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Geometric properties of semitube domains
Abstract: We study the geometry of semitube domains in ℂ2, in particular we extend the result of Burgués
and Dwilewicz for semitube domains by dropping the smoothness assumption. We also prove various prop-
erties of non-smooth pseudoconvex semitube domains, obtaining a relation between pseudoconvexity of a
semitube domain and the number of components of its vertical slices. Finally, we present an example of a
non-convex domain in ℂn such that its image under arbitrary isometries is pseudoconvex.
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1 Introduction
A theorem of Bochner states that a tube domain in ℂn is pseudoconvex if and only if it is convex. This fact
is a starting point for our considerations. In [1] a similar problem was considered for semitube domains —
domains that are invariant in one real direction (they were considered in ℂ2). Formally the semitube domain
(set) with the base B being a domain (set) lying inℝ3 is de�ned as follows

SB := {z ∈ ℂ2 : (z1, Re z2) ∈ B},

which may be rewritten as B × ℝ. We observe that there is no direct analogue of the Bochner theorem in the
class of semitube domains; this follows easily from the fact that any domainD ⊂ ℂ induces a pseudoconvex
domain of the form SD×(0,1). However, it was recently proven by Burgués and Dwilewicz that some additional
requirement implies the convexity of a semitube domain. Namely, the main result of [1] is that under the
additional assumption of smoothness any domain D ⊂ ℝ3 such that for any isometry A of ℝ3 the semitube
domain SA(D) = A(D) × ℝ is pseudoconvex must be convex. The main aim of our paper is to prove this result
without the smoothness assumption. The methods used in our paper are also quite di�erent.

Theorem 1. Let D ⊂ ℝ3 be a domain such that the semitube SA(D) is pseudoconvex for any isometry A of ℝ3.
ThenD is convex.

Another natural question that arises while considering semitube domains is the problem whether one
can exhaust any pseudoconvex semitube domain with smooth semitube domains. This is the case:

Theorem 2. Any pseudoconvex semitube domainG ⊂ ℂ2 can be exhausted by C∞-smooth strongly pseudocon-
vex semitube domains.

The mapping ð : ℂ2 ∋ z ÜÚ→ (z1, exp(z2)) ∈ ℂ
2 induces a holomorphic covering between semitube

domains SD and Hartogs–Laurent domains ð(SD). We call a domain G ⊂ ℂ2 a Hartogs–Laurent domain if
any non-empty �ber {z2 ∈ ℂ : (z1, z2) ∈ G} is some union of annuli, i.e. sets of the form {z2 ∈ ℂ : r <
|z2| < R} with 0 ≤ r < R ≤ ∞. The projection of G on the �rst coordinate is called the base of the domain.
The mapping ð induces a one-to-one correspondence between those two classes of domains as stated in the
following proposition.
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Proposition 3. Let ð be as above. Then the function SD ÜÚ→ ð(SD) is a one-to-one correspondence between the
class of all pseudoconvex semitube domains inℂ2 and the class of all pseudoconvex Hartogs–Laurent domains
in ℂ2.

Proof. Let the domain SD be pseudoconvex. Then u := − log dSD ∈ PSH(SD), where dG is the distance to the
boundary of G. Since u does not depend on Im z2, the function v given by the formula v(z) := u(z1, log z2),
z ∈ ð(SD), is well-de�ned and plurisubharmonic on ð(SD). Therefore,

ṽ(z) := max{v(z), ‖z‖, − log |z2|}, z ∈ ð(SD),

is an exhaustion plurisubharmonic function for ð(SD). The other implication is trivial. 2

The above observation shows that there is a very natural relation between (pseudoconvex) semitube do-
mains and (pseudoconvex) Hartogs–Laurent domains. There is a very rich literature on that class of domains
(see e.g. [5]) which shows that many properties of pseudoconvex semitube domains may be obtained from
the properties of pseudoconvex Hartogs–Laurent domains. In particular, very irregular Hartogs–Laurent do-
mains (like the worm domains in [2]) produce very irregular pseudoconvex semitube domains.

2 Proofs of Theorem 1 and Theorem 2
Proof of Theorem 1. Suppose thatD is not convex. The idea of the proof is the following. We �nd a sequence
of parallel segments of constant length lying in the domain D and such that the limit segment I intersects
the boundary at some inner point, whereas the boundary of the limit segment lies in the domain. Then we
rotate the domain D so that I becomes parallel to the Re z2 axis. The image of the rotated semitube domain
under ð is a pseudoconvex Hartogs–Laurent domain with a sequence of annuli lying in the domain. The
pseudoconvexity of the Hartogs–Laurent domain leads to a contradiction with the Kontinuitätssatz.

Let us proceed now formally. By [3, Theorem 2.1.27] there is a point a ∈ àD and a quadratic polynomial P
onℝ3 such that

∙ P(a) = 0 and v := ∇P(a) ̸= 0;
∙ ⟨v, X⟩ = 0 and C := −HP(a; X) > 0 for someX ∈ ℝ3;
∙ P(x) < 0 implies x ∈ D for x ∈ ℝ3 near a.

By ∇ andH we denoted the gradient and the Hessian. One may assume that ‖v‖ = 1.
For ù ≥ 0 and ä ∈ ℝ such that (ù, ä) ̸= (0, 0), ùHP(a; v) ≤ 1 and 4|ävTHP(a)X| ≤ 1, we have

P(a − ùv + äX) = P(a) + ⟨∇P(a), −ùv + äX⟩ +
1
2
HP(a; −ùv + äX)

= −ù +
1
2
HP(a; −ùv) +

1
2
HP(a; äX) − ùävTHP(a)X

≤ −ù +
1
2
ù2HP(a; v) −

1
2
Cä2 +

1
4
ù ≤ −

1
2
ù −

1
2
Cä2 +

1
4
ù < 0.

It means that a − ùv + äX ∈ D if this point is su�ciently close to a (i.e. if (ù, ä) is su�ciently close to (0, 0) but
not equal to (0, 0) and ù ≥ 0). In particular, there exists a closed non-degenerate rectangle R ⊂ ℝ3 such that
a ∈ àR ∩ àD, the point a is not a vertex of R and R \ {a} ⊂ D.

There is an isometryA such thatA(R) = [á, â]× {0}× [á�, â�] ⊂ ℝ3 andA(a) ∈ {á, â}× {0}× (á�, â�) for some
real numbers á < â and á� < â�; without loss of generality we assume thatA(a) ∈ {(â, 0)}× (á�, â�). Recall that
SA(D) is pseudoconvex. Recall also that the Hartogs–Laurent domain Ø := ð(SA(D)) ⊂ ℂ

2 is pseudoconvex;
because of the form of A(D) we get a family of holomorphic mappings

fb(ë) := (b, ë), ë ∈ A(eá
�
, eâ

�
), b ∈ [á, â], whereA(p, q) := {ë ∈ ℂ : p < |ë| < q},

such that
⋃

b∈[á,â)
fb(A(e

á�
, eâ

�
)) ⊂ Ø and ⋃

b∈[á,â]
fb(àA(e

á�
, eâ

�
)) ⊂⊂ Ø.
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However, fâ(A(eá
�
, eâ

�
)) ̸⊂ Ø, which contradicts the Kontinuitätssatz as formulated in [4, Theorem 4.1.19]. 2

Proof of Theorem 2. Let u := − log dG ∈ PSH(G) and Gù := {z ∈ G : dG(z) > ù} for ù ∈ (0, 1). De�ne the standard
regularisations uù of u with the help of convolution with radial functions. We have uù ∈ PSH ∩ C

∞(Gù) and
uù ↘ u if ù ↘ 0. Moreover, uù does not depend on Im z2.

For ù ∈ (0, 1) and ä > 0 de�ne

ũù(z) := uù(z) + ù‖(z1, Re z2)‖
2, G̃ù,ä := {z ∈ Gù : ũù(z) < 1/ä}.

Note that G̃ù,ä ⊂ Gù for ä > −1/ log ù. Indeed, if zn ∈ G̃ù,ä, zn → z, then u(zn) ≤ ũù(zn) < 1/ä < − log ù, so
u(z) < − log ù.

By the Sard Theorem for every ù > 0 the setAù of all real numbers ä > 0 such that ∇ũù(z) ̸= 0 if ũù(z) = 1/ä
is dense in ℝ+. For n ∈ ℕ we choose a number ä1/n such that ä1/n > −1/ log(1/n) and ä1/n ∈ A1/n. Since the
minorants −1/ log(1/n) tend to zero, we may assume additionally that ä1/n ↘ 0 as n ↗ ∞. Then we de�ne

G̃1/n := G̃1/n,ä1/n .

The following properties

∙ ũ1/n − 1/ä1/n are C∞-smooth strongly plurisubharmonic de�ning functions of G̃1/n

∙ ũù are independent on Im z2
imply that the sets G̃1/n are open C∞-smooth strongly pseudoconvex semitube sets. We directly check that
G̃1/n ⊂ G̃1/m ⊂ G if n < m and that every z ∈ G belongs to some G̃1/n.

Finally, we �x z ∈ G and de�ne Gn as the component of G̃1/n containing z. Then Gn ⊂ Gn+1 ⊂ G and
⋃n Gn = G; indeed, let x ∈ G, take a curve ã ⊂ G joining x and z, then ã ⊂ G̃1/n1 ∪ ⋅ ⋅ ⋅ ∪ G̃1/nm = G̃1/max nk and
x ∈ ã ⊂ Gmax nk . 2

LetD ⊂ ℝ3 andG = SD. The construction of the objects in the proof of the above result shows that the sets
SA(P(Gn)), where P : ℝ4 Ú→ ℝ3 is the projection, are strongly pseudoconvex domains exhausting the domain
SA(D) for any isometry ofℝ3. Thus Theorem 1 follows from the same result for the strongly pseudoconvex case
contained in [1]. However, it seems to us that the proof of Theorem 1 presented by us is simpler and more
self-contained.

3 More problems related to semitube domains
Note that the reasoning used in the proof of Theorem 1 also implies the following property of pseudoconvex
Hartogs–Laurent and semitube domains.

Proposition 4. Let G ⊂ ℂ2 be a pseudoconvex Hartogs–Laurent domain with the base Ø ⊂ ℂ. Consider the
function

t : Ø ∋ z ÜÚ→ number of components of Gz,

where Gz := G ∩ ({z} × ℂ). Then t is lower semicontinuous.
Consequently, if D ⊂ ℝ3 is such that SD is a pseudoconvex semitube domain, then the function

s : D1 ∋ z ÜÚ→ number of components ofD ∩ ({z} × ℝ),

whereD1 := {z ∈ ℂ : D ∩ ({z} × ℝ) ̸= 0}, is lower semicontinuous.

Proof. Fix z0 ∈ Ø. Letw1, . . . , wk ∈ Gz0 be points from di�erent components ofGz0 . Using the Kontinuitätssatz
for the annuli (as in the proof of the previous theorem) we easily get that for z ∈ Ø su�ciently close to z0 the
number of components of Gz is at least k, which �nishes the proof. The case of semitube domains follows
from the case of Hartogs–Laurent domains by applying the result for the domain ð(SD). 2
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Note that the above property easily implies that the semitube domain over the torus in a ‘vertical position’
(and many others) as described in Section 6.4 of [1] is not pseudoconvex.

In view of Theorem 1 it would also be interesting and natural to consider the following problem. Let
D ⊂ ℂn be a domain satisfying the following condition: for every real isometry A of ℂn = ℝ2n the set A(D) is
pseudoconvex. Does it follow that D is convex? Certainly the problem is non-trivial for n ≥ 2. We show now
that the answer is negative for n ≥ 2, too.

Proposition 5. Let n ≥ 2. Then there is a non-convex domainD ⊂ ℂn such that A(D) is pseudoconvex for every
real isometry of ℂn = ℝ2n.

Proof. First we consider a class of functions de�ned on domains Ø ⊂ ℝm with m ≥ 2. We call an upper
semicontinuous function u : Ø Ú→ [−∞,∞) multisubharmonic if u restricted to Ø ∩ (L + a) is subharmonic
for every two-dimensional subspace L ⊂ ℝm and a point a ∈ ℝm such that Ø ∩ (L + a) ̸= 0. Let us make the
last statement precise: the function u onØ ∩ (L + a) is considered to be subharmonic if for some (any) pair of
vectorsX and Y forming an orthonormal basis of L the function (t, s) ÜÚ→ u(a + tX+ sY) is subharmonic on its
domain (lying inℝ2). Certainly, in the case of u being C2 we have the following simple description:

ÄX,Yu(a) :=
à2u
àX2 (a) +

à2u
àY2 (a) ≥ 0

for X, Y ∈ ℝm, ||X|| = ||Y|| = 1, ⟨X, Y⟩ = 0 and a ∈ Ø. It is clear that any multisubharmonic function (in
ℂn = ℝ2n) is plurisubharmonic and that these two concepts are the same in ℂ.

Form ≥ 2 and á ∈ (0, 1] consider the following function

u(x) :=
1
2
(x2

1 + ⋅ ⋅ ⋅ + x
2
m−1 − áx

2
m).

We have
ÄX,Yu(a) = X

2
1 + ⋅ ⋅ ⋅ + X

2
m−1 − áX

2
m + Y

2
1 + ⋅ ⋅ ⋅ + Y

2
m−1 − áY

2
m.

Then for every orthonormal pairX, Y we get ÄX,Yu(a) = 2 − (1 + á)(X
2
m + Y

2
m). Note that

(1 − X2
m)(1 − Y

2
m) = (X

2
1 + ⋅ ⋅ ⋅ + X

2
m−1)(Y

2
1 + ⋅ ⋅ ⋅ + Y

2
m−1) ≥ (X1Y1 + ⋅ ⋅ ⋅ + Xm−1Ym−1)

2 = X2
mY

2
m,

whenceX2
m + Y

2
m ≤ 1 and ÄX,Yu(a) ≥ 1 − á, so u is multisubharmonic.

Now we de�ne the set
D := {z ∈ ℂn : u(z) < 1} (m := 2n).

Note thatD is connected and non-convex. It follows from the multisubharmonicity of u that A(D) is pseudo-
convex for every real isometry A. 2
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