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Abstract

Recent astronomical observations strongly indicate that the cur-
rent Universe is undergoing an accelerated phase of expansion. The
discovery of this fact was unexpected and resulted in the comeback
of cosmological constant. The conception of standard cosmological
model has its roots in this context. The paper relates to the method-
ological status of effective theories in the context of cosmological in-
vestigations. We argue that the standard cosmological model (LCDM
model) as well as the CDM have a status of effective theories only,
similarly to the standard model of particle physics. The LCDM model
is studied from the point of view of the methodological debate on re-
ductionism and epistemological emergence in the science. It is shown
in the paper that bifurcation as well as structural instability notion
can be useful in the detection of emergence the LCDM model from
the CDM model. We demonstrate that the structural stability of the
LCDM model can explain the flexibility of the model to accommo-
dation of the observational data. We show that LCDM model can
be derived from CDM as the bifurcation. It is an example of acausal
derivation of Lambda term. The case study of emergence of LCDM
model suggests that it can be understood in terms of bifurcation and
structural stability issue. The reduction from the upper models repre-
sented in terms of dynamical system to low-level ones can be realized
in any case by application of a mathematical limit (boundary cross-
ing) with respect to the model parameter. It is a simple consequence
of mathematical theorem about smooth dependence solutions with
respect to time, initial condition and the parameters.
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1. Introduction

Recent astronomical observations of distant type SNIa supernovae strongly
indicate that the current Universe is undergoing an accelerated phase of ex-
pansion [1, 2]. If the Universe’s evolution is described by homogeneous and
isotropic models filled with a perfect fluid, then the acceleration should be
driven by a perfect fluid violating the strong energy condition. If different
candidates for a fluid termed dark energy are suggested, the simple candi-
date for the dark energy in the form of positive cosmological constant seems
to be the best one [19]. While the Lambda CDM model is a suitable to
phenomenologically describe the acceleration phase of the expansion of the
Universe there is a serious problem with the interpretation of the Lambda
term as a quantum vacuum energy due to the fine tuning problem. Our
studies show that when the LCDM has the status of an effective theory,
which offers description of the observational facts rather than their expla-
nation, it introduces principally a new theoretical element which plays the
role of an effective parameter changing the dynamics dramatically.

Our main result is that structural stability notion taken from the dy-
namical system theory may be useful in our understanding of the emer-
gence of CDM to LCDM model as well as in understanding the reduction
of LCDM to CDM one. We argue that the concepts of structural stability
might be a suitable setup for the methodology of cosmology discussion and
that the notion of bifurcation successfully replaces the notion of emergence.

The LCDM model should in our opinion be treated as an effective the-
ory for the following reasons. Firstly, theory of gravity which describes
the gravitational sector of cosmology is very complicated, but if we pos-
tulate some simplified assumption like symmetry assumption idealization,
then we obtain the simplest model which can be represented in the form of
the dynamical system. In the cosmology, assumption of homogeneity and
isotropy of space like sections of constant cosmic time (t = const) seems
to be justified by the distribution of large scale structure of astronomical
objects (cosmological principle). If we assume that universe is homogeneus
and isotropic the evolution of it is determined by a single function of a(t)
called the scale factor. If we postulate that source of gravity is in the form
of perfect fluid with energy density ϱ(t) and pressure p(t), then Einstein
field equation reduces to the ordinary system of differential equation deter-
mining a single function a(t). These equations called Friedmann equations
FRW model describe the evolution of the Universe at the large scale. Note
that this is impossible basing on general relativity without the symmetry
assumption where there is universal time conception. Finally, the general
acceptance of the LCDM model as working is a good strategy [4] but one
may also seek alternative physics (pragmatism).

2. Structural stability issues

If the space satisfies cosmological principle then Einstein field equations can
be reduced to the system of ordinary differential equations, i.e. dynamical
systems. Hence the dynamical system methods to the cosmology could be
applied to cosmology in a natural way. The application of these methods
allows us to reveal some stability properties of particular model visualized
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in geometrical way as the trajectories in the phase space. Therefore one
can see how large the class of solutions leading to the desired property in
tools of the attractors and the inset of limit set is (an attractor is a limit
set with an open inset – all the initial conditions that end up in the some
equilibrium state). The attractors are the most prominent experimentally.
It is because the probability of an initial state of the experiment to evolve
asymptotically to the limit set is proportional to the volume of inset.

The idea, now called structural stability, emerged early in the history of
dynamics investigation in 1930s the writings of Andronov, Leontovich and
Pontryagin in Russia (1934) [5] (the authors do not use the name structural
stability, but rather the name ”roughly systems”). This idea is based on an
observation of an actual state of the system which can never be specified
exactly and application of the dynamical systems might be useful anyway
if it can describe the features of the phase portrait that persist when the
state of the system is allowed to move around.

Among all dynamicists there are shared prejudices that: (1) there is
a class of phase portraits that are far simpler than arbitrary ones. It ex-
plains why a considerable portion of the mathematical physics has been
dominated by the search for the generic properties. The exceptional case
should not arise very often in application and they de facto interrupt discus-
sion (classification); (2) The physically realistic models of the world should
possess some kind of the structural stability because having so many dra-
matically different models all agreeing with observation would be fatal for
the empirical method of science (see also [6, 7].

These prejudices can in the Holton’s terminology be treated as thematic
principles [8, 9]. In the cosmology a property (for example acceleration) is
believed to be ”physically realistic” if it can be attributed by the generic
subsets of the models within a space of all admissible solutions or if it
possesses a certain stability, i.e. if it is shared by a ”epsilon perturbed
model”.

The dynamical system is called structurally stable if all δ-perturbation
of it (sufficiently small) have the epsilon equivalent phase portrait. There-
fore for the conception of structural stability we considered a δ-perturbation
of vector field determined by the right-hand sides of the system which is
small (measured by delta). We also need a conception of the epsilon equiv-
alence. It takes the form of topological equivalence–a homeomorphism of
the state space preserving the arrow of time on each trajectory. In the def-
inition, the structural stability considers only the deformation of ”rubber
sheet” type stretches or slides the phase space a small amount measured
by epsilon. The main advantage of the structural stability is that it is the
characterization of global dynamics itself.

Recently properties of structural stability of cosmological models were
investigated by S. Kokarev [10]. In the introduction to the paper, the author
claims that the history of cosmology shows that corrections of cosmological
models are realized mainly by the sequence of their, in a sense ”small”,
modifications and some of them may ”survive” after small changes, while
others may disappear. In the former case the property is referred to as
”rough” or structurally stable, in the later one – ”thin” or structurally un-
stable. The author studies how some model properties, like singularities for
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example, will be present in the model if we ”perturb” the model (e.g. gen-
eralize the Lagrangian of General Relativity). In our approach the property
of structural stability is the property of the model itself. Also the type of
perturbations is not specified (epsilon perturbation idea). Therefore, if we
prove the structural instability of CDM model, the result will not depend
on the choice of the type of perturbation. Then the property of structural
stability becomes its constitutive property at the very beginning without
restriction to the class of perturbation induced by considering new theories
with generalized Lagrangian.

The idea of structural stability attempts to define the stability notion
of differential deterministic models of the physical processes. In the case
of planar dynamical systems (as in the case of models under consideration)
there Peixoto theorem is true (Peixoto 1982) [11] which states that struc-
turally stable dynamical systems form open and dense subsets in the space
of all dynamical systems defined on the compact manifold. This theorem
is a basic characterization of structurally stable dynamical systems in the
plane which offers the possibility of the exact definition of generic (typical)
and nongeneric (exceptional) cases (properties) by means of the notion of
structural stability. Unfortunately there is no counterpart of this theorem
in a more dimensional case when structurally unstable systems can also
form open and dense subsets. For our aims, it is important that Peixoto
theorem can give the characterization of generic cosmological models in
terms of potential function V of the scale factor a which determine the
motion of the system of Newtonian type: ä = −∂V

∂a .
Therefore we can treat FRW equation with various forms of dark energy

as the two-dynamical system which looks like Newtonian type where the
role of coordinate variable is played by the cosmological radius (or redshift
z: 1 + z = a0

a ≡ x−1). We can construct an effective potential (the second
order acceleration equation has exactly the Newtonian form) where the role
of a coordinate variable is played by the cosmological radius.

Using the term of the structural stability first introduced by Andronov,
Leontovich and Pontryagin in 1930s, one can classify different models of
cosmic acceleration. It will be demonstrated that models with the acceler-
ating phase which follow the deceleration are natural and typical from the
point of view of the dynamical systems theory combined with the notion of
structural stability in contrast to the models with bounces.

Let us introduce the following definition:

Definition 1 If the set of all vector fields f ∈ Cr(M) (r ≥ 1) having a
certain property contains an open dense subset of Cr(M), then the property
is called generic.

From the physical point of view it is interesting to know whether certain
subset v of Cr(M) (representing a class of cosmological accelerating models
in our case) contains a dense subset because it means that this property
(acceleration) is typical in V .

It is not difficult to establish some simple relation between the geometry
of potential function and the localization of critical points and its character
for the case of dynamical systems of Newtonian type:
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1. The critical point of the system under consideration ẋ = y, y = −∂V
∂x

lies always on x-axis, i.e. they represent static universe y0 = 0, x = x0;

2. The point (x0, 0) is a critical point of the Newtonian system if it is a
critical point of the potential function V (x), i.e. V (x) = E (E is total

energy of the system E = y2

2 + V (x); E = 0 for the case flat models

and E = −k
2 in general);

3. If (x0, 0) is a strict local maximum of V (x), it is a saddle type critical
point;

4. If (x0, 0) is a strict local minimum of the analytic function V (x), it is
the center;

5. If (x0, 0) is a horizontal inflection point of the V (x), it is a cusp.

Therefore the geometry of potential function determines the critical
points as well as its stability. The integral of energy defines the algebraic
curves in the phase space (x, y) which are representing the evolution of the
system with time. In any case the eigenvalues of the linearization matrix

satisfy the characteristic equation λ2 + ∂2V
∂x2 |x=x0 = 0.

3. Cosmological models as dynamical systems

Cosmology is based on the Einstein field equation which represents a very
complicated system of partial nonlinear differential equations. Fortunately,
the majority of main class of cosmological models from the point of view of
observational data, belong to the class of the spatially homogeneous ones,
for which the absolute cosmological time makes sense. As a consequence,
the evolution of such models can be reduced to the systems of ordinary dif-
ferential equations. Hence the methods of dynamical system theory or qual-
itative theory of differential equation can be naturally applied to cosmology.
Among these classes of models especially interesting are the cosmological
models with maximally symmetric space sections, i.e. homogeneous and
isotropic. They are called FRW models (Friedmann-Robertson-Walker) if
source of the gravity is a perfect fluid described in terms of energy density
ϱ and pressure p, both are the functions of cosmological time t. The FRW
dynamics is described by two basic equations:

ä = −1

6
(ϱ+ 3p)a = −∂V

∂a
(1)

ϱ̇ = −3H(ϱ+ p); , (2)

where the potential V = −1
6ϱa

2, a is the scale factor and H = d ln a/dt is
Hubble’s function, an overdot means the differentiation with respect to the
cosmological time t.

The first equation is a consequence of the Einstein equations for the
component (1,1), (2,2), (3,3) and the energy momentum tensor Tµ

ν =
diag | − ϱ, p, p, p|. This equation is called the Raychaudhuri or accelera-
tion equation. The second equation represents the conservation condition
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Tµ
ν;µ = 0. It is very strange and unreasonable that such two simple equa-

tions satisfactorily describe the Universe’s evolution at the large scales.
Of course there is a more general class of cosmological models called the
Bianchi models which have only the symmetry of homogeneity, but they
fail to describe the current Universe which is isotropic as indicated mea-
surement of the cosmic microwave background (CMB) radiation.

The system of equations (1) and (2) admits the first integral called the
Friedmann equation

ϱ− 3H2 = 3
k

a2
, (3)

where k is curvature constant (0,±1) and ϱ plays the role of effective energy
density.

If we consider the Lambda CDM model, then

ϱeff = ϱm,0a
−3 + Λ, (4)

i.e. energy density is the sum of dust matter (cold) and dark energy. There-
fore the potential function for the flat FRW model assumes the following
form:

V = −ϱeffa
2

6
= (−){ϱm,0a

−1 + Λa2}. (5)

Formally the curvature effects as well as the cosmological constant term
can be incorporated into the effective energy density (ϱk = − k

a2
; ϱΛ = Λ;

pΛ = −Λ, pk = −1
3ϱk).

The form of equation (1) suggests the possible interpretation for the
evolutional paths of cosmological models as a motion of a fictitious parti-
cle of unit mass in a one-dimensional potential parameterized by the scale
factor. Following this interpretation the Universe is accelerating in the
domain of configuration space {a : a ≥ 0} in which the potential is a de-
creasing function of the scale factor. In the opposite case if potential is a
growing function of a the Universe is decelerating. The limit case of zero
acceleration corresponds to an extremum of the potential function.

4. Emergence of the LCDM model from the CDM model in
the framework of structural stability

It should be mentioned that the notion of emergence applied to physics
shows quite different results than in philosophy. We suggest that while
having philosophical flavor, the emergence notion should be treated in phi-
losophy of science with great caution. It appears to be used in physics
rather in a colloquial and informal way and emergence in the context of
the cosmology, as we show in this paper, does not mean irreducibility or
unpredictability.

The dynamical system investigation of the solutions of differential equa-
tions shifts its key point from founding and analyzing of individual solutions
to investigating the space of all solutions for all admissible initial conditions,
in the geometrical language of the phase space. Certain property (such as



Dynamical Emergence of FRW Cosmological Models 183

acceleration, singularities, etc.) is believed to be realistic if it can be at-
tributed to a large subset of models within the space of all solutions [7].
The evolutional scenarios are represented by the phase curves or by critical
points, limit circles or other limit sets. We say that two dynamical systems
(or equivalently vector fields), say f(x) and g(x)) are equivalent, if there
is an orientation preserving homeomorphism sending integral curves of f
into those of g. Of course this equivalence relation divided space of all
dynamical systems on the plane on disjoint class of abstraction. Let phase
space E = Rn, then ϵ - perturbation f is the function g ∈ C1(M) satisfying
∥f − g∥1 < ϵ; where M is open subset of Rn and ∥...∥1 is C1 norm form
the Banach space. In the introduced language it is natural to formulate an
idea of structural stability. The intuition is very simple, namely f is struc-
turally stable vector field if for any vector field f and g are topologically
equivalent. Then one can define the property of structural stability of the
system.

Definition 2 A vector field f ∈ C1(M) is called structurally stable if there
is an ϵ > 0 such that for all g ∈ C1(M) with ∥f − g∥1 < ϵ, f and g are
topologically equivalent on open subset Rn called M.

The 2-dimensional case is distinguished by the fact that the Peixoto
theorem (1962) gave a complete characterization of structurally stable sys-
tems on any compact, two dimensional space asserts that they are generic,
i.e. forms open and dense subsets in the space of all dynamical system on
the plane [11].

While there is no counterpart to the Peixoto theorem in higher di-
mension, it can be easy used to test whether such dynamical systems or
cosmological origin has a structurally stable global phase portrait. In par-
ticular, a vector field on the Poincaré sphere will be structurally unstable
if there are non-hyperbolic critical points at infinity on the equator of the
Poincaré sphere. In the opposite case if additionally the number of critical
points and limit cycles is finite, f is structurally stable on S2.

In the next section we prove that the CDM model is structurally un-
stable (therefore exceptional in the space of all dynamical systems on the
plane) and its transition (which we called emergence) to the Lambda CDM
model means such perturbation of the CDM system that new perturbed
system is structurally stable (therefore generic).

5. Emergence of new properties of the model through a bi-
furcation

In our discussion it would be useful to consider a common approach to
reduction in physics, so called deductive criterion of reducibility of Nagel
[13]. In this concept reduction is a relation of derivation between upper-
level and base-level theories. This is exactly our point of view from the
case study of cosmology as based on the dynamical systems theory that
the dynamical model from upper-level can be smoothly reduced to the
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Figure 1: The phase portraits for different perturbations of the CDM model
– from the left: 1) the LCDM model with the positive cosmological con-
stant, 2) the LCDM model with the negative cosmological constant, 3)
the CDM model with the vanishing cosmological constant. Note that only
the systems with the cosmological constant are structurally stable, while
the CDM model is unstable because of the presence of degenerated critical
points at the circle at infinity (case 3). The right figure represents the Ein-
stein static universe (x, ẋ) = (∞, 0). The critical point (0,∞) represents
the big-bang singularity (an unstable node).

base-level one through the boundary crossing1. It is the example of a case
where the emergence and reduction coexist.

Let us consider two models which must be connected using the cos-
mological parameter. This parameter plays the role of control parameter
in the model and we assume that it assumes zero (vanishes) in the basal
model. We are looking for weakly emergent properties of the model which
can be derived (via bifurcation) from the complete knowledge of the basal
model information. In order to do so we use bifurcation theory, from which
information about new unveiling properties of the system can be predicted,
at least in principle as we change the control parameter. Then in princi-
ple we can derive the system behavior because we can perform bifurcation
analysis answering the question how the structure of the phase space qual-
itatively changes as parameter Λ is moved. Due to bifurcation we can not
predict its future behavior with complete certainty (because there are to
possible predictions concerning the value of cosmological constant; Λ > 0 or
Λ < 0). Such a point of view seems to be very close to traditional concep-
tions of emergence (Broad, Popper, Nagel) that focus on unpredictability
properties of upper-level model even given complete basal information. In
the case of LCDM model novelty element is related with Λ-term, which
emerges as a essential model parameter due to astronomical observation of
type Ia distant supernovae (let us call it the empirical emergence).

Let us illustrate our point of view in the a very simple, yet instructive,
example. The dynamics of the flat cosmological models with R-W sym-

1Which is granted by theorems from differential equations theory about smooth de-
pendence solutions on the time, initial conditions and the parameters.
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metry of space-like section, cosmological constant and without the matter
(only for simplicity of presentation) is governed by a very simple equation
(one-dimensional system)

ẋ = −x2 +
Λ

3
, (6)

where x = H is Hubble parameter which measures the average rate of
expansion of the Universe; Λ is here the cosmological constant parameter;
˙ denotes differentiation with respect to the cosmological time.

Obviously, the above system can be simply integrated in quadratures.
Calculation gives

x(t) =

√
Λ

3
coth

√
Λ

3
(t+ C) (7)

and x(t = −C) = ∞, where C is integration constant. Equation (6) can be
also integrated for the special case of Λ = 0

x(t) =
1

t− t0
. (8)

Naive looking at the formula (7) gives rise to statement that there is
no transition from the solution (7) to (8) as Λ → 0. It is not a true point
of view. The limit solution as Λ → 0 can be achieved in the following way.
Let us consider Λ in the formula (7) as small parameter and both functions

cosh(...) i sinh(...) can be expanded in Taylor series with respect to
√

Λ
3 t

term. Conserving linear parts of both functions, we obtain:

x(t) =

√
Λ

3

1 +
√

Λ
3 (t+ C) + 1−

√
Λ
3 (t+ C)

1 +
√

Λ
3 (t+ C)− 1 +

√
Λ
3 (t+ C)

 =
1

t+ C
. (9)

Now, if we put C = −t0, then the solution for CDM is reproduced.
By this example one can observe how some small changes of the right

hand side of the system dramatically change its solution. As a result in this
system and solution emerge new asymptotic states representing de Sitter
model.

The bifurcation theory serves to clarify the emergence of new properties
(sometimes unexpected) of the system without solving this equation. Let
us consider the system in the framework of bifurcation theory. For Λ > 0

there are two critical points ẋ = 0 at x ±
√

Λ
3 . From the physical point

of view they are representing de Sitter model (expanding and contracting).

Derivative f(x) (ẋ = f(x)), Df(x, µ) = −2x and Df(±
√

Λ
3 ,Λ) = ∓2

√
Λ
3 l

and we can see that the critical point at x =
√

Λ
3 is stable while the critical

point x = −
√

Λ
3 is unstable. For Λ = 0, there is only one critical point at
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x
L<0

x
L=0

x
L>0deS- deS+

Figure 2: The phase portraits for flat FRW model without matter and with
the cosmological constant of different signs. For Λ < 0 there is no critical
point. For Λ = 0 there a single degenerated critical point at the origin. For
Λ > 0 there are two critical points, unstable deS− and stable deS−.

x = 0 and it is a nonhypebolic critical point since Df(0, 0) = 0; the vector
field f(x) = −x2 is structurally unstable; Λ = 0 is a bifurcation value. For
Λ < 0 there are no critical points. The phase portraits for this differential
equation are shown in Fig. 2.

In this case we haveW s(
√

Λ
3 ) = (−

√
Λ
3 ,∞) andW u(−

√
Λ
3 ) = (−∞,

√
Λ
3 )

as, respectively, a stable and unstable manifold . And for Λ = 0 the one–
dimensional center manifold is given by W c(0) = (−∞,∞). All of the
pertinent information concerning the bifurcation that takes place in this
system at Λ = 0 is captured in the bifurcation diagram shown in Fig. 3.
The curve Λ

3 − x2 = 0 determines the position of the critical points of the
system, a solid curve is used to indicate a family of stable critical points
while a dashed curve is used to indicate a family of unstable critical points.
This type of bifurcation is called a saddle-mode bifurcation.

The system under consideration constitutes only an example of dynam-
ical system analysis of the system cosmological origin but there are many
other systems with some parameter which shows hidden and unexpected
properties as parameter varies. Let us remind some of them. In the prob-
lem of the motion star around the elliptic galaxy appears Henon, Heiles
[14] Hamiltonian system. This system possesses the energy first integral
E and if E > Ecrit then transition to the chaotic behavior appears. An-
other example of bifurcation and emergence of the cyclic behavior in the
system of the limit cycle type is offered by the famous van der Pol equation
ẍ+µ(x2− 1)ẋ+x = 0. For µ = 0 the system is of harmonic oscillator type
and for µ > 0, van der Pol’s equation has a unique limit cycle and is stable
[15]. The limit cycle is representing a closed trajectory in the phase space
which attracts all trajectories from neighborhood.

In this case ϵ = 0 is a bifurcation value parameter and limit cycle
behavior is an upper-level emergent property. For the interesting discussion
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Figure 3: The bifurcation diagram of the flat LDM model (LCDM model
without matter). It is the fork bifurcation of saddle-node type. The Ein-
stein universe (x = 0) bifurcates to the expanding (upper stable branch)
and contracting (lower unstable branch) de Sitter models.

on emergence, basal and upper-level models and reducibility see [16].
Also interesting experiences of emergence new type of dynamical be-

havior are provided by Hopf bifurcation phenomena [15, s. 341]. This
bifurcation can occur in the system with parameter ẋ = f(x, µ) at a non-
hyperbolic equilibrium point x0 when the matrix Df(x0, µ0) has a simple
pair of pure imaginary eigenvalue and no other eigenvalues with zero real
point. In the generic case Hopf bifurcation occurs where a periodic or-
bit is created as the stability of equilibrium point xµ changes. This type of
behavior plays an important role in the description route to turbulence sce-
nario. It would be worth mentioning the important role of Hopf bifurcation
in Rulle-Takens scenario of route to deterministic chaos. The concept of
turbulence war originally introduced by Landau in 1944 and later revised
by Ruelle and Takens in 1941 [17]. According to Landau, turbulence is
reached at the end of an indefinite superposition of oscillatory bifurcations,
each bringing its unveiling phase into the dynamics of the system. In the
Ruelle-Takens scenario infinite number of periodic behavior is not required
when nonlinearities act. They argue that turbulence should be treated as a
stochastic regime of deterministic chaos at which long term unpredictability
occurs due to property of sensitive dependence on initial condition. This
stage is reached only after a finite and small number of bifurcations. For
some recent philosophical discussion on the significance of chaos see [18].

6. Conclusion

The main aim of this paper was to show the effectiveness of using the
framework of dynamical system theories (especially the notion of struc-
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tural stability and tools of bifurcation analysis) in the study on emergence
and reducibility of two cosmological models Cold Dark Matter model and
Lambda Cold Dark Matter model.

We have also demonstrated reducibility of solutions of LCDM upper
state after taking the limit Λ → 0. If we include the theorem about smooth
dependence of solutions on initial condition and parameters, one can obtain
CDM model as the boundary crossing. The analogical problem appears in
the Wayne analysis of limit cycle behavior emergence in nonlinear system.
In this case ϵ = 0 is bifurcation value of parameter. In our interpretation
space of state of the system can be parametrized by epsilon parameter which
measures the strength of the nonlinear term. As a consequence bifurcation
analysis reveals a new type of dynamical behavior for any value of epsilon
parameter. This upper state can be reduced to the basal state because it
is guaranteed by theorems mentioned above, which we applied in the con-
text of LCDM model. We can find a strict analogy to the system under
consideration of cosmological origin and Wayne analysis of emergence and
singular limits. Following the common approach to reductionism in physics,
so called deductive criterion of reducibility by Nagel (1961), the reduction
is a derivational relation between upper-level and base-level theories. The
structural instability of the models teaches us that one should not distin-
guish the derivational relation either on the level of basic equation and on
the level of solutions. In the mathematical modeling of physical processes,
we always try to convey the features of typical, garden-variety, dynami-
cal systems. In mathematics the exceptional cases are more complicated
and numerous, and they interrupt the physical discussion. Moreover, dy-
namicists share an opinion that such exceptional systems do not arise very
often because they are not typical. The history of mathematical dynamics
presents the search for generic properties. We would like to distinguish a
class of phase portraits that are far simpler than the arbitrary ones. This
program was achieved for dynamical systems on the plane by Peixoto due
to the conception of structural stability introduced in 1934 by Andronov
and Leontovich. The criteria for structural stability rely upon two supple-
mentary notions: a perturbation of the phase portraits (or vector field) and
the topological equivalence (homeomorphism of the state phase). A phase
portrait has the property of structural stability if all sufficiently small per-
turbations of it have equivalent phase portraits. For example, one considers
a center type of critical points, then the addition of perturbation pointing
outward results in a point repellor which is not topologically equivalent to
the center. This is a primary example of structurally unstable system. In
the opposite case saddle type of critical point is structurally stable and the
phase portrait does not change under small perturbation.

In this paper we define the class of FRW cosmological models filled by
dark energy as two-dimensional dynamical systems of a Newtonian type.
They are characterized through the single smooth effective potential func-
tion of the scale factor or redshift. Among these classes of models we
distinguish typical (generic) and exceptional (nongeneric) cases with the
help of structural stability notion and the Peixoto theorem. We find that
the LCDM model is structurally stable as opposed to the CDM model. We
demonstrate that this model represents a typical structurally stable pertur-
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bation of CDM one. Therefore, the transition from the CDM model of the
Universe toward the LCDM one, which includes the effects of the cosmo-
logical constant, can be understood as an emergence of the model from the
exceptional case to the generic one. This case represents a generic model
in this sense that small changes of its right-hand sides do not change the
global phase portraits. In terms of the potential, the second order differen-
tial equation, one can classify different models of cosmic acceleration. It is
shown that models with the accelerating phase (following the deceleration)
are natural and typical from the point of view of the dynamical systems
theory combined with the notion of structural stability.

From the dynamical system theory we know that the solution of a dy-
namical system smoothly depends on the time, initial condition and the
parameters. As a result we obtain that in any case as the model is repre-
sented by dynamical system there is a reduction from the upper-level model
to the lower-level one by taking the mathematical limit with respect to the
parameter. In the case of cosmology, the corresponding limit is obtained
as the cosmological constant parameter goes to zero.
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