t

N
/ e*LZ(“’)IYk(y’ 1) = Yir(y,t)|dkds
t

T
<Lim! sup ]El(a,nw))/
neN,8eD t

N
/ e~ L2tymOG=0D1y, (v 1) — Yi(3, 1)| dk ds.

t

Using the It6 formula we have

k
E'C1O) (v (y, 1) — Yi(3,0))* = (v — $)* + / 2E'C1 () (y, 1) — Yi(3, 1))

t
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LYy, 1) + 16, n(E)aYy(y, 1) —i(Yi(y, 1)) — 18, n(8))aYi(y, 1))]dl

k
+/ ELC1O) (a(yy(y, 1)) —a(Y)(§, 1))*dl.
t

Using (4.4) we have

k
E'CT1O)N (Y (v, 1) — Ye(3,0)* < (v — )? + 2L, / E/C1O) (v (y, 1) — Yi(§, 1))%dl.
t

Gronwall’s lemma yields

ECTON X (y, 5) = V(5. 9)) < (v = §)%? 207,

We should consider now two cases:
Casel L, > 0.

A

T s
Iu(y,t)—u(&,r)|_L1m§|y—y|/ e <—L2—Vm1>dk/ 2% =Dakds  (4.10)
t t

ley B T B o ley _
2Iy—yl/ eymG=n < 2|y — 3.
L, ' ymiLy

Casell L, =0
T S

lu(y, ) —u(F, )| < Lym}|y — y|/ eli Cymidk(s _ s (4.11)
t

T—t
= Lim}|y — y|/O e V"MK kdk

v (T —t)erymT=0 | _ gmymi(T—1)
=Lim; ly — ¥ + .

2,2
ymi y my
Note that above estimates do not depend on the time horizon T (the last one for large
values of 7 — t). We consider new function v(y, t) = u’ (y, T —t), where u” denotes
the solution to equation (4.5) with the terminal condition given at time 7. Then v is a
solution to

1
vy — Eaz(y)vyy —H(y,v,vy) +wv=0

with the initial condition v(y, 0) = 0. From the uniqueness property we get that

! s
v(y,H=u'(y,0)=  sup inf Efv{%”(‘”)(/o e-[d(h(Yk”S"’"(‘S"))_yck_w)dkc;/ds).

8€D, c€Cymy 1

Thanks to that we have an estimate on v;. Namely, let # > 0 be fixed. Observe that for
£E>0

@ Springer



484 Appl Math Optim (2015) 72:469-491

[v(y,t+&) —v(y, 0| < sup sup [I(t+&,y,n,¢) —1(t,y,7m,0)

8€D, c€Cpymy NEN

)

where

! o)
I, y,1n,¢) = Ely(’édn(a)) (/0 eho (h(Yk,Bk,n(Sk))—yck—w)dkc;/ds).

Note that

%(r, v, ¢) = E;(%U(S))ejg(h(Yk,Sk,n(Bk))—yck—w)dkci/.

We assumed that w > Supy 5., h(Yy, 8k, n(8k)), hence there exists § > 0 that for
& > 0 we have

< m}z/e_ﬁt

Mg vmo

- Y, 1, C

> Y.
and finally

<mbe Plig|.

‘I(t—i_s’y’nvc)_l(t’yvnvc)

The above inequality ensures that v;(y, f) is uniformly bounded and v, (y, t) is con-
vergent to 0 (f — 00), uniformly with respect to y.
We have obtained so far uniform bounds for v, v;, vy. Moreover we know that
equation
v — %a2(y)vyy +wv—H(y,v,vy) =0 (y,1) € R x (0, +00), 4.12)
v(y,0)=0 yeR. )

is satisfied, H satisfies (4.8) and az(y) > ¢ > (0. Hence, a proper bound is also satisfied
for vyy.

By the Arzel-Ascolli Lemma, there exists a sequence (¢,,n = 1,2, ...) such that
(v(y, ty),n = 1,2, ...) is convergent to some twice continuously differentiable func-
tion, which will be denoted further also by v(y). What is more, the convergence holds
locally uniformly together with vy (y, #,,) and vy, (y, #,). This indicates that v,vy are
bounded and

1
Eaz(y)vyy + H(ya v, Uy) — wWv = O

The uniqueness follows from the infinite horizon analogue of stochastic representation
4.6). O

Gathering Lemma 4.2 and Theorem 2.1 of Friedman [8] we get that if conditions
of Assumption 1 are satisfied and a # O then for all 7 > 0 there exists a unique
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bounded solution to finite horizon equation (4.5). We are sure that a smooth solution
to equation (4.5) exists under more general conditions but we will treat this problem
elsewhere. Up to the end we assume that a is a nonzero constant. We should focus
now on

1 2 2
54 Fyy+q€r[rla}§R](—9Fq +20aF,q) (4.13)

+ min (li(y) + al (M Fy + h(y, M F) + max (—ycF+c’)—wF =0.
n c>

We have already proved that if h and i are continuous and

Ay, n) —h(G, I+ i) — iG] < Lily — 3,
lh(y, m| < L1, 1iy,m| < Li(1+ |y, (4.14)
= NEG) — i) < Laly — 317, (4.15)

then there exists a nonnegative, bounded and C2%(R) solution to

1> 2
74" Fyy + eI[naRXR]( 6Fq” +20aFyq)

+m1n ([z(y) +al(m1Fy + h(y, MF)+ max (—ycF+c’)—wF =0.

mip<c<my

(4.16)

We denote this solution by F, u,,g. The proof of Theorem 4.3 shows that

mz
le,mz R =
o

where @ 1= w — sup,, A(y, n).

Lemma 4.4 [f fz, i are continuous, a # 0 and (4.14), (4.15) are satisfied then there
exists P > O that

Funyma,r = P, forall0 <my; <1<my, R > 0.
Proof Since Fy,, m,,r is approximated by finite horizon problems, then

FM1,m2,R(}’)

= lim sup sup  inf El(n)(/ fO(h(y" n(80)—0a; —y cx— w)dk( ) ds)
tﬂoocecmlmzqe[ RR]UGM .

> lim inf Ely(%)(/ e-]g(i’(y"’”(‘s"))_y_w)dkds).
’ 0

1—00 ne M

Since w > sup,, , h(y. 8, n), then for p := w + y —inf, , h(y, s, n) > 0 we have
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+00 1
—ps .
Fonymy,R(Y) = (/ e ds) = _— =: P.
0 p

Lemma 4.5 Under the conditions of Lemma 4.4 there exist m} and m; that mj <
1 < m3 and Fyt . R 1 a solution to (4.13). In addition, m} and m} do not depend
on R.

O

Proof Maximum with respect to ¢ in (4.17) is achieved at

=
mi, if F, g <M1
. L L
C o y—1 . y—1
my,my le,mz,R if my < le’m R= nmy,
1
. 7=T
my if le,mz,R >my.

From Lemma 4.4 and Theorem 4.3 we know that

mY
P =< le,mz,R =< .
o
Hence
1
Y\ vr-1
m 1 1
2 - -
(05) < (Fnymy,R) 7T < P77

1 1 Y
In that case we can set m3 := max{P7-T, 1, a?}, m} := (=) 7~". For such m¥, m}

o
we have

max (— ycF,« ,x p+¢’) = max (—ycF, .+ r+cV).
nas ( YCLlmt m% R ) i <em ( VCLlmt m% R )
And the conclusion follows. |

Finally we are able to consider our main equation:

1 2
Easzy + Yy

2Fy2 oy
as + e+

14

am Fy + —2(1 )

+ min | pnakF, +
('71’772)61“( " iy

(1'_.;)/) ()»(y)‘f‘ﬂl)zF)

Fyr)F + (1 —y)F7T —wF =0.

Proposition 4.6 Under the conditions of Lemma 4.4 there exists a unique bounded
together with the y-derivative and bounded away from zero solution to (4.17).
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Proof Ttis sufficient to note that Lemma 4.5 and inequalities (4.10), (4.11) ensure that
R

. . FR .
for all R > 0, there exists F®—a solution to (4.13) such that F—’R is bounded by a
constant which is independent of R. This allows to conclude that there exists R* that
aFk
)7

R < R* and FR" is also a solution to 4.17). O

5 Final Result

Theorem 5.1 Suppose that a # 0 is a constant, g, r, A are Lipschitz continuous
Sfunctions, A, r are bounded and g is of a linear growth condition. In addition let
w > sup,, , h(y, n) + Lo, where

h(y,m =—" ) () +m) +yro,

21—y

1% - p
ar(y) +g(y) + pma +
I—y (I—=y)

i(y,n) = ani.

Then there exists a saddle point (t*(x, y), c*(x, ¥), n*(x, y)) such that

pax By | G:) + i)
(I=pem F " (1=y0)

1
—1

, *(x,y)=F7

T (x,y) = X,

where F is a unique bounded together with the y-derivative and bounded away from
zero solution to (4.17). The term n* is a Borel measurable function which realizes
minimum in (4.17).

Proof 1t follows from Proposition 4.6 that there exists a positive, bounded away from
zero and bounded together with the first y-derivative solution to (4.17).

By the classical measurable selection theorem there exists a Borel measurable
n*(y) € I being realization of the minimum in (4.17). If we set

V(x,y) =2 F(y),

 pax _Fy | GOHmio)x — FT
XY = e F Y T dopety 0 € @)= Frox,

thendueto (3.10)—(3.14), itis sufficient to prove only that (7 * (x, y), ¢*(x, y), n*(x, y))
is an admissible Markov saddle point and conditions (3.6) and (3.7) hold. Let

- , :=Fﬁ.
T=pem F T U=powm = 2

¢1(y) =

Note that ¢ - (b —r), ¢1 - o, and &, are bounded functions since A and A2 are bounded.
Therefore, the process Z; := X; ' is a unique solution to the equation

dZ, =[5 XY)OX;) —r (X)) +maY)o (Yy) — &(Y)]1Zdt + §1(Yt)U(Yt)thW;1’n-
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This is a linear equation with bounded stochastic coefficients, which implies that

IEQg sup (X;T*’C*)y < 400,

T 0<s<T

for all n € M. This confirms the admissibility of (7 *(x, y), ¢*(x, y)).
In addition X7 ¢ is strictly positive and this ensures that (3.6) holds. Condition
(3.7) is satisfied since F' is bounded and for any x, y € (0, +00) x R,

EPT sup V(X7 Y| =ELT sup (X7€)|F(Y)| < +oc.
0<s<T 0<s<T

Examples
We can apply our main result to the following (¢ modifications) of standard stochastic
volatility models:

e The Scott model:

dS; = bdt + VeV +edW!, &> 0,
dY, = (k — 0Y,)dt + pdW}! + pdW?2.

e The Stein and Stein model:

dS; = bdt + (|Y;| +&)dW,!, &>0,
dY, = (k — 0Y,)dt + pdW}! + pdW?.

6 Negative HARA Parameter Case

It is easy to check that for a negative HARA parameter (y < 0), HIBI equations

max max min(L" "V (x, y) —wV (x, y) + —)
meR ¢>0 nell

¢
= min max max(L""V (x, y) —wV(x, y) + —) =0
nel 7eR ¢>0 14

have a trivial solution equals 0. This may suggest that the problem is ill posed. Indeed,
a careful analysis of the investor’s objective function

ATy y ot (Ct)y

v

m,c,n _ H n,t
s, y) = lim B, | .

shows that there is no saddle point for that problem, since there is no constraint for
the consumption process. Therefore we might consider a constrained problem, which
is based on the following investor’s objective:
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ATy y b X”’E v
JTC(x, y) = hm ]Ezty/ e_wtudt,
0 14

where the dynamics of the investor’s wealth process (X f’g, 0 <t < 400) is given by
the stochastic differential equation

dX, = (r(YDX, + 1, (b(Y;) — r(Y)dt + w0 (Y)dW, — ¢ X,dt.

In that problem we assume that the consumption is proportional to the wealth i.e.
- 7T,C . - . .
c¢; = ¢; X; " . We interpret the process ¢; as a consumption rate and assume it belongs
to the class iy m, -
After considering HIBI equation and after several transformations (as in (3.10)—
(3.14)) we get the equation:

2

1 pzy F
EaZ(Y)Fyy + 2(1—_7/)02@) 7 (g(y) + a(Y))»(Y)) 6.1)
5 P 4 2
Fy+ — F — (A F
+ (nmazliier(pnza(y) y Tt 1= y)a(y)m y + 20— y)( () +m) )
+yr(y)F 4+ min ( ycF +EV) —wF =0.
mj=<c<mj

This may be rewritten into

1
Eaz()))uyy + max rnneip (L) + 16, ma(y)]uy + h(y, 8, m)u) (6.2)

+ min (—ycu+c")—wu=0,

mip=c=mp

where D c R", T’ C RF are compacts.
We have the following theorem

Theorem 6.1 Suppose that for each T > 0 there exists a unique bounded solution
to (4.5), all conditions of Assumption 1 and Assumption 2 are satisfied with L1 > 0,
Ly = 0and w > sup,, 5, h(y, 8, n) — yma + Lo. Then there exists a unique bounded
solution to (6.2) which, in addition, is bounded together with the y-derivative and
bounded away from zero.

Proof In the light of the proof of Theorem 4.3 it is sufficient to find estimates for u
and u,, where u is given by

T "
u(y,t) = sup inf ]Ely(az’n(é)) (/ el (h(Yk"Sk’”(‘Sk))_Vck_w)dkcgds).
seDNeN, c€Cujmy ¢

Since £ is bounded and w > sup,, 5  h(y, 8, n) —yma+ L then there exists o > 0
that

T s
lu(y, t)| < sup inf E’yﬁvﬂ) (/ ol —adkC;/dS)
t

seDNEN, Eecml,mz
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T m?
< m}l// e =gy < 1
t a

The bound for u, will be obtained by estimating the Lipschitz constant. Note that if
w > sup, \ h(y,n) —ymz+ Ly, then there exists w; that w > wy > sup, , h(y,n) —
ymy + Ly. We need also a separate notation for wy := wy — Lj.

T S
lu(y,t) —u(y, )| < sup sup El(‘s”’(‘s))/ c";efft (w—wi+Lo)dk
c€Cny my neN,8eD t

eff(h(Yk(y,t),Sk,ﬂ(t?k))—wz)dk _ eff(h(Yk()_ul),Sk,n(Sk))—wz)dk ds

IA

T ‘
sup  sup  ENEAG) / o o I w1 L) dk
c€Cny.my NN ,6€D t

/ [h(Yi(y, 1), 8k, n(8k)) — h(Y(V, 1), 8k, n(8k)) | dk ds

t

T

s

Ly sup  sup E’(‘S’”(‘”)/ o o= I w=wi+Lo) dk
Cecml.mz UEN,SE'D t

IA

5
/ Ve, 1) — Yo, 0)] dk ds
t

T ps
<L’ sup ]El(a,n@))/ / e~ =0I+L)E=0 |y (4 )
neN,seD t t

— Yi(3, )| dk ds.

The rest of the proof is just a simple repetition of the proof of Theorem 4.3. O
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