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How we move is universal: Scaling in the average shape of hum an activity

Dante R. Chialvo,1 Ana Maria Gonzalez Torrado,2 Ewa Gudowska-Nowak,3 
Jeremi K. Ochab,4 Pedro Montoya,2 Maciej A. Nowak,3,4 Enzo Tagliazucchi5

Hum an m otor activity is constrained by the rhythm icity of the 24 hours circadian cycle, 
including the usual 12-15 hours sleep-wake cycle. However, activity fluctuations also ap
pear over a wide range of tem poral scales, from days to  a few seconds, resulting from the 
concatenation of a myriad of individual smaller m otor events. Furtherm ore, individuals 
present different propensity to  wakefulness and thus to  m otor activity throughout the cir
cadian cycle. Are activity fluctuations across tem poral scales intrinsically different, or is 
there a universal description encompassing them ? Is this description also universal across 
individuals, considering the aforementioned variability? Here we establish the presence of 
universality in  m otor activity fluctuations based on the empirical study of a m onth of con
tinuous wristwatch accelerometer recordings. We study the scaling of average fluctuations 
across tem poral scales and determ ine a universal law characterized by critical exponents 
a ,  T  and 1 /^ . Results are highly reminiscent of the universality described for the average 
shape of avalanches in systems exhibiting crackling noise. Beyond its theoretical relevance, 
the present results can be im portant for developing objective markers of healthy as well 
as pathological hum an m otor behavior.
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I. In troduction

The m ost obvious periodicity of hum an (as well as 
animal) m otor activ ity  is the  circadian tw enty four 
hours m odulation. However, sm aller fluctuations 
are evident on a wide range of tem poral scales, from 
days to  a few seconds. D a ta  shows th a t the activity  
evolves in bursts of all sizes and durations which are 
known to  be scale-invariant [1 - 8 ] regardless of the 
origins and intended consequences of such activity. 
Despite the  variety of results, the  m echanisms un
derlying the scale-invariant behavior of m otor ac
tiv ity  rem ain to  be elucidated. Considering the in
te rm itten t na tu re  of hum an m otor activ ity  - com
prising brief activ ity  excursions separated  by peri
ods of quiescence - a n a tu ra l approach would be to  
study  the  average shape of the events, following re
cent results [9-12] which show th a t for a large class 
of processes, the average shape is a scaling function
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determ ined m ostly  by the tem poral correlations of 
the process and its nonlinearities [13].

In the present work, long tim e series of hum an 
m otor activ ity  are analyzed, recorded via w rist- 
w atch accelerom eter, lasting approxim ately one 
m onth. We establish first the  presence of truncated  
scale-invariance in the  d istribu tion  of the  durations 
of the events as well as in its power spectral den
sity, as described previously in similar type of data . 
A fterw ards, we uncover the average shape of the 
bursts of activ ity  and derive the scaling function 
and its associated exponents. Finally, we discuss 
the origins of such scaling and some possible appli
cations.

II. M aterials and m eth ods

T he recordings analyzed were p a rt of a larger study  
and included six healthy, non-sm okers, drug-free 
volunteers (m ean age 50.1 years, S.D. =  6 .8 ). The 
s tudy  was approved by the Bioethics Commission 
of the U niversity of Isles Baleares (Spain). P a r
tic ipants were inform ed about the procedures and 
goals of the study, and provided their w ritten  con
sent. After determ ining their handedness, each 
subject was provided w ith a wristwatch-sized activ
ity  recorder (A ctiw atch from Mini- M itter Co., OR, 
USA) m easuring acceleration changes in the fore
arm  in any plane. Each d a ta  point of activ ity  corre
sponded to  the num ber of zero crossings in acceler
ation larger th an  0.01 G  (sam pled a t 32 Hz and in
teg ra ted  over a 30-second window length). Records 
of several thousands of d a ta  points were kept in the 
device's in ternal m em ory until being downloaded to  
a personal com puter every week. Subjects wore the 
device in their non-dom inant arm  continuously for 
up to  several weeks (m ean 28.1 days, S .D .=  4.). Af
te r careful visual inspection of the  d a ta  to  exclude 
sets w ith gaps (due to  subject non-com pliance), a 
combined to ta l of 280 days of d a ta  was available 
for further analysis.

III. R esu lts

For ease of presentation, we will use recordings from 
a single subject to  describe the m ain results. Nev
ertheless, results are robust as well as sim ilar for 
the entire group of subjects in the study. A typical 
recording is presented in Fig. 1. Panel A shows

Figure 1: Exam ple d a ta  set, d istribu tion  of suc
cessive increm ents and their spectral power. Panel 
A: Time series of activ ity  x(n ) recorded continu
ously from a subject during a m onth. Individual 
traces correspond to  consecutive days. The top  
subpanel depicts daily activ ity  averaged over the 
entire m onth. Panel B: Tim e series of successive 
increm ents I (n )  =  x (n  + 1 ) — x(n) (normalized by 
its SD) for the  same data . Panel C: Probability  
density d istribu tion  of the tim e series of succes
sive increm ents I (  n) (continuous line), exhibiting 
exponential tails (compare w ith the  do tted  line, a 
G aussian of the  same variance). Panel D: Power 
spectral density  (black line) of the  tim e series of 
successive increm ents I (n )  of panel B. This is scale 
invariant S ( f ) ~  f Y w ith y =  0.9 (dashed line). In 
contrast, for the random ly shuffled increm ents, the 
serial correlations vanish and a flat spectral density 
is obtained (red).

a full m onth of continuously recorded activ ity  from 
th is subject, who is particu larly  regular in her daily 
routines. The subject wakes up w ith the alarm  
clock at 6:45 a.m. on week days and has lunch fol
lowed by a short nap each day (between 2 : 0 0  p.m. 
and 4:00 p.m . Panel B displays the tim e series of
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Figure 2: Scaling of activ ity  events in a single
subject (same d a tase t as in Fig. 1). Panel A: 
The com plem entary cum ulative d istribu tion  func
tion (CCDF) for event durations (T) and sizes (S) 
obeys power-laws w ith exponents a'  =  0.70 and 
T' =  0.44, respectively (dashed lines). Note th a t 
here the densities are cum ulative, thus the expo
nents of the  respective PD Fs are a  =  a ' +  1 and 
T =  t ' +  1. The waiting tim e between events 
falls exponentially. Panel B: The average size of 
a given dura tion  is well described (for small T) by 
( S ) ( T ) ~  T M + 1  w ith  u  + 1  =  1.59 (blue dashed 
line) com parable w ith results obtained from fitting 
w ithin the scaling region (red filled symbols) giving
U +  1 =  1.61.

the successive increm ents of the  signal x (n ), defined 
as I (n )  =  x (n  + 1 ) — x(n).

The large-scale sta tistical features of the tim e se
ries presented in Fig. 1 are already well known. 
The density d istribu tion  of the successive incre
m ents i (n)  is non-G aussian, as can be appreci
ated  by a jo in t plot w ith a G aussian d istribution 
of the same variance (Fig. 1, Panel C). I t is known

th a t the power spectrum  of the  activ ity  decays as 
S ( f ) ~  f 3  [1,2]. Because th is type of processes 
are likely to  be non-stationary, it is best to  esti
m ate the exponents of the  spectral density  by doing 
the calculations over the tim e series of successive 
increm ents, whose density  d istribu tion  is sta tion 
ary. For instance, for Brownian m otion (which is 
sum m ed white noise), the  power spectrum  decays 
S ( f ) ~  f 3  w ith  fi =  — 2  and for white noise fi =  0 ; 
the  sum m ed tim e series has an exponent + 2  larger 
th an  the  non-sum m ed tim e series. As discussed in 
[14], th is can be generalized for all self-affine pro
cesses: sum m ing a self-affine tim e series shifts the 
theoretical pow er-spectral density exponent by + 2 , 
and the reverse process is also true: the  differences 
in consecutive values (the “first differences” ) of a 
Brownian m otion result in white noise, thus tak 
ing the  first differences shifts the theoretical power- 
spectral density exponent fi by —2. In our case, the 
exponent obtained for the tim e series of successive 
increm ents I (n )  was 7  =  0.9. Thus, the exponent 
of the raw d a ta  is fi =  7  — 2 =  —1.1 [14]. For com
parison, the spectral densities of the  actual signal 
and of a surrogate obtained after random ly shuf
fling the increm ents are jo in tly  displayed in Panel 
D of Fig. 1.

To further study  the tim e series from the perspec
tive of individual bursts of activity, we introduce 
the definition of an event. We consider the  tim e 
series of activ ity  x( n) and select a threshold value 
U to  be vanishingly small. An event is defined by 
the consecutive points s ta rting  when x (n) >  U and 
ending when x(n) <  U . This is equivalent to  the 
definition of avalanches in o ther contexts [9,15]. In 
the following part, we will be concerned prim arily 
w ith the  sta tistics of event lifetimes T , as well as of 
their average size S  and shape. In all subjects, we 
found th a t the distributions of event durations and 
sizes (defined by the area, i.e., the  integral of the 
signal corresponding to  the  individual events) can 
be well described, for relatively small values, by a 
power-law (Fig. 2, Panel A). In contrast, the  dis
tribu tion  of waiting tim es between events demon
stra ted  an exponential decay. In addition to  the 
scale invariance, we found th a t the  longer an event 
lasted, the  stronger the m otor activ ity  executed by 
the subject. The plot of average event size (S) as 
a function of duration  T  follows a power-law (for 
small values of T ) described by ( S ) ( T ) =  T M + 1  w ith 
U +  1 =  1.59. The exponents in this power-law are
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range from earthquakes [16] to  active tran sp o rt pro
cesses in cells [17], crackling noise [11], the  s ta tis
tics of B arkhausen noise in perm alloy th in  films [10] 
and plastic deform ation of m etals [18]. In all these 
cases, the distributions obey universal functional 
forms:

f  (S) ~  S - T , (1)

f  ( T ) ~  T - a , (2)

( S ) ( T ) -  T 1/auz, (3)

where f  denotes the probability  density  functions 
of the size of the event S  and its dura tion  T , and 
(S )(T ) is the expected size for a given duration. 
The param eters t  , a  and 1 /a v z  are the critical ex
ponents of the system  and are expected to  be inde
pendent of the  details, being related  to  each other 
by the scaling relation:

^  =  — . (4)t  — 1 a v z
We found th a t the  em pirical exponents very 

closely fulfill the  expression above. Using the  fitting 
approach in troduced by Clauset [19] in the  scaling 
regions depicted in Panel A  of Fig. 2, we found 
t  =  1.44 and a  =  1.70 . Thus, from Eq. (4) a
value of 1 / a v z  =  ^  + 1  =  1.59 is expected. The
experim ental d a ta  points are very close to  this the
oretical expectation (dashed line), especially for the 
relatively small T  values w ithin the  scaling region of 
Panel A (where a linear fit estim ates ^  +  1 =  1.61), 
while those for relatively larger T values (corre
sponding to  the  cutoff of the d istributions) are a 
bit apart, probably due to  undersam pling. After 
repeating  th is analysis for all subjects in our sam 
ple, the average exponents were all w ithin 5% of 
the reported  values.

From  scaling argum ents, it is expected th a t the 
average shape of an event of dura tion  T  (x(T, t ) )  
scales as :

(x(T, t ) )  =  T f shape ( t / T ). (5)

Thus, the shapes of events of different durations 
T  rescaled by ^  should collapse on a single scaling 
function given by f shape( t / T ). Note th a t ^  corre
sponds in this context to  the w andering exponent 
(i.e., the  m ean squared displacem ent) of the  activ
ity  [13,20].

Exam ples of th is collapse are presented in P an
els A and B of Fig. 3. Considering the num ber of

Figure 3: Collapse of events of different duration  
into a single functional form. Panel A: Three ex
amples of typical events of duration  T =480, 960 
and 1920 sec.. Panel B: The heterogeneous events 
shown in Panel A can be collapsed onto the av
erage shape (dashed black line) by norm alizing t 
to  t / T  and (x(t)) to  (x ( t) ) /T M. The inset shows 
the cum ulative variance for a range of ^ . Panel 
C: The average event shape, i.e., f shape ( t / T ), re
covered from six d a ta  sets (th in  lines). The best 
fit using an inverted parabola is shown as a red 
dashed line (^  =  0.49) as well as the  one expected 
from the critical exponent ^  =  0.59 as a dot-dashed 
blue line.

robust across subjects and to  changes of threshold 
over a reasonable range of values.

This type of scaling is well known in the  s ta tis ti
cal mechanics of critical phenom ena [15]. Exam ples
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Figure 4: Scaling is absent in a null model result
ing from defining events after random ly reordering 
the tim e series x (n ). Panel A: Density d istribu
tions (CCDF) for event duration, size, and waiting 
tim e. All the  d istributions are exponential (note 
the logarithm ic-linear scale). Panel B: The ex
pected average size for a given duration  in the  null 
model is a linear function of T  (the dashed line rep
resents the fit w ith slope 1 ), therefore, u  =  0  and 
there is no collapse.

an inverted parabola, as in o ther system s previously 
studied using this m ethod. The best fit disagrees 
w ith the em pirical functions near their peak, the 
la tte r being flatter, likely an effect related  to  sa tu 
ration  observed in long events.

Finally, we tu rn  to  discuss simple null models. 
We consider two extrem e cases, in b o th  of them  
the raw tim e series are random ly shuffled to  remove 
serial correlations. In the first case, we remove all 
tem poral correlations by random ly reordering x (n), 
thus atta in ing  a flat power spectral density. After 
repeating  the above analysis in th is surrogate d a ta  
set, it becomes clear (as shown in Fig. 4) th a t the 
scale invariance is absent in all the  sta tistics un
der study: size S , waiting tim e Wt and duration  
T  of events (note th a t the d istribu tions are here 
p lo tted  using a logarithm ic-linear scale). Results 
in Panel B show th a t u  + 1  =  1, thus u  =  0, imply
ing th a t there is not collapse, because w ith T M =  1 

in Eq. (5), the  am plitude of the  individual events 
rem ains invariable. To consider the  second case, 
we need first to  reorder random ly the tim e series of 
increm ents I (n )  and then  proceed to  integrate the 
increm ents. Since each increm ent is now a random  
variable, the  power spectral density  for th is surro
gate process obeys f  ̂  w ith 0  =  — 2  , and as shown 
analytically by B aldassari et al. [13], for this case 
U =  1 / 2  and the scaling function is a semicircle. 
Please note th a t the  fluctuations of hum an activity  
described here differ from a simple auto-regressive 
process: indeed successive increm ents I (n )  are anti
correlated and the power spectral density  corre
sponds to  non-trivial power law correlations (i.e.,
Č =  —2 ).

events here averaged (in the  order of N  — 102), the 
d a ta  collapse is quite satisfactory, while the value of 
the  exponent (u =  0.48) does not exactly m atch the 
one predicted in Eq. (4), u =  0.59 (likely a conse
quence of insufficient sam pling). To determ ine the 
generality of our results, we extended th is analy
sis to  six o ther d a ta  sets. For each d a ta  set, the 
value of u  was first determ ined. Subsequently, the 
x(T , t) obtained from the events were rescaled w ith 
T M and their average com puted. To account for 
individual differences in m ean activity, shape func
tions were norm alized by their m ean value. The 
results for the six datasets are presented in Panel 
C of Fig. 3. T hey can be accurately described by

IV. D iscu ssion

The present findings can be sum m arized by six styl
ized facts describing bursts of hum an activity: I) 
the spectral density of the tim e series of activity  
x (t) obeys a power law, w ith exponent 0  — 1 ;
II) successive increm ents I (n )  are anti-correlated 
w ith a spectral density obeying a power law w ith 
exponent 7  — 1 , which corresponds to  a spec
tra l density for the  raw d a ta  f ^  w ith 0  — — 1 ;
III) the PD F of the increm ents I (n )  is definitely 
non-gaussian; IV) the PD F of dura tion  and sizes 
of events obeys trunca ted  power laws w ith expo
nents 1 <  t  <  2 and 1 <  a  <  2; V) the aver
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age size of the  events scales w ith its lifetime T  as
(S )(T ) — T M , where u  +  1 =  (a  — 1 ) / ( t  — 1); VI) 
the  tim e series of individual events can be appropri
ately  rescaled via a transform ation of its duration  T  
and am plitude x (t) onto a unique functional shape:
(x (T ,t)) =  T f s h a p e ( t /T ).

We are aware th a t these observations are novel 
only for hum an activity, because sim ilar sta tistical 
regularities of avalanching activ ity  are well known 
for a large variety of inanim ate system s [9-12]. The 
rescaling of the average shape is not surprising be
cause, placed in the appropriate context, it can be 
traced  back to  M andelbro t’s s tudy  of the  fractal 
properties of self-affine functions [21]. A curve or 
a tim e series are said to  be self-affine if a transfor
m ation can be found, such th a t rescaling their x, y 
coordinates by k and kM , respectively, and the vari
ance in y is preserved (with u  = 1  corresponding 
to  self-similarity). In th a t sense, the  successful col
lapse of the events shape is a trivial consequence of 
the  overall self-affinity of the  x(t) tim e series.

Thus, it is clear th a t the existence of the scal
ing uncovered here is not inform ative per se of the 
type of m echanism  behind: scale-invariance can be 
constructed  via different processes, ranging from 
critical phenom ena [15] to  simple stochastic au to
regressive dynam ics [13, 20]. W hat is then  the 
mechanism  by which the above six facts are gen
erated?

It seems th a t th is question cannot be easily an
swered by the type of experim ents reported  here. 
F luctuations of th is type could have either an in
trinsic (i.e., brain-born) origin bu t also could be 
the reflection of a collective phenom ena (including 
hum ans and its environm ent). In either case, the 
correlations observed seem to  reject the  case of in
dependent random  events s ta rting  and stopping hu
m an actions, because neither the  d istribu tion  of the 
increm ents I (n ) , nor the  exponents m atch the case 
of a random  walk. In term s of brain-born process, 
it is hard  to  accept some of the im plications of the 
scaling function in the  activ ity  shape. The average 
parabolic shape m eans th a t the very beginning of 
the  m otion activ ity  contains inform ation about how 
long the activ ity  will last, in the  same sense th a t the 
initial tra jec to ry  of a projectile predicts when and 
where it will land. This proposal is hard ly  realistic, 
because there is hard ly  a reasonable physiological 
argum ent in support of any m otor planning for the 
length of tim e we are observing (— 103 secs). In

term s of collective processes, the results here sug
gest th a t the  in teraction  w ith o ther hum ans could 
determ ine when and where, on the average, we s ta rt 
and stop moving.

Despite our current relative ignorance, a possi
bility  th a t sounds interesting is to  determ ine in 
children, as they  grow, if the ir behavioral product 
of parental (and otherwise) education are reflected 
in the  shape of their individual scaling function. 
This seems reasonable given the fact th a t “tireless 
running around” is alm ost a definition of early age 
well-being, which gives way to  less hectic activ ity  
as children m ature. In the  same line of thoughts, 
if changes in the scaling function can be quan tita 
tively traced  to  behavioral changes, one could also 
consider to  explore applications of these techniques 
to  m onitor eventual progress in the trea tm en t of 
hyperactiv ity  disturbances such as in the subjects 
affected by the  A ttention  Deficit H yperactiv ity  Dis
order syndrom e. The converse, i.e., cases in which 
the average activ ity  diminish, as in elderly subjects 
shall be also explored. F urther experim ents and 
analysis should shed light on these possibilities. In, 
the m eantim e, the  present results provide a guide 
and six im portan t constraints for the  models th a t 
should best cap ture  the  physics (and biology) of the 
process.

Acknowledgements - W ork supported  by Na
tional Science C enter of Poland (ncn.gov.pl, grant 
D E C -2011/02/A /ST 1/00119); S tate  Secretary for 
Research and Development (grants PSI2010-19372 
and PSI2013-48260) from Spain and by CO N ICET 
from Argentina.)

[1] T Nakam ura, K Kiyono, K Yoshiuchi, R Naka- 
hara, Z R Struzik, Y Yamamoto, Universal 
scaling law in  hum an behavioral organization, 
Phys. Rev. L ett. 99, 138103 (2007).

[2] T N akam ura, et al., O f mice and m en - uni
versality and breakdown o f behavioral organi
zation, PLoS ONE 3, e2050 (2008).

[3] K Hu, P  C Ivanov, Z Chen, M F Hilton, H 
E Stanley, S A Shea, Non-random  fluctuations  
and multi-scale dynamics regulation o f hum an  
activity, Physica A 337, 307 (2004).

070017-6



P a p e r s  i n  P h y s i c s ,  v o l .  7, a r t .  070017 (2015) /  D. Chialvo et al.

[4] L A N  Am aral, D J B Soares, L R da Silva, L S 
Lucena, M Saito, H Kum ano, N Aoyagi, Y Ya
m am oto, Power law temporal auto-correlations 
in  day-long records o f hum an physical activ
ity  and their alteration with disease, Europhys. 
L ett. 6 6 , 448 (2004).

[5] C Anteneodo, D R Chialvo, Unravelling the 
fluctuations o f animal m otor activity , Chaos 
19, 033123 (2009).

[6 ] K Christensen, D Papavassiliou, A de 
Figueiredo, N R Franks, A B Sendova-Franks, 
Universality in  ant behaviour, J. R. Soc. In ter
face 12, 20140985 (2014).

[7] A Proekt, J  Banavar, A M aritan, D Pfaff, 
Scale invariance in  the dynamics o f sponta
neous behavior, P roc N atl Acad Sci USA 109, 
10564 (2012).

[8 ] J  K Ochab, et al., Scale-free fluctuations in  be
havioral performance: Delineating changes in  
spontaneous behavior o f hum ans with induced, 
sleep deficiency, PLoS ONE 9, e107542 (2014).

[9] L Laurson, X Illa, S Santucci, K T Tallak- 
stad , K J Maloy, M J Alava, Evolution o f the 
average avalanche shape with the universality 
class, N ature Comm. 4, 2927 (2013).

[10] S Papanikolaou, F  Bohn, R L Sommer, G 
Durin, S Zapperi, J  P  Sethna, Universality 
beyond power laws and the average avalanche 
shape, N ature Phys. 7, 316 (2011).

[11] J P  Sethna, K A Dahm en, C R Myers, Crack
ling noise, N ature 410 , 242 (2001).

[12] N Friedm an, S Ito, B A W  Brinkm an, M Shi- 
mono, R E L DeVille, K A Dahmen, J M 
Beggs, T  C Butler, Universal critical dynam 
ics in  high resolution neuronal avalanche data, 
Phys. Rev. L ett. 108, 208102 (2012).

[13] A Baldassarri, F  Colaiori, C Castellano, Av
erage shape o f a fluctuation: Universality in  
excursions o f stochastic processes, Phys. Rev. 
L ett. 90, 060601 (2003).

[14] B D M alam ud, D L Turcotte, Self-affine time  
series: I. Generation and analyses, Adv. Geo- 
phys. 40, 1 (1999).

[15] P  Bak. How nature works. The science o f self
organized criticality, Copernicus, New York 
(1996).

[16] B G utenberg, C F  Richter, M agnitude and en
ergy o f earthquakes, Ann. Geofis. 9, 1 (1956).

[17] B Wang, J Kuo, S Granick, B urst o f active 
transport in  living cells, Phys. Rev. L ett. 111, 
208102 (2013).

[18] L Laurson, M J Alava, 1 / f  noise and avalanche 
scaling in  plastic deformation, Phys. Rev. E 
74, 066106 (2006).

[19] A Clauset, C R Shalizi, M E J. Newman, 
Power-law distributions in  empirical data, 
SIAM Rev. 51, 661 (2009).

[20] F  Colaiori, A Baldassarri, C Castellano, Aver
age trajectory o f returning walks, Phys. Rev. 
E  69, 041105 (2004).

[21] B B M andelbrot, Self-affine fractals and frac
tal dimension, Physica Scrip ta 32, 257 (1985).

070017-7


