Electronic Supplementary Information

Linking magnetic M^{II}–[M^V(CN)₈] chains into 2D inorganic–organic hybrid materials

O. Stefańczyk,* ^{*a,b,c*} A. M. Majcher,^{*d*} M. Rams,^{*d*} W. Nitek,^{*a*} C. Mathonière,^{*b,c*} and B. Sieklucka*^{*a*}

^a Faculty of Chemistry, Jagiellonian University in Kraków, Ingardena 3, 30–060 Kraków, Poland.

^b CNRS, ICMCB, UPR 9048, F–33600 Pessac, France.

^c Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France.

^d Institute of Physics, Jagiellonian University in Kraków, Łojasiewicza 11, 30–348 Kraków, Poland.

Contents

Table S1. Results of continuous shape measures analysis for M^V centers.

Table S2. Results of continuous shape measures analysis for M^{II} centers.

Figure S1. IR spectra in full range, in the v(C≡N) region and in the fingerprint region for 1 - 3.

Figure S2. ORTEP diagrams of asymmetric units of 2 and 3 with selected atoms labeling. Superimposed structural diagrams for 1 - 3.

Figure S3. Local environments of the metal centers of 1 and other $Co^{II}-W^V$ systems.

Figure S4. Local environments of the metal centers of 2, 3 and another Cu^{II}–M^V system.

Figure S5. Crystal packing for 1 - 3 and other systems containing 3,2-chain entities.

Figure S6. The $\chi_{\rm M}'(f)$ and $\chi_{\rm M}''(f)$ curves for 1 as a function of the AC frequency measured in $H_{\rm dc} = 0$, 0.5 and 1 kOe ($H_{\rm ac} = 1$ Oe) at T = 1.8 K.

Figure S7. The first derivative of magnetization vs. magnetic field plots for 1-3.

Table S1. Results of continuous shape measures analysis for M^V centers.

Compound	Geometry	$S_{\rm BTP}$	S_{SAPR}	S_{TDD}
	ideal BTP-8	0.000	2.262	2.709
	ideal SAPR-8	2.262	0.000	2.848
	ideal TDD-8	2.709	2.848	0.000
1	$[W^{1}(CN)_{8}]$	2.064	2.275	0.345
2	$[W^1(CN)_8]$	1.954	1.774	0.393
3	$[Mo^1(CN)_8]$	1.966	1.674	0.497

 S_{BTP} – the shape measure relative to the bicapped trigonal prism; S_{SAPR} – the shape measure relative to the square antiprism; S_{TDD} – the shape measure relative to the triangular dodecahedron; smaller *S*-value reflect a better match with the ideal geometry (*S* = 0).

Table S2. R	esults of	continuous	shape measures	analysis	for M ^{II}	centers
-------------	-----------	------------	----------------	----------	---------------------	---------

Compound	Geometry	S _{OC}
	OC-6	0.000
1	$[Co^2(NC)_2(DMF)_4]$	0.040
1	$[Co^{3}(NC)_{2}(pyz)(DMF)_{3}]$	0.345
2	$[Cu^2(NC)_2(DMF)_4]$	0.185
2	$[Cu^{3}(NC)_{2}(pyz)(DMF)_{3}]$	0.831
3	$[Cu^2(NC)_2(DMF)_4]$	0.426
3	$[Cu^{3}(NC)_{2}(pyz)(DMF)_{3}]$	0.843

 $S_{\rm OC}$ – the shape measure relative to the octahedron; smaller S–value reflect a better match with the ideal geometry (S = 0).

Figure S2. ORTEP diagrams of asymmetric units of **2** (**a**) and **3** (**b**) with selected atoms labeling. Colors used: C – gray, Co – yellow, Cu – orange, N – blue, Mo – green, O – red, W – purple. Thermal ellipsoids of 50% probability are shown. **c**) Superimposed structural diagrams for **1** (blue), **2** (black) and **3** (red).

[Cu["](4,4'-bpy)(DMF)]₂[Cu["](4,4'-bpy)(DMF)₂][W^V(CN)₈]₂·2DMF·2H₂O

Figure S5. Crystal packing for 1 - 3 and other systems containing 3,2-chain entities.

8 2

[Co^{II}(DMF)₄]₃[W^V(CN)₈]₂

[Mn["](DMF)₄]₃[W^v(CN)₈]₂

[Co["](pyz)(DMF)₃]₂[Co["](DMF)₄][W^V(CN)₈]₂ (1)

 $[Co^{"}(tptz)(H_{2}O)]_{2}[Co^{"}(H_{2}O)_{4}][W^{\vee}(CN)_{8}]_{2}\cdot 2H_{2}O$

[Mn["](bpy)₂(DMF)₂]₂[Mn["](DMF)₄][W^V(CN)₈]₂

[Cu["](pyz)(DMF)₃]₂[Cu["](DMF)₄][W^V(CN)₈]₂ (2)

[Ni["](DMF)₄]₃[W^V(CN)₈]₂

[Mn["](bpy)₂(DMF)₂]₂[Mn["](DMF)₄][Mo^V(CN)₈]₂

[Cu["](pyz)(DMF)₃]₂[Cu["](DMF)₄][Mo^v(CN)₈]₂ (3)

Figure S7. The first derivative of magnetization vs. magnetic field plots for 1 (blue), 2 (black) and 3 (red).