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We test several BFKL-like evolution equations for unintegrated gluon
distributions against forward–central dijet production at the LHC. Our
study is based on fitting the evolution scenarios to the LHC data using the
high energy factorization approach. Thus, as a by-product, we obtain a set
of LHC-motivated unintegrated gluon distributions ready to use. We utilize
this application by calculating azimuthal decorrelations for forward–central
dijet production and compare with the existing data.
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1. Introduction

A typical procedure in applying QCD to hadronic collisions relies on fac-
torization theorems. They consist in two ingredients: a perturbatively calcu-
lable hard part and a nonperturbative piece parametrizing hadrons partici-
pating in a collision. The most known and tested is the collinear factorization
(see e.g. [1] for a review), which applies for a variety of processes, includ-
ing jet observables in deep inelastic scattering (DIS) and hadron–hadron
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collisions. Here, the nonperturbative component is parametrized in terms
of parton distribution functions (PDFs) which undergo Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations. The key feature of
PDFs is the universality, i.e. the PDFs that are measured in one process
can be used in any other for which the factorization holds. Therefore, for
instance, one can use PDFs fitted to DIS structure functions and use them to
make predictions for jets in hadron–hadron collisions. Although the collinear
factorization is powerful and well-tested, it is supposed that for certain ob-
servables, e.g. forward jets at high energies, another kind of evolution equa-
tions for the PDFs is needed. Namely, the perturbative calculations contain
the logarithms of the form αs log(1/x), where x is the longitudinal fraction
of the hadron momentum carried by the parton. At high energies and for-
ward rapidities, x is small and these logarithms need to be resumed. This
is accomplished by means of various “small-x” evolution equations, which
essentially are various extensions of the pioneering Balitski–Fadin–Kuraev–
Lipatov (BFKL) evolution equation (see e.g. [2]). In the small-x domain, the
transverse momenta of the partons exchanged between the perturbative and
nonperturbative parts are not suppressed comparing to the collinear factor-
ization. Therefore, the PDFs have an explicit dependence on the transverse
momentum of a parton. Such objects are often referred to as transverse
momentum dependent PDFs (TMDs) or Unintegrated PDFs, although the
former are typically used outside the small-x physics, and posses unam-
biguous (though, in general, process-dependent) field theoretic definitions.
Actually, at small x, one usually deals with initial state gluons only, and
thus the object of interest in this paper is an Unintegrated Gluon Distri-
bution (UGD). The UGDs have to be convoluted with a perturbative “hard
part” according to the so-called kT or High Energy Factorization (HEF).
We describe this approach in some more detail in Section 2. Here, let us
just mention that unlike the collinear factorization, the HEF is not a QCD
theorem and actually the universality of UGDs is supposed to be violated
for jet production in hadron–hadron collisions. Thus, in principle, the stan-
dard procedure of fitting the UGDs to the F2 HERA data and using it for
jets in hadron–hadron collisions is not correct, but there are no quantitative
measures of the factorization violation so far. Actually, HEF is surprisingly
quite successful with describing LHC data using UGDs from fits to structure
functions, see, for instance, [3]. At present, there are several fits to F2 data
using different small-x approaches, see [4–7] for more details.

In the present work we undertake another path. We make an attempt
to fit various BFKL-like UGDs directly to the LHC data for forward jet
production. It has a twofold purpose. First, we have an opportunity to
explore UGDs using relatively exclusive observables. Second, we want to
free ourselves from the aforementioned universality problem when trans-
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ferring UGDs from DIS to the LHC domain. We consider two separate
measurements: jet transverse momentum spectra [8] in forward–central jet
production and forward–central dijet decorrelations [9]. The first measure-
ment consists of two separate sets of data: for the forward jet and for the
central jet. Thus, the mutual description of both spectra imposes a strong
constraint on the UGDs and we shall use this measurements to make our
fits. The second measurement will be used to test the fits.

The paper is organized as follows. In Section 2, we describe the ap-
proach of HEF. The small-x evolution equations with various components
incorporating sub-leading effects are discussed in Section 3. The fitting pro-
cedure and the software used are described in Section 4. We give the results
in Section 5. Having the fits, we test them against recent forward–central
dijet decorrelations data in Section 6. Finally, we discuss our research in
Section 7.

2. High Energy Factorization

In this introductory section, we discuss in more detail issues concerning
factorization at small x. This task is somewhat complicated, notably because
of the various existing approaches and various existing definitions of UGDs.

In the following paper, the notion of HEF corresponds to a general class
of factorization approaches supposed to be valid at small x. Below, we list
some of the existing realizations:

1. the factorization of Gribov, Levin and Ryskin (GLR) [10] for high-pT
inclusive gluon production;

2. the factorization of Catani, Ciafaloni and Hautmann (CCH) [11, 12] for
heavy quark production in DIS, photo-production and hadron–hadron
collisions;

3. the factorization of Collins and Ellis [13] for heavy quark production
in hadron–hadron collisions;

4. the factorization for inclusive gluon production in the saturation regime
for proton–nuclei collisions within the Color Glass Condensate (CGC)
approach [14] and color dipole formalism [15, 16] (the equivalence of
both approaches was shown in [17]).

In these approaches, the nonperturbative part is parametrized in terms of
UGDs undergoing BFKL evolution (for GRL, CCH, Collins–Ellis factor-
izations) or nonlinear Balitsky–Kovchegov evolution [18, 19] (for CGC). On
the other hand, superficially similar objects to UGDs appear in the so-called
transverse momentum-dependent (TMD) factorization and are called TMD
PDFs. One should, however, realize that the enumerated approaches are
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valid at leading logarithmic approximation, while the TMD factorizations
are valid to all orders in the leading twist approximation. Moreover, unlike
most of UGDs in the HEF factorizations, the TMD PDFs have precise op-
erator definitions in terms of matrix elements of nonlocal operators. Those
definitions require appropriate Wilson lines to be inserted in order to make
the definitions gauge-invariant and to resum collinear gluons related to fi-
nal and initial state interactions. These insertions make the TMD PDFs, in
general, process-dependent and thus non-universal, breaking the principle of
factorization (for more details, see e.g. [20, 21]). Only for processes with at
most two hadrons the TMD factorization is proved to hold to all orders (for
example, back-to-back single hadron production in DIS or Drell–Yan scat-
tering). The natural question arises whether the non-universality of TMD
PDFs transfers to the small-x limit. In Ref. [22], an explicit arguments were
given that this is the case for dilute–dense collisions (actually the arguments
hold for the so-called “hybrid” factorization — see also below). Moreover, it
is known from the CGC approach that at really small x, i.e. in the saturation
regime, the cross sections cannot be described by just dipoles (averages of
two Wilson lines), but also higher correlators are needed [23], what violates
the ordinary logic of factorization. However, for the case of back-to-back
dijet production in dilute–dense collisions, a generalized factorization has
been proposed [24]; that is, the cross section can be given in terms of hard
factors and certain universal pieces. Recently, these results were improved
to the case of imbalanced dijets [25]. In particular, when the imbalanced
transverse momentum is of the order of transverse momenta of the jets, the
HEF for dijet production can be derived from the dilute limit of the CGC
approach.

In the present work, we shall constrain ourselves to dijet production in
p–p collisions in the linear regime, as the kinematics we are interested in
(and where the data exist) do not allow to develop the saturation region.
We want to utilize most of the phase space covered by the data, thus we
do not constrain ourselves to the back-to-back dijet region analyzed in [24].
Rather, we shall use the HEF factorization for dijet production. Since this
approach is an extension of the CCH formalism, we shall now briefly recall
the latter and the required extensions to obtain HEF for dijets. For a direct
derivation from CGC approach, see [25].

In the CCH high energy factorization, one considers the heavy quark
pair produced via the tree-level hard sub-process g∗ (kA) g∗ (kB) → QQ in
the axial gauge. The initial state gluons are off-shell and have the momenta
of the form kA = xA pA + kTA and kB = xB pB + kTB, where pA, pB are
the momenta of the incoming hadrons and pA · kTA = pB · kTB = 0. This
particular form of the exchanged momenta is a result of the imposed high
energy limit. The off-shell gluons have “polarization vectors” that are pA
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and pB respectively. Thanks to this kinematics, the sub-process given by
ordinary Feynman diagrams is gauge-invariant despite its off-shellness. In
CCH approach, the factorization formula for heavy quark production reads
(see Fig. 1 (a))

dσAB→QQ =

∫
d2kTA

∫
dxA
xA

∫
d2kTB

∫
dxB
xB

×Fg∗/A (xA, kTA) Fg∗/B (xB, kTB) dσ̂g∗g∗→QQ (xA, xB, kTA, kTB) , (1)

where dσ̂g∗g∗→QQ is the partonic cross section built up from the gauge-
invariant g∗g∗ → QQ amplitude and Fg∗/A, Fg∗/B are UGDs for hadrons
A and B. The contributions with off-shell quarks are suppressed. The UGDs
are assumed to undergo the BFKL evolution equations. In Ref. [12], it was
argued that similar factorization holds to all orders for DIS heavy quark
structure function, although the argumentation misses the details comparing
to collinear factorization proofs [1], especially the definitions of UGDs and
complications arising at higher orders in the axial gauge [26].

pA

pB

kA

kB

pA

pB

kA

kB

...

(a) (b)

Fig. 1. (a) The CCH factorization for inclusive heavy quark production; despite
the fact that the gluons entering the central blob are off-shell, the sub-process is
gauge-invariant. (b) For sub-processes with final state gluons, the gauge invariance
requires the off-shell gluons to be replaced by the effective particles giving rise to
multiple eikonal gluon exchanges between the blobs.

In the works [3, 6, 27–30] as well as in this paper, the CCH factorization
was extended to model the cross section for jet production in hadron–hadron
collisions. The first difficulty arises because now one has to consider also
gluons in the final state, e.g. g∗g∗ → gg sub-process for dijet production. The
corresponding amplitude is, however, not gauge-invariant when calculated
from ordinary Feynman diagrams. A few approaches have been proposed to
calculate a gauge-invariant extension of such amplitudes [29, 31–34]. These
gauge-invariant off-shell amplitudes, in fact, correspond to a vertex that
can be calculated from the well-known Lipatov’s effective action [35, 36]
(see Fig. 1 (b)). The approaches [29, 31–34] were, however, oriented on
practical and efficient computations of multi-particle off-shell amplitudes
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using helicity method and computer codes. As stated before, in CCH, the
UGDs undergo BFKL evolution. In our extensions of CCH approach, we
allow the UGDs to undergo more complicated evolution equations, which are
more suitable for jets. More details will be given in Section 3. Yet another
modification of the CCH formula comes from the fact that the present study
concerns the system of dijets where one of the jet is forward, while the second
is in the central region. From 2→ 2 kinematics, it follows then that xA � xB
(or the opposite), except for the small corner of the phase space. Since xB
is typically of the order of 0.5 the usage of small-x evolution for Fg∗/B is
questionable (this is similar to dilute–dense system considered e.g. in [24]).
Therefore, we use collinear approach on the B hadron side [37]. Technically,
one takes the collinear limit in dσ̂g∗g∗→2j by sending kTB → 0 to obtain a
sub-process with one off-shell gluon dσ̂g∗g→2j (the off-shell amplitudes have
well defined on-shell limit). In this limit, one has to take into account also
sub-processes with initial state on-shell quarks, dσ̂g∗q→2j . The remaining
integral over d2kTB gives helicity sum for B partons on the one hand, and the
integrated (collinear) PDF on the other

∫
dk2B Fa∗/B (xB, kTB) = fa (xB).

Thus, the final formula for the factorization model reads

dσAB→2j =

∫
d2kTA

∫
dxA
xA

∫
dxB
xB

×
∑
b

Fg∗/A (xA, kTA, µ) fb (xB, µ) dσ̂g∗b→2j (xA, xB, kTA, µ) , (2)

where we have included the hard scale dependence not only in the collinear
PDFs fb, but in the UGD as well. Such a dependence turns out to be im-
portant for certain exclusive observables involving a hard scale (e.g. large
pT of jets; see e.g. [3]). We note that when the final states become well sep-
arated in rapidity, i.e. when the central jet lies in the opposite hemisphere
to the forward jet, we start to violate our condition xA � xB and different
approach should be used. The factorization formula (2) resembles the lin-
earized approach of [24] but it extends beyond the correlation limit as here
the hard sub-processes have injected a nonzero kT. As mentioned before,
formula (2) has been recently derived from the CGC approach in [25].

3. Small-x evolution equations

Let us now discuss the evolution equations for UGDs which were used
in our fits. As described in the preceding section, we concentrate on linear
evolution equations. Below, we list some of them with a short explanation.
We consider only gluon UGDs, thus we skip the subscripts in Fg∗/A.
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1. Pure BFKL equation. The equation in the leading logarithmic approx-
imation reads [38, 39]

F
(
x, k2T

)
= F0

(
x, k2T

)
+αs

1∫
x

dz

z

∞∫
0

dq2T

q2TF (xz , q2T)− k2TF (xz , k2T)∣∣q2T − k2T∣∣ +
k2TF

(
x
z , k

2
T

)√
4q4T + k4T

 , (3)
where αs = Ncαs/π with Nc being the number of colors. The initial
condition for the evolution is given by F0. The NLO BFKL equation is
also known [40, 41]. One of the drawbacks of the pure BFKL equation
comes from the fact that q2T of the gluons emitted along the ladder
is unconstrained. Indeed, since in the BFKL regime the virtuality of
the exchanged gluons is dominated by the transverse components, the
resulting kinematic constraint reads [42, 43]

q2T <
1− z
z

k2T ≈
1

z
k2T . (4)

This constraint is also often referred to as the consistency constraint.

2. BFKL with the kinematic constraint (BFKL+C).

To incorporate the consistency constraint, one may include the ap-
propriate step function into the real emission part of the BFKL. This
operation actually introduces some higher order corrections into the
BFKL equation [43]. In addition, one may introduce another class
of sub-leading corrections by allowing the strong coupling constant to
run with the local scale along the ladder. Finally, one may define the
q2T integration region to lie away from the infrared nonperturbative

region by separating the
∫ k2T0
0 dq2T integration and moving it to the

initial condition (the infrared cutoff k2T0 is taken to be of the order of
1 GeV). The improved equation reads [44]

F
(
x, k2T

)
= F0

(
x, k2T

)
+ αs

(
k2T
) 1∫
x

dz

z

∞∫
k2T0

dq2T

×

q2TF (xz , q2T)Θ (k2T − zq2T)− k2TF (xz , q2T)∣∣q2T − k2T∣∣ +
k2TF

(
x
z , k

2
T

)√
4q4T + k4T

 . (5)
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Recently, it has been studied in the context of the Mueller–Navelet
jets that the energy-momentum conservation violation (which above
is cured by a “brute force”) becomes less harmful when full NLO cor-
rections are applied [45]. The effects of the kinematic constraints in
the approximate form (4) as well as in the full form have been recently
analyzed [46] in the context of the CCFM evolution equation [47–50].

3. BFKL with the kinematic constraint in the resummed form
(BFKL+CR).

Equation (5) can be casted in yet another form [51]

F
(
x, k2T

)
= F̃0

(
x, k2T

)
+ αs

(
k2T
)

×
1∫

x

dz

z

∞∫
k2T0

d2qT
πq2T

Θ
(
q2T − µ2

)
∆R

(
z, k2T, µ

2
)
F
(
x

z
,
∣∣∣~kT + ~qT

∣∣∣2) , (6)

where

∆R

(
z, k2T, µ

2
)

= exp

(
−αs ln

1

z
ln
k2T
µ2

)
(7)

is the so-called Regge form factor. This form has been used in Ref. [51]
to propose a non-linear extension of the CCFM equation. The scale
µ has been introduced to separate unresolved and resolved emissions
in (5), i.e. the emissions with q2T < µ2 and q2T > µ2, and further the
unresolved part was resummed to obtain the Regge form factor. Note
that the UGDs undergoing this equation do not explicitly depend on
the scale µ and that the new form of the initial condition has to be
used (this is denoted by a tilde sign).

4. BFKL with the kinematic constraint and DGLAP correction
(BFKL+CD).

In Ref. [44] yet another improvement of (3) was proposed. One can
make an attempt to account for DGLAP-like behavior by including
the non-singular part of the gluon splitting function (the third term
below)
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F
(
x, k2T

)
= F0

(
x, k2T

)
+ αs

(
k2T
) 1∫
x

dz

z

∞∫
k2T0

dq2T

×

q2TF (xz , q2T)Θ (k2T − zq2T)− k2TF (xz , q2T)∣∣q2T − k2T∣∣ +
k2TF

(
x
z , k

2
T

)√
4q4T + k4T



+αs

(
k2T
) 1∫
x

dz

z

(
z

2Nc
Pgg (z)− 1

) k2T∫
k2T0

dq2TF
(x
z
, q2T

)
, (8)

where Pgg (z) is the standard gluon splitting function. This correction,
similar to the kinematic constraint, accounts for certain sub-leading
corrections to the BFKL equation.

5. BFKL with DGLAP correction alone.
This variant is used to test the significance of the DGLAP term alone.

The above UGDs do not involve any hard scale dependence. For observ-
ables involving high-pT jets, a presence of large scale µ2 ∼ p2T in perturba-
tive calculations would involve additional logarithms of the type log

(
µ2/k2T

)
which can spoil the procedure. Therefore, a resummation of those logs is
desired and it accounts in hard scale dependence for UGDs, cf. Eq. (2).
The approach which incorporates both x, k2T and µ2 dependence in UGDs is
provided, for example, by the CCFM evolution equation (the code available
for a practical use is described, for example, in [52]). Another approach, the
so-called KMR (Kimber–Martin–Ryskin) procedure [53, 54], takes ordinary
PDFs and injects kT dependence via the Sudakov form factor taking care
of matching to the BFKL evolution at small x. A serious advantage of this
procedure is that one can use well known PDF sets, fitted to large data sets.
Yet another approach was used in [3] in therms of the so-called “Sudakov re-
summation model”. This procedure reverts, in a sense, the logic used in the
KMR and uses the Sudakov form factor to inject the hard scale dependence
instead of kT. The procedure is parton-shower-like, i.e. it is applied after
the MC events are generated and the cross section is known, and is unitary
(i.e. the procedure does not change the total cross section). The advantage
is that one may use it on the top of UGDs involving nonlinear effects. The
basic idea behind the model is that it assigns the Sudakov probability P
for events with given kT and a hard scale µ ∼ pT. Then, the probability
of surviving is 1 − P . For events with small kT and large µ, the emission
probability is P ∼ 1 and the unitarity of the procedure transfers such events
to the region kT ∼ pT. There is one more approach proposed in Ref. [55],
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similar to the one just described, where analogous procedure is applied at
the level of UGDs by fixing its integral over kT (it has an advantage of be-
ing independent on any software and one may produce grids for a practical
usage). In summary, we may consider the following modifications of UGDs
1–5:

6. BFKL with the Sudakov (BFKL+S).

7. BFKL with the kinematic constraint and the Sudakov (BFKL+CS).

8. BFKL with DGLAP correction and the Sudakov (BFKL+DS).

9. BFKL with the kinematic constraint in resummed form and the Su-
dakov (BFKL+CRS).

10. BFKL with the kinematic constraint, DGLAP correction and the Su-
dakov (BFKL+CDS).

Unfortunately, as far as fitting of UGDs is considered, the above Sudakov-
based models are not suitable. This is because they require the knowledge of
an integral (whether it is a cross section or integrated gluon, cf. [3] vs. [55])
which is unknown at the stage of fitting. In principle, one could try to use
the method of successive approximations with the Sudakov model of Ref. [3].
We shall report on our attempts in Section 5. There is one more comment in
order here. The Sudakov resummation model is very sensitive to the region
kT . 1 GeV which is not well described by the practical implementations of
the equations in 1–5 as they use certain low-kT cut, kT0. For kT < kT0, the
UGD is typically modeled or extrapolated by a constant value.

Let us now discuss the models for the initial condition F0. In this paper,
we have tested the following models (in the brackets we give the aliases used
below to identify the model):

A. exponential model (EXP)

F0

(
x, k2T

)
= N e−Ak2T (1− x)a (1−Dx) ; (9a)

B. (negative) power-like model with running αs (POW)

F0

(
x, k2T

)
=
αs

(
k2T
)

k2T
N xA (1− x)a (1−Dx) ; (9b)

C. DGLAP-based model (Pgg)

F0

(
x, k2T

)
=
αs

(
k2T
)

2πk2T

1∫
x

dz Pgg (z) Ĝ0 (x) , (9c)
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where
Ĝ0 (x) = N xA (1− x)a (1−Dx) (9d)

is a model for an integrated gluon density.

The parameters N , A, a, D are, in general, free parameters and need to be
fitted.

We see that, in principle, there are quite a few variants to be fitted.
Though not all of the combinations make sense, we are still left with several
scenarios to be tested.

4. Fitting procedure

We have used two data samples measured by CMS detector [8] for in-
clusive forward–central dijet production at CM energy

√
s = 7 TeV. The

central jet is defined to lie within the pseudo-rapidity interval |ηc| < 2.8,
while the forward has to lie within 4.9 > |ηf | > 3.2. Both jets are high-pT
jets with pT > 35 GeV. The jets were reconstructed using anti-kT algorithm
with radius R = 0.5. The data samples consist in jet pT spectra for forward
and for central jets, dσS/dpT∆ηS with S = f, c. There are in total 12 data
bins for both forward and central jets.

We have applied the following fitting procedure. For each existing ex-
perimental data bin B, we produce a 2-dimensional normalized histogram
HB with bins in x and kT, such that the cross section can be calculated as

σB =
∑
i,j

HB
ijF (x (i) , kT (j)) , (10)

where i, j enumerate the bins in (x, kT). To make the histograms HB, we

1. generate Monte Carlo events for the process under consideration with
F = F∗, where F∗ is a relatively “broad” trial UGD (evolving accord-
ing to one of the scenarios 1–10),

2. make histograms hB in (x, kT) of contributions to each data bin B,
3. divide by F∗ (x, kT), i.e. HB

ij = hBij/F∗ (x (i) , kT (j)).

Hence, in principle, HB are independent of F∗ used for their generation
and are calculated only once. This is advantageous as the hard cross sec-
tion calculation is costly in CPU time. The latter is calculated using the
Monte Carlo C++ program LxJet [56] implementing (2). The generated
events (weighted or unweighted) are stored in a ROOT [57] file for further
processing. For the UGD evolution according to scenarios 1–5, we solve the
corresponding integral equations by a straightforward numerical iteration
over a grid over x and kT.
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In order to make the fitting feasible, we need a fast routine to calculate F
used in (10) for the cross section calculation. However, since our numerical
procedure is too slow for that, we prepare grids over which we can inter-
polate the fitting parameters. Each such grid corresponds to a particular
parametrization model and arguments range. Out of four parameters (N ,
A, a, D) of the initial conditions, we fix D = 0 (see Sec. 5). Moreover, we
note that the solution for F is linear in N . Thus, the actual grids are in
A and a.

5. Results

We have applied the procedure described in the preceding section to
most of the models 1–10 and initial conditions A–C. The best values of
χ2/NDP (χ2 per data point) are listed in Table I for models 1–5. Note, that
some of the scenarios were unable to describe the data, in particular the
pure BFKL and BFKL with the kinematic constraint only. Evidently, the
DGLAP correction is essential. The fitted values of the parameters of the
initial conditions, N , A, a, for scenarios with χ2/NDP < 2 are collected in
Table II. The fits are presented in Figs. 2 and 3. For a better comparison,
we also plot the cross sections scaled by p5T. We observe that all the models
with the DGLAP correction give excellent description of the central-jet data,
while the pT spectrum of forward jets is reasonably reproduced though less
accurately. We also note that the models with lowest χ2 result in very similar
predictions for the pT spectra.

TABLE I

The values of χ2/NDP for fits of unintegrated gluon density evolving according to
various models described in Section 3. The first column lists the initial condition
ansatz, see also Section 3 for details.

F0 BFKL BFKL+C BFKL+D BFKL+CD BFKL+CR

EXP 2.4 2.2 1.24 1.11 1.52
POW 2.3 1.9 1.02 1.12 —
Pgg — — 1.13 1.11 —

Our attempts to fit the scenarios with the Sudakov resummation can be
summarized as follows. First, we observe that the model has a small overall
effect on the pT spectra, although it slightly shifts the theory points away
from the data points. We illustrate this in Fig. 4, where we applied the
Sudakov model on the top of the events obtained with one of the fits. When
we now try to refit the F0 parameters, we change the total cross section
(used already to apply the resummation) and the fit fails. Although we
observe that the successive iterations improve the fit, the procedure turns
out to be insufficient to make a reliable fit with the Sudakov resummation.
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TABLE II

The values of initial condition A–C parameters obtained from the fits to the CMS
data. We list only the scenarios with χ2/NDP < 2. The values denoted by a star
were fixed — see the main text for details.

Model N A a

BFKL+CR (EXP) 0.095 0.012 0∗

BFKL+D (EXP) 0.37 0.18 0.5∗

BFKL+CD (EXP) 0.68 0.14 2.5∗

BFKL+C (POW) 320 1.4 61.0
BFKL+D (POW) 12.7 0.5∗ 5.7
BFKL+CD (POW) 562 0.96 35.7
BFKL+D (Pgg) 106 1.2 2.5
BFKL+CD (Pgg) 628 2.9 5.7
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Fig. 2. The pT spectra of the central jet calculated using the best fits for individual
models versus the CMS data. For the right plot, the cross sections have been scaled
by p5T to better see the differences between the models.

A few comments are in order. The considered jet data are not suffi-
cient to precisely determine all the parameters (N , A, a, D) of the initial
parametrizations (9). Thus, first, we neglect the (1 − Dx) factor, i.e. we
take D = 0. We have checked that we get no improvement when D is a
free parameter. Next, in some cases, the fits are not sensitive enough to
uniquely determine the three remaining free parameters. In these cases, we
fix A or a at some plausible value (these are marked with a star in Table II).
Actually, besides the initial condition parameters N , A, a, D, we have also
the boundary values of kinematic parameters xA, kT (cf. (2)), which — to
certain extent — are free parameters as well. We set them as follows. First,
in order to be in accordance with the assumptions leading to (2), we imply
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Fig. 3. The pT spectra of the forward jet calculated using the best fits for individual
models versus the CMS data. For the right plot, the cross sections have been scaled
by p5T to better see the differences between the models.
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Fig. 4. An effect of the Sudakov resummation model (BFKL+CDS) when applied
to one of our fits for the model BFKL+CD with exponential initial condition. For
comparison, we plot also the spectra obtained from the unintegrated gluon density
with more involved evolution and fitted to HERA data (KS-HERA), see the text
for more details.

the cut xA < xB. Next, for all scenarios, we set xAmin = 0.0001. For the
model with the DGLAP correction, we set xAmax = 1.0, while for the others
we set xAmax = 0.4. Further, we use kTmin = 1 GeV for DGLAP models
and kTmin = 0.1 GeV for the others. Finally, we use kTmax = 100 GeV for
exponential initial condition and kTmax = 400 GeV for the others. The last
comment concerns the hard scale choice: in all fits, we have used the average
pT of the jets.
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The influence of the Sudakov resummation model is illustrated in Fig. 4.
Here, we have chosen the best fits to illustrate the effect. We see that the jet
spectra are rather weakly affected by the resummation, although the forward
jet spectrum becomes steeper than the data.

The obtained UGDs are plotted in one-dimensional plots in Fig. 5 as
a function of x and kT. Note that in order to better reflect the difference
between UGDs, we plot k2TF(x, kT). We show results of all the models of
Table II, hence also those with rather high χ2 value (see Table I).

k2
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Fig. 5. Unintegrated gluon distributions evolving due to the models 1–5 with the
initial conditions A–C obtained from the fits to the LHC data as a function of
x (top) and kT (bottom). The UGDs are multiplied by k2T to better illustrate the
differences between the models. The most differing UGDs are those without the
DGLAP correction and with significantly higher χ2/NDP > 1.5 (BFKL+C and
BFKL+RC).
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All the UGDs with the DGLAP contribution are comparable, which
shows that the evolution scenario is more important than a particular shape
of the initial parametrization. On the other hand, the differences between
UGDs are more pronounced than those in the pT spectra, which means that
the currently available data are not sufficient to discriminate among the
models. The two most differing UGDs correspond to the BFKL+C (POW)
and BFKL+CR (EXP) models which, however, have significantly higher
χ2/NDP (above 1.5).

We compare the new LHC-based UGDs with the one evolving according
to a complicated evolution of [44, 58] and fitted to the HERA data [6] (we
abbreviate it as ‘KS-HERA’ in the figure). This evolution equation contains
the kinematic constraint, full DGLAP correction (including quarks via cou-
pled equations) and a nonlinear term motivated by the Balitsky–Kovchegov
equation. The pT spectra resulting from this gluon density are presented in
Fig. 4.

6. Azimuthal decorrelations

In order to apply the fits in practice, we have calculated another ob-
servable for central–forward dijet production, namely, the differential cross
sections in azimuthal angle ∆φ between the two jets. At leading order, the
two jets are produced exactly back-to-back and the distribution is the Dirac
delta at ∆φ = π. However, due to QCD emissions of additional partons
(either forming additional jets or being soft particles with small pT), the two
jets are decorrelated. On the theory side, these decorrelations are well de-
scribed by QCD-based parton shower algorithms. However, within the HEF,
there is a natural decorrelation mechanism built-in. Namely, due to the in-
ternal transverse momentum kT of a gluon, the dijet system with transverse
momenta ~pT1, ~pT2 is unbalanced by the amount |~pT1 + ~pT1| =

∣∣∣~kT∣∣∣ = kT.
One can think of kT as a cumulative transverse momentum of many gluon
emissions. In general, these emissions can be small-pT and large-pT emis-
sions as well. The large-pT emissions may, in general, result in a jet, thus
we consider inclusive dijet observables.

Using the new fits and the LxJet program, we have calculated the az-
imuthal decorrelations for the kinematics described in the beginning of Sec-
tion 4. The results are presented in Fig. 6. The bands represent uncertainty
that comes from the scale variation by a factor of two. We compare our
calculation with the preliminary CMS data [9]1.

1 We note that the total cross section obtained from [9] does not agree with [8]. The
ratio of the two is approx. 1.8. If this is a normalization difference only, our predictions
should be shifted up by this factor.
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Fig. 6. The results for the azimuthal decorrelations for inclusive forward–central
dijet production using our best fits. When the Sudakov resummation model is
applied to the generated events, we get a better description of the CMS data.

7. Discussion

In the present paper, we went through a thorough study of various
small-x evolution equations analyzing an impact of various effects on jet
observables. The effects we mean here are certain sub-leading corrections to
the BFKL equation, such as the kinematic constraint or DGLAP corrections.
Our study was based on fitting these evolution scenarios to two samples of
LHC data for high-pT spectra for dijet production. These samples consist
of separate spectra for the central rapidity and forward rapidity jets.

Our findings can be summarized as follows. First observation is that
both forward jet and central jet spectra can be simultaneously and reason-
ably described by the High Energy Factorization approach and BFKL-like
evolution. We obtain the best quality fits for BFKL with DGLAP correc-
tion and kinematic constraint, with the DGLAP correction being the most
important additional ingredient. This matches the fact that the data under
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consideration can be nicely described by the collinear factorization with a
parton shower [8, 9], whereas in the High Energy Factorization, the parton
shower is — to some extent — simulated by the transverse momentum-
dependent gluon distribution with the DGLAP correction. For all evolution
models, we get very good fits to the central jet spectrum, while most of the
models have problems with precise reproduction of the shape of the forward
jet spectrum. Several models properly describe the dijet data despite some
differences in the resulting UGDs. Measurements of some other observables
or more differential dijet data could help to discriminate among the models.

Using our fits, we have calculated azimuthal decorrelations for the same
kinematic domain. This observable was also measured by CMS. The com-
parison of our calculation with the data is reasonably good, especially when
using the Sudakov resummation model on the top of the evolution mod-
els. Interestingly, the same resummation procedure spoils the forward jet
pT spectrum.

Our final remark is that although the High Energy Factorization with
improved BFKL evolution equation catches the main physical aspects of
the jet production at small x, one definitely needs higher order corrections.
Such calculations exist for certain small-x processes like Mueller–Navelet jets
[45, 59] or inclusive hadron production p+A collisions within CGC formal-
ism [60, 61], but not for the high-pT dijet observables under consideration.
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