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Abstract: We study the entanglement of a pure state of a composite quantum system
consisting of several subsystems with d levels each. It can be described by the
Rényi–Ingarden–Urbanik entropy Sq of a decomposition of the state in a product basis,
minimized over all local unitary transformations. In the case q = 0, this quantity becomes
a function of the rank of the tensor representing the state, while in the limit q → ∞, the
entropy becomes related to the overlap with the closest separable state and the geometric
measure of entanglement. For any bipartite system, the entropy S1 coincides with the
standard entanglement entropy. We analyze the distribution of the minimal entropy for
random states of three- and four-qubit systems. In the former case, the distribution of the
three-tangle is studied and some of its moments are evaluated, while in the latter case, we
analyze the distribution of the hyperdeterminant. The behavior of the maximum overlap of a
three-qudit system with the closest separable state is also investigated in the asymptotic limit.
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1. Introduction

After more than twenty years of intensive research, the entanglement of the pure states of bipartite
quantum systems is rather well understood [1,2] for two subsystems of an arbitrary dimension d. In this
case, any pure state can be represented in a product basis by a matrix of coefficients of order d, and its
standard singular values’ decomposition allows one to reveal entanglement.

On the other hand, in the case of systems composed of n ≥ 3 subsystems, the problem becomes much
more complicated, as the state is represented by a tensor of size d and n dimensions. Even though several
important results were obtained, especially in the case of three [3–5] and four qubits [6–10], and several
measures of entanglement in such systems were proposed [11–14], it is fair to say that the complete
understanding of the phenomenon of entanglement in multipartite systems is still missing.

To characterize the entanglement of a quantum state of a bi-partite system, it is natural to analyze the
degree of mixing of the reduced density matrix. For instance, making use of von Neumann entropy, one
arrives at one of the most often used measures: the entropy of entanglement [15]. It is often convenient
to apply for this purpose also the generalized entropy of Rényi [2] or some other kinds of entropy.

The aim of the present work is to propose a possible generalization of this quantity for the case of
multipartite systems, for which a pure state is represented by a tensor. Furthermore, we would like to
make a connection with the geometric measure of entanglement, which depends on the distance of the
state considered to the closest separable state [16–18].

Following the papers of Parker and Rijmen [19] and Bravyi [20], we suggest to analyze the entropy of
decomposition of a quantum state in a product basis, sometimes called Ingarden–Urbanik entropy [21],
minimized over all local unitaries. This quantity can be generalized in the sense of Rényi. Interestingly,
to establish a direct link with the geometric measure of entanglement [16,18], it is sufficient to consider
the Rényi–Ingarden–Urbanik (RIU) entropy and to send the Rényi parameter q to infinity.

Even though the approach advocated here is applicable for arbitrary composite quantum systems,
for concreteness, we concentrate the majority of this work for the case of three and four qubits. It is
demonstrated that there is no a single pure state for which the minimal RIU entropy is the largest for all
values of the Rényi parameter q. Investigating the problem for selected values of q, we identify certain
pure states, which are conjectured to maximize this particular measure of entanglement.

Furthermore, we make also use of a statistical approach to analyze the distribution of the
hyperdeterminant and minimal RIU entropy for random quantum pure states. They are distributed with
respect to the unique unitarily-invariant Haar measure on the space of pure quantum states, the complex
projective space, CPN−1, where the total dimension of the complex Hilbert space is N = dn. Analyzing
systems composed of three subsystems of an arbitrary dimension d, we obtain a bounds for the geometric
measure of entanglement for generic states of such a system.
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This paper is organized as follows. In Section 2, we introduce the RIU entropy for a pure state of a
multipartite system, while in Section 3, different techniques of tensor decomposition are reviewed. In
Section 4, we present results obtained for three-qubit system, while analogous results for four qubits are
presented in Section 5. A more general case of three subsystems consisting of an arbitrary number of
levels is discussed in Section 6. Computations of the moments of the distribution of three-tangle and a
derivation of the bound for the geometric measure of entanglement are relegated to the Appendix.

2. Minimal Rényi–Ingarden–Urbanik Entropy

Consider a quantum state describing a system consisting of n subsystems, with d levels each,
|ψ〉 ∈ HN = H⊗nd . Working in an arbitrary product basis, one can represent such a state by an n-index
tensor,

|ψ〉 =
d∑

i1=1

· · ·
d∑

in=1

Ci1,i2,...,in|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 with Ci1,i2,...,in ∈ C (1)

The standard normalization condition, 〈ψ|ψ〉 = 1, implies that:

d∑
i1=1

· · ·
d∑

in=1

|Ci1,i2,...,in|2 = 1 (2)

It will be convenient to introduce a multi-index µ = (i1, i2, . . . , in), where µ can be identified
with the set {1, . . . , N = nd}, and to use a shorter notation pµ = |Cµ|2 = |Ci1,i2,...,in|2. Hence,
p(|ψ〉) = (p1, . . . pN) represents an N -point probability vector ~p, which can be characterized by the
Rényi entropy Sq(~p) = 1

1−q log
(∑N

µ=1 p
q
µ

)
. For q → 1, this quantity reduces to the standard Shannon

entropy S(p) = −
∑N

µ=1 pµ log pµ, which in the context of the decomposition of the state |ψ〉, is called
the Ingarden–Urbanik entropy [21–23] and written SIU(|ψ〉) = S

(
p(|ψ〉)

)
. In will be convenient to use

natural logarithms throughout this paper, written log 2 ≈ 0.693.
The product basis |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 is determined up to a local unitary transformation,

Uloc = V1 ⊗ V2 ⊗ · · · ⊗ Vn, where an unitary matrix Vj acts on the j-th subsystem. As the
Ingarden–Urbanik entropy of the decomposition depends explicitly on the choice of the product basis, it
is natural to analyze the optimal value, minimized over the set of local unitaries [22,23].

We shall study a more general case of the Rényi entropies Sq with Rényi parameter q ≥ 0. For any
multipartite state |ψ〉 ∈ H⊗nd , we define the minimal Rényi–Ingarden–Urbanik (RIU) entropy,

SRIU
q (ψ) := min

Uloc

Sq [p(Uloc|ψ〉)] (3)

where the minimum is taken over the entire set of local unitary transformations.

Proposition 1. For any N qudit state, |ψ〉 ∈ H⊗nd , its minimal RIU entropy is bounded from above,
SRIU
q (ψ) ≤ logRmax, where:

Rmax = dn − nd(d− 1)/2 (4)

This statement follows directly from the work of Carteret, Higuchi and Sudbery [22], who showed
that performing a local unitary transformation Uloc = U1 ⊗ · · · ⊗ Un, one can always find a product
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basis, such that the decomposition Equation (1) contains no more than Rmax terms. A suitable choice of
n unitary matrices of size d allows one to bring d(d− 1)/2 elements of the tensor C to zero. Therefore,
out of all its dn entries, at least nd(d− 1)/2 can be always set to zero. This fact can be also formulated
as the following statement

Proposition 2. For any n qudit state, |ψ〉 ∈ H⊗nd , represented by a tensor C as in Equation (1), its
tensor rank R is bounded by Rmax = dn−nd(d− 1)/2, where R is the minimal number r of terms in its
decomposition involving arbitrary coefficients fν ,

Ci1,i2,...,in =
r∑

ν=1

fνa
ν
i1
bνi2 . . . z

ν
in (5)

Observe that in the case of the Rényi entropy of order zero, q = 0, one has SRIU
0 (ψ) = logR,

where R is the tensor rank of the tensor C(ψ). The quantity logR is known as the Schmidt measure
characterizing the entanglement of the multipartite pure state [24,25], while the rank R was used to
determine probabilistic conversion of the three-qubit pure state [26]. Since the Rényi entropy is in
general a non-increasing function of the parameter q, one gets the general bound:

SRIU
q (|ψ〉) ≤ logR(|ψ〉) ≤ logRmax (6)

For instance, in the case of a three-qubit system (n = 3 and d = 2), the bound Equation (4)
gives Rmax = 8 − 3 = 5 in agreement with the five-term standard form of a three-qubit pure state
by Acin et al. [3].

Besides Case (a) q = 0, corresponding to the tensor rank of |ψ〉, we shall also consider some other
particular cases of the definition Equation (3).

(b) q = 1. The minimal IU entropy SIU
1 (|ψ〉) determines the minimal information gained by

environment after performing a projective von-Neumann measurement of the pure state |ψ〉〈ψ| in an
arbitrary product basis [20].

(c) q = 2. The minimal decomposition entropy SRIU
2 (|ψ〉) characterizes the maximal purity∑

µ p
2
µ = e−S2 of the probability vector pµ associated with the outcomes of a projective measurement

in a product basis and is accessible in a coincidence experiment with two copies of the multipartite state
|ψ〉. This quantity was used by Parker and Rijmen [19] to analyze multipartite entanglement in the
context of coding theory.

(d) q = ∞. In the limiting case q → ∞, the minimal RIU entropy gives SRIU
∞ (|ψ〉) = − log λmax,

where the largest component of the vector pµ reads λmax = max |〈ψ|χsep〉|2. The maximum is taken over
the set of all separable states, |χsep〉 = Uloc|0 · · · 0〉, so λmax is a decreasing function of the Fubini–Study
distance to the closest separable state [16,17], DFS = arccos(

√
λmax), and its function is called the

geometric measure of entanglement [18], EG(ψ) = 1− λmax = 1− exp[−SRIU
∞ (|ψ〉)].

In the case of bipartite systems (n = 2), one can use the standard singular value decomposition of
the matrix C to show that the probability vector pµ coincides with the vector of Schmidt coefficients λj
determining the Schmidt decomposition [2], |ψ〉 =

∑d
j=1

√
λj|j〉A ⊗ |j〉B, where

∑d
j=1 λj = 1. This

observation leads to:
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Proposition 3. For any bipartite state, |ψ〉 ∈ Hd⊗Hd, its minimal RIU entropy coincides with the Rényi
entropy of entanglement, so in the case q = 1, one arrives at the standard entropy of entanglement:

SRIU
1 (ψ) = E(|ψ〉) = −

d∑
j=1

λj log λj = S(λ) (7)

3. Tensor Decompositions

Singular value decomposition (SVD) of the matrix containing the expansion coefficients of a bipartite
pure state plays a crucial role in evaluating the minimal RIU entropy. However, in the case of
multipartite systems and quantum states described by higher order tensors, this decomposition is
not directly applicable.

In this section, we consider two generalizations of SVD, the higher order singular value
decomposition (HO-SVD) [27] and the parallel factor model (PARAFAC) [28]. Both decompositions
were developed in the framework of principal component analysis [29] and have found several
applications in signal processing, numerical linear algebra, graph analysis and numerical analysis [30].
Throughout this section, we will consider such schemes to evaluate some bounds for the minimal RIU
entropy and the geometric measure of entanglement.

Let us define a tensor C as a multidimensional or n-way array of numbers, so it can be identified
with an element of Cd1d2...dn . Accordingly, a matrix and a vector are a two-way and a one-way tensor,
respectively. Note that such a space is linear. Given two tensors A,B ∈ Cd1d2...dn , their inner product is
inherited from the linear space Cd1d2...dn and defined as follows:

〈A,B〉 =
∑

i1,i2,...,in

Ai1,i2,...,inBi1,i2,...,in (8)

where the over-bar denotes the complex conjugation. The corresponding induced norm is the Frobenius
norm [27,30], written ‖A‖ :=

√
〈A,A〉. It implies the Frobenius distance, d(A,B) := ‖A − B‖. Note

that the coefficients of the state Equation (1) can be arranged in a tensor C ∈ Cdn , and conversely, a
given tensor in such a space defines a certain pure state |ψ〉 in the Hilbert spaceH⊗nd .

3.1. Higher Order Singular Value Decomposition

Let C ∈ Cd1d2...dn be an n-way tensor. We define the k-th unfolding C(k) as the matrix of size
dk × (dk+1dk+2 · · · dnd1d2 · · · dk−1) that contains the tensor element Ci1,i2,...,in in the entry (ik, j), with:

j = 1 +
n∑
`=1
6̀=k

(i` − 1)J` with J` =
l−1∏
m=1
m6=k

dm

The k-mode product of a matrix U (k) ∈ Cdk×dk with C is defined (element-wise) as:

(U (k)C)i1,i2,...,ik−1,i
′
k,ik+1,...,in =

∑
ik

Ci1,i2,...,ik−1,ik,ik+1,...,inu
(k)

i′k,ik
(9)

The higher order singular value decomposition allows one to construct a tensor A, called the
co-tensor [30], of the same dimension as C, such that:

A = U (1) ⊗ U (2) · · · ⊗ U (n)C (10)
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where each U (k) acts according to Equation (9), and any two sub-tensors Aik=p and Ai`=q, with p and q
fixed, are orthonormal:

〈Aik=p, Aik=q〉 = δp,q
[
σ(k)
p

]2
(11)

The numbers σ
(k)
p are called the k-mode singular values of C; they are non-negative and fulfill

σ
(k)
p ≥ σ

(k)
q for all p < q. Such a decomposition is accomplished by taking each U (k) in Equation (10)

as the matrix of left singular vectors of C(n). Note that finding the SVD of the k-th unfolding of the
coefficients tensor of Equation (1) is equivalent to diagonalizing the reduced density matrix of the
k-th party of the system. Moreover, according to Equation (10), the co-tensor A of C defines a state
|ψ〉HO−SVD that is LUequivalent to Equation (1). In this manner, Liu et al have recently proposed an
entanglement classification based on the study of HO-SVD and the local symmetries of the multipartite
states [31].

3.2. Parallel Factor Decomposition

The idea of expressing a tensor as a sum of rank-one tensors was applied in several contexts. For
instance, in psychometrics, it is known as canonical decomposition (CANDECOMP), while in brain
imaging analysis, it is referred as parallel factor decomposition (PARAFAC); see [28] and the references
therein. For other applications of this decomposition, see also [30].

The PARAFAC is a decomposition of an n-way tensor C ∈ Cd1d2...dn into a sum of rank-one tensors,

C =
R∑
k=1

λk U
(1)
i2=k
◦ U (2)

i2=k
◦ · · ·U (n)

i2=k
(12)

where U (`)
i2=k

denotes the k-th column of a matrix of size d` × R, with ` = 1, . . . , n and λ is a vector
of size R. The symbol ◦ represents the dyadic product of vectors [32]. In terms of the components,
PARAFAC decomposition reads:

Ci1,i2,...,in =
R∑
k=1

λk u
(1)
i1,k
u
(2)
i2,k
· · ·u(n)in,k

(13)

In practice, we are interested in an approximation given by sum of r rank-one tensors:

C ' CPARAFAC =
r∑

k=1

λk U
(1)
i2=k
◦ U (2)

i2=k
◦ · · ·U (n)

i2=k
(14)

Usually, a least squares approximation Equation (12) is concerned, in which case one has to minimize
the quantity dP = ‖C −CPARAFAC‖. Since the problem is not linear, usually, we obtain an approximate
solution only, accomplished through the alternating least squares (ALS) algorithm. In this work, we use
the algorithm provided by Nion and De Lathauwer [33] to compute the PARAFAC decomposition of a
three-way complex tensor. In the case of r = 1, the state:

|ψ〉P =
d∑

i1=1

· · ·
d∑

in=1

CPARAFAC
i1,i2,...,in

|i1〉 ⊗ |i2〉 ⊗ . . . |in〉 (15)

is fully separable. Hence, the quantities dP and λp = |〈ψ|ψP〉|2 are bounds for the geometric measure of
entanglement EG and the separable state maximum overlap λmax, respectively.
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4. Three Qubits

In this section, we analyze pure states of a system consisting of three qubits: n = 3 and d = 2. The
exact values of the minimal RIU entropy are found for the states W and GHZ for particular values of
the Rényi parameter q. Generic properties of the minimal RIU entropy are also discussed. Furthermore,
some moments of the three-tangle τ are computed, and the corresponding distribution is analyzed.

4.1. Minimal Decomposition Entropy

In the case of a three-qubit system, any pure state |ψ〉 ∈ H⊗32 = H8 can be represented in the five-term
decomposition of Acin et al. [3],

|ψ〉 = a1|000〉+ a2|001〉+ a3|010〉+ a4|100〉+ a5|111〉 (16)

where
∑5

i=1 |ai|2 = 1, and four coefficients can be chosen to be real. Observe that selecting
a1 = a5 = 1/

√
2 and neglecting others, one obtains the state |GHZ〉 = (|000〉 + |111〉)/

√
2, while

setting a2 = a3 = a4 = 1/
√

3, one has |W 〉 = (|001〉 + |010〉 + |100〉)/
√

3. As the number of terms
in these states cannot be reduced by any local unitary transformation their tensor ranks are equal to two
and three, respectively, so that SRIU

0 (GHZ) = log 2 and SRIU
0 (W ) = log 3. It is possible to write a state

|A5〉 with all coefficients equal, ai = 1/
√

5, for which SRIU
0 (A5) = log 5. In the same form, we define

|A4〉 = (|000〉+ |010〉+ |001〉+ |111〉)/2, such that SRIU
0 (A4) = log 4.

For any general value of the Rényi parameter q, we are not aware of any constructive procedure that
gives the exact value of minimal RIU entropy Equation (3). However, for permutation invariant states,
we can follow the general scheme of calculating the maximum overlap with the closest separable state.
For such states, it was first conjectured and later proven that in order to obtain the maximal overlap, it is
enough to take the product state to be a tensor product of the same single-party real state [34–36]. In this
spirit, to minimize the RIU entropy for permutation invariant states, the product of local unitary matrices
Uloc in Equation (3) will be taken as:

Uloc = U(p)⊗3, with U(p) =

( √
p

√
1− p

−
√

1− p √
p

)
, p ∈ [0, 1] (17)

This task can be done easily in some special cases, i.e., SRIU
q (GHZ) = log 2 for any q and

SRIU
1 (W) = log 3. To evaluate the expression Equation (3) for an arbitrary state, we perform a random

walk over the space of unitary matrices. Figure 1 shows the minimal RIU entropy obtained numerically
for some particular states and different values of q. In the case of the state |W 〉 and |A5〉, one can
compare the value obtained by this procedure with the analytical results.

In the following, we are concerned with typical properties of the minimum value of the RIU entropy.
First, we compute the value of the Rényi entropy of a random state; then, the same quantity is evaluated in
the corresponding co-tensor, and finally, we compute the SRIU

q by performing the random walk procedure
described above. As we pointed before, we are mainly interested in the cases q = 1, q = 2 and q = 100.
The latter value serves as an approximation for the limiting case SRIU

∞ . The probability distributions of
estimations of the minimal RIU entropy for random states are presented in Figure 2. The mean, second
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moment and standard deviation for these distributions are reported in Table 1. In the case of q = 1, some
analytical results are available [37,38].

〈S1〉 = Ψ(N + 1)−Ψ(2) =
N∑
k=2

1

k

(∆S1)
2 = 1

N+1
[2Ψ′(2)− (N + 1)Ψ′(N + 1)]

(18)

whereN is the size of the system and Ψ(x) denotes the digamma function and Ψ′(x) its derivative. In our
case, we set N = 8 to obtain 〈S1〉 = 1.718 and ∆S1 = 0.160, so our numeric calculations are in good
agreement with these analytical predictions. We compute the maximum overlap of the state |ψ〉 with
the closest separable state by performing a random walk in the space of unitary matrices; this quantity
is denoted as λLUmax. The PARAFAC decomposition of |ψ〉 yields a bound λPARAFAC

max for this overlap. A
comparison between these three distributions is presented in Figure 3.

á á á á á á á á

õ õ õ õ õ
õ

õ õ

ç ç ç ç ç
ç

ç ç

+

+ +
+ + + + +

î

î
î

î
î î î î

*
*

*

*
* * * *

ó

ó

ó

ó

ó
ó ó ó

è

è
è è

è
è

è è

1
2

1 2 3 4 5 6
q

logH2L

logH3L

logH4L
logH5L

Sq
RIU

è ÈF2
max\

ó ÈF1
max\

* ÈA4\
î ÈA5\ Analytic

+ ÈA5\
ç ÈW\ Analytic

õ ÈW\
á ÈGHZ\

Figure 1. Minimal Rényi–Ingarden–Urbanik (RIU) entropy obtained numerically for several
three-qubit states as a function of the Rényi parameter q. Comparison with analytical
results available for states invariant with respect to permutation confirms the accuracy of
the numerical procedure.

Table 1. Mean value, second moment and standard deviation of the Rényi entropy of the
probability vector corresponding to a three-qubit random pure state (left), its corresponding
co-tensor (center) and the minimal RIU entropy for q = 1, 2, 100.

Sq(|ψtypical〉) Sq(|ψtypical〉HOSVD) SRIU
q (|ψtypical〉)

q 〈Sq〉 〈S2
q〉 ∆Sq 〈Sq〉 〈S2

q〉 ∆Sq 〈Sq〉 〈S2
q〉 ∆Sq

1 1.717 2.973 0.161 1.132 1.407 0.355 0.907 0.858 0.184

2 1.534 2.397 0.224 0.812 0.794 0.368 0.650 0.461 0.197

100 1.125 1.334 0.260 0.488 0.317 0.280 0.383 0.169 0.144
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Figure 2. Distributions of the Rényi entropy of a random probability vector describing a
generic three-qubit state (�), the Rényi entropy of the corresponding co-tensor (O) and the
estimation of minimal RIU entropy (◦) for (a) q = 1, (b) q = 2 and (c) q = 100.
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For any value of the Rényi parameter q ≥ 0, one can ask for a state |Φmax
q 〉, for which its minimal

entropy SRIU
q achieves its maximum value. It is known that in the case of three qubits, the maximal

entangled state with respect the geometric measure is the state |W 〉 [39,40], and hence, the largest value
of the RIU entropy reads SRIU

∞ (W ) = − log λmax(W ) = − log 4/9 ≈ 0.811. We found numerically
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states for which SRIU
1 (Φmax

1 ) = 1.277, SRIU
2 (Φmax

2 ) = 1.108 attain the maximum values. For q = 1, 2,
the coefficient vectors in the basis Equation (16) of these maximal states read:

|Φmax
1 〉 = 0.27|000〉+ 0.377|100〉+ 0.326|010〉

+0.363|001〉+ 0.740e−0.79πi|111〉

|Φmax
2 〉 = 0.438|000〉+ 0.29|100〉+ 0.371|010〉

+0.316|001〉+ 0.698e−0.826πi|111〉

(19)

Furthermore, we compute also SRIU
q (Φmax

q ) for other values of the Rényi parameter q; see Figure 1.

4.2. Distribution of Three-Tangle

The residual entanglement or three-tangle τ was introduced by Coffman et al. [41]. It quantifies
the genuine entanglement of a system of three qubits A, B and C in the following sense. Let CA,B
and CA,C denote the concurrences [42] of the density matrices of the pairs of qubits A,B and A,C,
respectively. Since the qubitsBC can be regarded as a single subsystem, we can ask for the entanglement
between A and BC. Such a quantity will be denoted as CA,BC , and it is equal to 2

√
det ρA [41], where

ρA = trBCρABC is the reduced density matrix of the qubit A when the partial trace with respect to B
and C has been performed. The following inequality holds.

C2A,B + C2A,C ≤ C2A,BC (20)

and using it, we define the three-tangle as τ = C2A,BC −C2A,B −C2A,C . This quantity measures the amount
of entanglement between the qubit A and the subsystemBC that is not related to the entanglement in the
pairs A,B and A,C. The three-tangle τ is invariant under the permutation of sub-systems and vanishes
on all states that are separable under any cut. The three-tangle for State (1) with n = 3 and d = 2 is
given by:

τ(|ψ〉) = 4 |Det3(C)| (21)

where:
Det3(C) =

∑
εi1,j1εi2,j2εk1,`1εk2,`2εi3,k3εj3,`3Ci1,i2,i3Cj1,j2,j3Ck1,k2,k3C`1,`2,`3 (22)

is the Cayley hyperdeterminant of the tensor C. Here, εi1,i2 stands for the Levi–Civita tensor of rank two,
and the sum is performed over all indexes. The three-tangle is bounded by zero and one. For the |GHZ〉
state, the residual entanglement attains its maximum value. Indeed, the pairwise concurrences CA,B and
CA,C vanish and τ = CA,BC = 1, so this state is referred to as a genuinely three-partite entangled state.

The hyperdeterminant Det3(C) is a homogeneous polynomial function of degree four, first introduced
by Caley [43]. It is invariant under the action of the group SL(2,C)⊗3 [44]. This notion of invariance
plays an important role in the construction of entanglement monotones for pure states of multiqubit
systems [45]. Moreover, a classification of multipartite entangled states has been accomplished by
analyzing singularities of the hyperdeterminant [46].

Now, we will discuss properties of typical quantum states of a three-qubit system. Kendon et al. [47]
studied the distribution of three-tangle for an ensemble of random pure states drawn according to the
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Haar measure. By direct integration of Equation (21) with respect to the unitary invariant measure, they
obtained the average value, 〈τ〉 = 1

3
. In Figure 4, we show the probability densities of τ and τ2 evaluated

over a sample of 105 random pure states. Moreover, the first six even moments of τ can be calculated
by symbolic integration using the Betaintegral (see Appendix A1). The distribution of the three-tangle
can be approximated by the Beta distribution Beta(α,β; τ), using the moment method to estimate the
parameters α = 〈τ〉

(
〈τ〉(1−〈τ〉)
〈τ2〉−〈τ〉2 − 1

)
= 31

17
and β = (1− 〈τ〉)

(
〈τ〉(1−〈τ〉)
〈τ2〉−〈τ〉2 − 1

)
= 62

17
. Hence, we get:

PB(τ) = Beta
(

31

17
,
62

17
; τ

)
(23)

By virtue of the chain rule, we get an approximated distribution function for τ2:

PB(τ2) =
1

2
√
τ

Beta
(

31

17
,
62

17
;
√
τ

)
(24)

The above distributions are presented in Figure 4 together with the estimation obtained by numerical
simulations. In order to show the accuracy of our approximation, we show in Table 2 a comparison
between the first six even moments of the distribution Equation (23) and the moments of P (τ) obtained
by symbolic integration.

Table 2. Comparison of the first six even moments of τ approximated with the Equation (23)
(center column) and computed using the symbolic integration package (right column).

k k-th Moment of PB(τ) 〈τk〉, k-th Moment of P (τ)

1 1/3 1/3

2 8/55 8/55

4 533/12,573 ≈ 0.04239 128/3003 ≈ 0.04262

6 309,14/1,819,783 ≈ 0.01699 7168/41,5701 ≈ 0.01724

8 112,955/13,778,357 ≈ 0.008198 98,304/11,685,817 ≈ 0.008412

10 1,840,340/411,553,533 ≈ 0.004472 262,144/56,497,545 ≈ 0.00464

12 672000151/252556684751 ≈ 0.002661 4194304/1502700975 ≈ 0.002791
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states. The solid lines are approximations with Beta distributions Equation (23) on the left
and Equation (24) on the right.
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5. Four Qubits

In this section, we compute both the minimal RIU entropy and the hyperdeterminant for several
exemplary four-qubit states; we also analyze some typical properties of these quantities.

5.1. Minimal Decomposition Entropy

According to Carteret et al. [22], a given state |Φ〉 ∈ H⊗42 = H16 can be written using twelve terms:

|Φ〉 =
∑
i,j,k,`

ci,j,k,`|i, j, k, `〉, with c0,1,1,1 = c1,0,1,1 = c1,1,0,1 = c1,1,1,0 = 0 (25)

and the other coefficients ci,j,k,` are real and non-negative if at most one of the indexes differs from one.
The state |GHZ4〉 is obtained by choosing c0,0,0,0 = c1,1,1,1 = 1/

√
2. Hence, SRIU

0 (GHZ4) = log 2.
Moreover, we define a state |A12〉 for which the non-vanishing coefficients in the above expansion are
ci,j,k,` = 1/

√
12. In this case, SRIU

0 (A12) = log 12.
A proper basis for n qubit permutation-invariant states is constituted by the so-called Dicke states:

|D(n, k)〉 =

(
n

k

)−1/2 ∑
permutations

| 1 · · · 1︸ ︷︷ ︸
k

0 · · · 0︸ ︷︷ ︸
n−k

〉 (26)

Note that |W 〉 = |D(n, 1)〉, |W̃ 〉 = |D(n, n − 1)〉 and |GHZn〉 = (|D(n, 0)〉 + |D(n, n)〉)/
√

2.
In the computations below, we will consider the case of n = 4. The calculation of the minimal
RIU entropy for permutation-invariant states can be turned into a one-variable optimization by taking
Uloc = U(p)⊗4. We found SRIU

q (GHZ4) = log 2, for all q and SRIU
1 (D(4, 1)) = log 4; for the

other values of q, minimization will be accomplished numerically. On the other hand, the optimal
decomposition of the state |D(4, 2)〉 is obtained by taking Uloc = U(1/2)⊗4. Accordingly, it is possible
to get a compact formula for its minimal RIU entropy:

SRIU
q (D(4, 2)) =

1

1− q
log[21−3q3−q(3 + 32q)] (27)

Hence, we get SRIU
1 (D(4, 3)) = log(8/

√
3) by taking the limit q → 1. On the other hand, when

q → ∞, one arrives at SRIU
∞ (D(4, 2)) = − log(3/8), which is consistent with the well-known result of

the overlap of |D(4, 2)〉 with the closest separable state [34]. Note that by symmetry, SRIU
q (D(4, 3)) =

SRIU
q (D(4, 1)). In Figure 5, we compare the results obtained in this way with those acquired by

performing a random walk over the space of unitary matrices for several values of q.
Consider also some other exemplary four-qubit states. The hyperdeterminant state:

|HD〉 =
1√
6

(
|1000〉+ |0100〉+ |0010〉+ |0001〉+

√
2|1111〉

)
(28)

maximizes the four-qubit hyperdeterminant [48]. The minimal RIU entropy for the former state can
be computed in the same way as for the Dicke state Equation (27), as it is shown [34–36] that the
state Equation (28) presents the optimal decomposition minimizing the RIU entropy for any q. Then,
we obtain:

SRIU
1 (HD) =

4

3
log 3, SRIU

q (HD) =
1

1− q
log

(
6q

4 + 4q

)
, for q 6= 1 (29)
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In the limit q →∞, we get SRIU
∞ (HS) = − log(2/3), which is consistent with the maximum overlap

with the closest separable states computed according to [34]. On the other hand, the cluster states
identified by Gour and Wallach [8]:

|C1〉 = 1
2

(|0000〉+ |0011〉+ |1100〉 − |1111〉)

|C2〉 = 1
2

(|0000〉+ |0110〉+ |1001〉 − |1111〉)

|C3〉 = 1
2

(|0000〉+ |0101〉+ |1010〉 − |1111〉)

(30)

are the four-qubit states that maximize the Rényi α-entropy of the partial trace for α ≥ 2. They also
found that the state:

|L〉 = 1√
12

[
(1 + w)(|0000〉+ |1111〉) + (1− w)(|0011〉+ |1100〉)

+w2(|0101〉+ |1001〉+ |1010〉)
]
, with w = exp(2iπ

3
)

(31)

maximizes the average Tsallis α-entropy of the partial trace for all α > 2. The minimal RIU entropy of
the former states is shown in Figure 5 for several values of q. Based on our numerical calculations for the
cluster states, we conjecture that SRIU

q (Ck) = log 4 with k = 1, 2, 3 for any value of the Rényi parameter.
We also consider the four-qubit state found by Higuchi and Sudbery [49]:

|HS〉 =
1

6

[
|0011〉+ |1100〉+ w(|0101〉+ |1010〉) + w2(|0110〉+ |1001〉)

]
(32)

where w = exp(2iπ/3), which has maximum average von Neumann entropy of partial traces averaged
over all possible three splittings of a four qubit system into two bipartite systems. Numerical values of
SRIU
q (HS) are shown in Figure 5.
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Figure 5. The minimal RIU entropy SRIU
q computed for several four-qubit states as a

function of the parameter q.

We are also interested in the typical properties of the minimum of SRIU
q for four qubits. For

an ensemble of 105 random pure states, we compute Sq(|ψ〉), Sq(|ψ〉HOSVD) and SRIU
q (|ψ〉), taking

q = 1, 2, 100. The corresponding distributions are shown in Figure 6 and in Table 3. In the first case and
with q = 1, we can compare our results with those provided by the analytic expression Equation (18),
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〈S1〉 = 2.381 and ∆S1 = 0.124. To provide an approximation of SRIU
∞ , we analyzed the entropy with

the Rényi parameter q = 100. In Figure 7, we show the distributions of the minimal RIU entropy SRIU
100

and Smax = − log λLU, where λLUmax is the maximum overlap with the closest separable state computed
through a random walk in the space of unitary matrices.

Table 3. Mean value, second moment and standard deviation of the Rényi entropy of a
four-qubit random pure state (left), its corresponding co-tensor (center) and the minimal of
the RIU entropy for q = 1, 2, 100.

Sq(|ψtypical〉) Sq(|ψtypical〉HOSVD) SRIU
q (|ψtypical〉)

q 〈Sq〉 〈S2
q〉 ∆Sq 〈Sq〉 〈S2

q〉 ∆Sq 〈Sq〉 〈S2
q〉 ∆Sq

1 2.381 5.686 0.124 2.038 4.234 0.283 1.633 2.687 0.145

2 2.159 4.698 0.190 1.601 2.727 0.403 1.199 1.473 0.192

100 1.60 2.635 0.254 1.027 1.219 0.405 0.701 0.513 0.145
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Figure 6. Distributions of the Rényi entropy of a four-qubit random state probability vector
(�), the Rényi entropy of the corresponding co-tensor (O) and the minimal RIU entropy (◦)
for (a) q = 1, (b) q = 2 and (c) q = 100.
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a four-qubit system.

As in the three-qubit case, we are looking for the maximal states of the minimal RIU
entropy. For the maximal symmetric state with respect to the geometric measure of entanglement
|Φ4〉 =

√
1/3|D(4, 0)〉+

√
2/3|D(4, 3)〉, the RIU entropy yields SRIU

∞ (Φ4) = − log(1/3) ≈ 1.099 [40].
Moreover, our numerical results allow us to conjecture that SRIU

∞ (HS) = − log(2/9) ≈ 1.504 is the
largest value of the minimal RIU entropy with q =∞ among the four-qubit states.

For q = 1, we found numerically a state |Ψmax
1 〉 for which SRIU

1 (Ψmax
1 ) = 1.934 is maximal. In the

decomposition Equation (25), this state reads:

|Φmax
1 〉 = 0.630|0000〉+ 0.281|1100〉+ 0.202|1010〉+ 0.24|0110〉

+0.232e0.494πi|1110〉+ 0.059|1001〉+ 0.282|0101〉

+0.346e−0.362πi|1101〉+ 0.304|0011〉+ 0.218e0.626πi|1011〉

+0.054e−0.725πi|0111〉+ 0.164e0.372πi|1111〉

(33)

Further numerical tests support the conjecture that the state |HS〉, for which SRIU
2 = log 6, maximizes

the minimal RIU entropy for q ≥ 2.

5.2. Distribution of the Hyperdeterminant |Det4|

In the case of four-qubit states, the hyperdeterminant Det4 is a polynomial of degree 24. It can be
constructed following Schläfli’s procedure [46]. In analogy to the three-tangle, we consider the following
function of the coefficients tensor C of the state |ψ〉 ∈ H16,

T (|ψ〉) = 2639|Det4(C)| (34)

For a separable four-qubit state, one has T (|ψsep〉) = 0, but it vanishes also for the states |D(1, 4)〉,
|D(2, 4)〉, |Ck〉, |HS〉 and |GHZ〉.

Alsina and Latorre found recently [48] that both |HD〉 and |L〉 maximize the hyperdeterminant, and
they also discussed the relation between these states for which T (|HD〉) = T (|L〉) = 1. Furthermore,
numerical simulations indicate that they have the same minimal RIU entropy SRIU

q .
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We evaluate the quantity Equation (34) over an ensemble of 107 random pure states. The mean
and the standard deviation read 〈T 〉 = 9.74 × 10−4 and 〈∆T 〉 = 2.39 × 10−3, respectively, while the
corresponding distribution is shown in Figure 8.
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Figure 8. Distribution of the absolute value of the hyperdeterminant P (T ) (+) for four-qubit
pure random states in a log-log plot.

6. Three Qudits: Asymptotic Case

Statistical properties of random tensors and their asymptotic limit became a subject of intensive
research [50,51]. In this section, we study random tenors of dimension three and arbitrary size, which
describe generic states of a system composed of three qudits. We analyze the bounds for the geometric
measure of entanglement of such states provided by the tensor decompositions HOSVD and PARAFAC.

Consider a typical state |ψ〉 ∈ H⊗3d drawn from the Haar measure. Let λmax and λH denote the largest
component of the probability vectors p(|ψ〉) and p(|ψ〉HOSVD), respectively, and consider the overlap
λP = |〈ψ|ψP 〉|2, where |ψP 〉 is the state Equation (15). In the cases d = 2, 3, we also evaluate the
maximum overlap of |ψ〉 with the closest separable state by performing a random walk optimization
procedure in the space of unitary matrices. Figure 9a shows the average value of four quantities as a
function of the size of the quit d computed over an ensemble of 105 random states. The mean value of
λmax can be expressed [52] in terms of the harmonic numbers HN ,

〈λmax〉 =
1

N

N∑
j=1

1

j
= HN/N (35)

whereN = d3, in our case. Therefore, for a random pure state of three qudits, the average largest overlap
to a pure state scales as d−3. Performing decompositions for an ensemble of such random tensors, we
find that for large d, the largest overlaps optimized by HOSVD and PARAFAC behave as:

〈λH〉 ∼ d−2.99, 〈λP〉 ∼ d−1.95 (36)

In both cases, the corresponding bound for the geometric measure of entanglement reads
〈EG〉 ∼ 1− 〈λk〉, where k = H,P . Figure 9b shows the geometric measure of entanglement for a
three-qudit system as function of the qudit size. Moreover, based on the scaling of 〈λP〉, we conjecture
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that the maximum overlap with respect to the closest separable state for a three-qudit system scales as
〈λmax〉 ∼ d−2 for large d.
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Figure 9. The mean of the maximum component (left) and the geometric measure of
entanglement (right) for random states of a tri-partite system as a function of the qudit size.
Bullets correspond to numeric simulations: (�) stands for the greatest tensor element λmax;
(O) the maximum component of the higher order singular value decomposition (HO-SVD)
co-tensor λH ; (◦) stands for the parallel factor model (PARAFAC) overlap λP ; and (+) refers
to the overlap with the closest separable state maximized by LU. The solid red line (—) is
the result Equation (35) with N = d3; the solid lines (—) and (—) are the best linear fits for
HOSVD and PARAFAC, respectively.

7. Conclusions

We have analyzed the Rényi–Ingarden–Urbanik entropy of pure states of quantum multipartite
systems minimized over all local unitary operations. For separable states, such a quantity is zero
irrespective of the value of the Rényi parameter q > 0. In general, it is not easy to get analytical results
for a given state and arbitrary value of the Rényi parameter q. In the special case of permutation-invariant
states, the problem becomes easier, as minimization in the space of local unitary operators can be turned
into an optimization of a one-variable function.

We computed the minimal RIU entropy of several representative three- and four-qubit states for
various values of the Rényi parameter. Some particular states, which maximize the minimal RIU entropy
for q = 1 and q = 2, were identified. Note that this quantity can be considered as a measure of pure state
entanglement in multipartite systems, and for q →∞, it becomes a function of the geometric measure of
entanglement. In the case of three qubits, the latter quantity is maximal for the state |W 〉, while for four
qubits, it achieves the maximum for the state Equation (32) of Higuchi and Sudbery [49]. The minimal
RIU entropy can be extended for mixed states using Uhlman’s convex roof construction in analogy to
the standard entropy of formation [53]. However, discussions on this matter will be reported elsewhere.

Furthermore, we analyzed the distribution of the minimal RIU entropy for an ensemble of random
states for some selected values of the Rényi parameter, q = 1, 2, 100. Our numerical simulations
demonstrate the usefulness of the PARAFAC algorithm, which allows one the find the principal
component of a tensor representing a multipartite pure state and to estimate its geometric measure of
entanglement.
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We studied also the distribution of three-tangle for random pure states of a three-qubit system and
derived a few even moments of this distribution. Numerical results show that this distribution may be
approximated by a Beta distribution. In the case of four qubits, we analyzed the distribution of the
absolute value of the hyperdeterminant of a random pure state.

Finally, the behavior of the maximum overlap of a random state of a system consisting of three
subsystems of size d and the closest separable states was investigated in the asymptotic limit. Although
the size of the largest component of a random state scales as d−3, numerical results obtained by the
PARAFAC decomposition of a tensor allow us to conjecture that the maximal overlap scales in this case
as d−2. This is consistent with an analytic result based on the Marchenko–Pastur asymptotic distribution
of singular values of random matrices, which gives an upper bound d−1.

Appendix

A1. Moments of Three-Tangle τ

In the case of even moments of order 2k of three-tangle τ for a three qubit tensor, it is easy to note
that it is a linear combination of moments of rank 8k for a random normalized vector. The moments of
normalized vectors distributed uniformly can be calculated with the use of the Beta integral.

Let |ψ〉 be a random unit vector of size d distributed uniformly on a complex sphere; then, for a vector
p of non-negative integers, the following expectation value reads:

〈|ψ1|2p1|ψ2|2p2 . . . |ψd|2pd〉 = Γ(d)
Γ(p1 + 1)Γ(p2 + 1) . . .Γ(pd + 1)

Γ(p1 + p2 + · · ·+ pd + d)
(A1)

One can also note that all moments of random vector |ψ〉, which are not in the form presented
above, are equal to zero. This follows, for example, form Collins–Śniady formula [54] for integrals
of monomials over unitary matrices distributed with the Haar measure.

Calculation of the second moment, 〈τ2〉 = 8/55, is a simple task, but for higher moments, the number
of terms grows so rapidly, that we have used a package for symbolic computations IntU, which yielded
the moments presented in Table 2. This package allows for exact calculation of polynomial integrals
over the unitary group with respect to the Haar measure [55].

A2. Bound for Geometric Measure of Entanglement for Tripartite States

The law of Marchenko–Pastur describes the asymptotic behavior of singular values of non-Hermitian,
rectangular random matrices. Let X be a random matrix X of size N×K with entries given by complex
random i.i.d. normal variables with zero mean and variance one. We define Y = XX†/trXX† and
for c > 1 consider a random counting measure on a real line, which counts the number of rescaled
eigenvalues of Y , which belongs to a given set, i.e.,

µM(A) =
1

N
#{λ(cNY ) ∈ A} (A2)
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For the measure defined above, if N,K →∞ with the additional assumption K/N → c, there exists
a limiting distribution µM → µ given by:

dµ(x) =
1

2π

√
(a+ − x)(x− a+)

cx
dx for x ∈ [a−, a+] (A3)

with:
a± = (1±

√
c)2 (A4)

The above theorem gives us the behavior of the largest eigenvalue of a matrix Y , which is λ1(Y ) ∼
1
cN

(1 +
√
c)2.

In the case when N,K →∞, but K/N →∞, the theorem does not give us the limiting distribution,
but form the theorem, we will extract the rate of convergence of the largest eigenvalue.

Consider, the case when K = N2, then K/N = N , the direct usage of the Marchenko–Pastur law
would give us a behavior of the largest eigenvalue of Y , i.e., λ1(Y ) ∼ 1

N2 (1 +
√
N)2 ∼ 1

N
.

Now, we will try to use the above asymptotics to bound the geometric measure of entanglement for
tripartite random states.

Consider a random tensor |ψ〉 ∈ Cd ⊗ Cd ⊗ Cd = H1 ⊗ H2 ⊗ H3. The geometric measure of
entanglement is related to the overlap with the nearest product state, i.e.,

max
|φ〉∈sep

|〈ψ|φ〉|2 (A5)

In the above equation, a set sep consist of vectors in the form φ1 ⊗ φ2 ⊗ φ3 for φi ∈ Hi. For distinct
i, j, k ∈ {1, 2, 3}, we denote sepi|jk vectors of the form φ1 ⊗ φ2 for φ1 ∈ Hi and φ2 ∈ Hj ⊗ Hk. We
have that sep ⊂ sepi|jk, which gives us:

max
|φ〉∈sep

|〈ψ|φ〉|2 ≤ max
|φ〉∈sepi|jk

|〈ψ|φ〉|2 (A6)

The last maximum above is a square of the largest Schmidt coefficient for vector |ψ〉.
If we consider the behavior of large random tripartite states, the above inequality, combined with the

relations obtained form the Marchenko–Pastur law, we obtain:

max
|φ〉∈sep

|〈ψ|φ〉|2 ≤ max
|φ〉∈sepi|jk

|〈ψ|φ〉|2 ∼ 1

d
(A7)
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17. Życzkowski, K.; Bentgsson, I. Relativity of Pure States Entanglement. Ann. Phys. 2002, 295,

115–135.
18. Wei, T.C.; Goldbart, P.M. Geometric measure of entanglement and applications to bipartite and

multipartite quantum states. Phys. Rev. A 2003, 68, 042307.
19. Parker, M.G.; Rijmen, V. The Quantum Entanglement of Binary and Bipolar Sequences, Sequences

and Their Applications, SETA’01. In Discrete Mathematics and Theoretical Computer Science
Series; Helleseth, T., Kumar, P.V., Yang, K., Eds.; Springer: London, UK, 2001.



Entropy 2015, 17 5083

20. Bravyi, S. Entanglement entropy of multipartite pure states. Phys. Rev. A 2003, 67, 012313.
21. Ingarden, R.S.; Urbanik, K. Quantum informational thermodynamics. Acta Phys. Pol. 1962, 21,

281–304.
22. Carteret, H.A.; Higuchi, A.; Sudbery, A. Multipartite generalisation of the Schmidt decomposition.

J. Math. Phys. 2000, 41, 7932–7939.
23. Spekkens, R.W.; Sipe, J.E. Non-orthogonal preferred projectors for modal interpretations of

quantum mechanics. Found. Phys. 2001, 31, 1403–1430.
24. Eisert, J.; Briegel, H.J. Schmidt measure as a tool for quantifying multiparticle entanglement.

Phys. Rev. A 2001, 64, 022306.
25. Hein, M.; Eisert, J.; Briegel, H.J. Multiparty entanglement in graph states Phys. Rev. A 2004, 69,

062311.
26. Chitambar, E.; Duan, R.; Shi, Y. Tripartite Entanglement Transformations and Tensor Rank. Phys.

Rev. Lett. 2008, 101, 140502.
27. De Lathauwer, L.; de Moor, B.; Vandewalle, J. A multilinear singular value decomposition. SIAM

J. Matrix Anal. Appl. 2000, 21, 1253–1278.
28. Bro, R. PARAFAC. Tutorial and applications. Chemometr. Intell. Lab. Syst. 1997, 38, 149–171.
29. Jiang, B.; Ma, S.; Zhang, S. Tensor principal component analysis via convex optimization. Math.

Program. Ser. A 2015, 150, 423–457.
30. Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500.
31. Liu, B.; Li, J.L.; Li, X.; Qiao, C.F. Local unitary classification of arbitrary dimensional multipartite

pure states. Phys. Rev. Lett. 2012, 108, 50501.
32. Enríquez, M.; Rosas-Ortiz, O. The Kronecker product in terms of Hubbard operators and the

Clebsch-Gordan decomposition of SU(2)× SU(2). Ann. Phys. 2013, 339, 218–265.
33. Nion, D.; de Lathauwer, L. An Enhanced Line Search Scheme for Complex-Valued Tensor

Decompositions. Application in DS-CDMA. Signal Process. 2008, 88, 749–755.
34. Hübener, R.; Kleinmann, M.; Wei, T.C.; Gühne, O. Geometric measure of entanglement for

symmetric states. Phys. Rev. A 2009, 80, 032324.
35. Hayashi, M.; Markham, D.; Murao, M.; Owari, M.; Virmani, S. The geometric measure of

entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 2009,
50, 122104.

36. Wei, T.C.; Severini, S. Matrix permanent and quantum entanglement of permutation invariant states.
J. Math. Phys. 2010, 51, 092203.
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