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1. Introduction

Nonlinearity of field equations can have pronounced manifestations in
physical predictions from the theory. Examples are ubiquitous and well-
known: multiple ground states, static solitons, solitary waves, long lived
oscillons, blow-up of solutions at a finite time, and many more. Another
important effect due to the nonlinearity is that the field can react to the
presence of external charges in a rather nontrivial way. In consequence, the
force between the charges essentially differs from naive expectations based on
free field models. Very old, yet still interesting example of this phenomenon
is provided by classical non-Abelian gauge fields in the presence of static
external charges, see, e.g., [1–3]. Recently, we have studied this aspect of
the nonlinearity using the signum-Gordon model [4, 5]. The remarkable
simplicity of the field equation in this model enables us to present exact
nonperturbative results, in contradistinction to the case of Yang–Mills field.
The most striking findings are as follows: there are no Yukawa or Coulomb
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tails of the field in the region far away from charges; the charges are totally
screened by the field; the force between them vanishes exactly when they are
separated by a distance that exceeds a certain finite value. In the present
paper, we corroborate these results by solving the two-dimensional case.

Let us briefly remind that the signum-Gordon model involves a single
real scalar field ϕ that evolves according to the signum-Gordon equation

∂µ∂
µϕ+ g sign ϕ = 0 ,

where g > 0 is the self-coupling constant. The sign function takes the values
0,±1, in particular sign 0 = 0. The Lagrangian has the form

L = 1
2∂µϕ ∂

µϕ− g |ϕ| .

The field potential U(ϕ) = g|ϕ| is V-shaped (| | denotes the modulus). The
model has been studied in several aspects, such as self-similar solutions [6],
oscillons (or rather breathers) [7], and Q-balls or boson stars in the version
with a complex scalar field [8]. Let us add that recently the signum-Gordon
equation has been discussed in a much wider mathematical framework of
the theory of partial differential equations with compressed solutions [9]. In
general, the model together with its extensions has turned out to be very
useful theoretical laboratory in which we can study various above mentioned
aspects of nonlinear fields.

In the present paper, similarly as in [4, 5], we regard the signum-Gordon
field as the mediating field, which generates a force between two point
charges coupled to it. In [4], the field generated by the two charges, as
well as the force, are exactly calculated in one spatial dimension, while in
three dimensions approximate formulas are given under the assumption that
the point charges are close to each other. In [5], we study three-body forces
in the one-dimensional case. Because the signum-Gordon equation is non-
linear one, finding its solutions is generally a nontrivial task, especially in
dimensions larger than one. In the present paper, we investigate the two-
dimensional case. Using a formal mathematical connection with the planar
electrostatics, we show that also in this case the point charges can be totally
screened by a cloud of the scalar field. This screening is easily seen for a
single charge. The case of two or more charges situated not too far from
each other is much more difficult. The main problem is the determination
of the shape of the screening cloud. We have found this shape, as well as
an integral formula for the scalar field forming the cloud. These results
are used in order to derive the exact formula for the force between the two
identical charges. The force completely vanishes when the distance between
the charges exceeds certain critical value (equal to 2R0(q), see formula (4)
below) that nonanalytically depends on the strength q of the charges and
the self-coupling constant g.
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The plan of our paper is as follows. In Section 2, we establish the presence
of the total screening in the case of two identical charges in two spatial
dimensions. We find the exact shape of the screening cloud formed by the
scalar field, and we obtain the integral formula for the field. Section 3
is devoted to the calculation of the force between the charges. Section 4
contains a summary and remarks.

2. The total screening of charges

Let us begin from the simple case of a single point-like charge of strength
q > 0 located at the origin in the two-dimensional space. The field equation
for the static field has the form

4ϕ = g sign ϕ− qδ(~x ) , (1)

where 4 is the two-dimensional Laplacian. The fundamental solution of the
linear Poisson equation 4G = −qδ(~x ) has the form

G(~x ) = − q

2π
ln
|~x |
l0
,

where l0 is a constant. We expect that close to the charge the solution ϕ
is well approximated by G(~x ), and therefore it is positive. Then, the term
g sign ϕ in (1) has the constant value g, and the exact solution of Eq. (1)
has the form

ϕ(~x ) = G(~x ) +
g

4
~x 2 + c0 . (2)

Here, c0 is another constant. Because it can be included into the constant l0,
we put c0 = 0. The constant l0 is determined from the requirement that
our ϕ(~x ) matches the vacuum solution ϕ = 0 at a certain radius R0. The
matching conditions have the standard form

ϕ = 0 , ϕ′ = 0

on the circle |~x | = R0. Here, ′ stands for the derivative with respect to |~x |.
The final form of solution (2) reads

ϕ = − q

2π
ln
|~x |
R0(q)

+
g

4
~x 2 − q

4π
, (3)

where

R0(q) =

√
q

πg
. (4)
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The field ϕ given by formula (3) has positive values in the circle |~x | < R0(q),
hence the assumption that signϕ = +1 is fulfilled. To summarize, the scalar
field in the presence of the single charge has the form

ϕq(~x ) =

{
− q

2π ln
|~x |
R0(q)

+ g
4~x

2 − q
4π for |~x | < R0(q) ,

0 for |~x | ≥ R0(q) .

The field ϕq(~x ) is quite interesting for the following reasons. First, note
that its dependence on the coupling constant g, as well as on the charge q, is
nonanalytic at g = 0, q = 0. Thus, the solution is nonperturbative in these
parameters. Second, the charge q is completely screened by the circular
cloud of the field, because outside the circle |~x | ≤ R0 the field attains the
vacuum value ϕ = 0 exactly. The cloud has the constant charge density
g signϕ = g of the opposite sign than q. Formula (4) for the radius R0(q)
is equivalent to the statement that the total absolute charge of the circular
cloud is equal to q, namely πR2

0(q)g = q.
Now, let us turn to less trivial case of two identical point charges of

strengths q located at the points ±~b = (±b, 0) on the x1 axis in the two-
dimensional space. The distance between charges is given by d = 2b. Instead
of Eq. (1), we now have

4ϕ = g sign ϕ− qδ
(
~x− ~b

)
− qδ

(
~x+ ~b

)
. (5)

Because of the nonlinear signϕ term, the pertinent solution of this equation
is not just the sum of appropriately shifted in space solutions (3), unless
the distance d between the charges exceeds 2R0(q), in which case the two
circular screening clouds surrounding the charges do not intersect each other.
If the charges are close to each other, i.e., d < 2R0(q), it is not clear whether
the total screening is still present, and if present, what is the shape of the
screening cloud of the field. We address these questions in the remaining
part of this section. Our findings are utilized in the next section, where we
calculate the force exerted on the charge located at ~x = ~b.

It is clear that when b = 0, we again have a single point charge, screened
by the circular cloud of the field as discussed above, except that now the
strength of the charge equals 2q instead q. Let us assume for a moment
that the total screening persists also when b > 0, that is that there exists a
region Σ surrounding the two charges such that ϕ(~x ) = 0 for points ~x lying
outside Σ, or on the boundary ∂Σ, and that ϕ(~x ) > 0 if ~x lies inside Σ.
Inside Σ, the term g sign ϕ = g in Eq. (5) provides the constant charge
density that screens the two point charges. This cloud of charge contributes



Strictly Finite Range Forces from the Signum-Gordon Field: Exact Results . . . 2009

to ϕ(~x ) and the contribution is given by the term

ϕcloud(~x ) =
g

2π

∫
Σ

d2y ln
|~x− ~y |
R0(q)

. (6)

The two point charges contribute

ϕ0(~x ) = −
q

2π
ln
|~x− ~b |
R0(q)

− q

2π
ln
|~x+ ~b |
R0(q)

. (7)

Note that ϕ0(~x ) is the solution of (5) when g = 0. The shape of the region Σ
can be found from the requirement that we have the total screening, i.e.,

ϕcloud(~x ) + ϕ0(~x ) = 0 (8)

for all points ~x outside Σ.
As already noticed, Eq. (5) is similar to Poisson equation of ordinary

electrostatics. Standard reasoning known from the electrostatics gives the
boundary conditions for ϕ at ∂Σ: ϕ(~x ) = 0, ∂nϕ(~x ) = 0 for all ~x ∈ ∂Σ,
where ∂n denotes the derivative in the direction perpendicular to ∂Σ. These
conditions are checked numerically after we determine the region Σ.

Condition (8) is utilized as follows. First, we rewrite the formulas for
ϕcloud(~x ), ϕ0(~x ) using the rescaled polar coordinates, introduced as follows:

~x = R0(q) r

(
cos θ
sin θ

)
, ~y = R0(q) ρ

(
cosα
sinα

)
.

In particular, r = |~x |/R0(q) and ρ = |~y |/R0(q). Thus,

ϕcloud(r, θ) =
q

4π2

2π∫
0

dα

r0(α)∫
0

dρ ρ

[
2 ln r + ln

(
1 +

ρ2

r2
− 2ρ

r
cos(θ − α)

)]
,

ϕ0(r, θ) =−
q

π
ln r− q

4π
ln

(
1+

d2

r2
− 2d

r
cos θ

)
− q

4π
ln

(
1+

d2

r2
+
2d

r
cos θ

)
,

where
d =

b

R0(q)
.

The function r0(α) gives the radial coordinate of the boundary of Σ at the
azimuthal angle α. The considered set of two point charges is symmetric
with respect to reflections in the both axises, as well as in the origin. We
expect that the shape of Σ reflects these symmetries. Therefore,

r0(α) = r0(2π − α) = r0(π − α) = r0(π + α) .
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Our present task is to determine the function r0(α). To this end, we first
notice that

ln

(
1+

ρ2

r2
− 2ρ

r
cos(θ−α)

)
=ln

(
1− ρ

r
exp[i(θ−α)]

)
+ln

(
1− ρ

r
exp[−i(θ−α)]

)
.

Expanding the two logarithms on the r.h.s. with respect to ρ/r, integrating
over ρ, and using the symmetry of r0(α), we obtain

ϕcloud(r, θ) =
q

4π2

2π∫
0

dα r20(α) ln r − q

2π2

∞∑
k=1

cos(kθ)

k(k + 2)rk

2π∫
0

dα rk+2
0 (α)eikα .

(9)
This formula is to be compared with the Fourier series in θ for ϕ0(r, θ),
which can be obtained by expanding the logarithms similarly as above, and
reads

ϕ0(r, θ) = −
q

π
ln r +

q

2π

∞∑
k=1

1 + (−1)k

k

dk

rk
cos(kθ) . (10)

Condition (8) is satisfied if

2π∫
0

dα r20(α) = 4π , (11)

and
2π∫
0

dα rk+2
0 (α) eikα =

(
1 + (−1)k

)
(k + 2) π dk , (12)

where k = 1, 2, . . . Because r0(α) = r0(π − α), conditions (12) are satisfied
automatically for odd values of k. For even values of k, we put k = 2l in (10)
and rewrite (11) and (12) as the following set of conditions for r0(α)

2π∫
0

dα r
2(l+1)
0 (α) e2ilα = 4(l + 1) π d2l , (13)

where l = 0, 1, 2, . . .
Because the r.h.s.’s of conditions (13) depend on d2, we expect that r20(α)

contains only even powers of d,

r20(α) = f0(α) + d2f2(α) + d4f4(α) + . . .
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The functions f2n(α), n = 0, 1, 2, . . . , have Fourier representation of the
general form

f2n(α) =

∞∑
k=0

c2n;k cos(2kα) , (14)

in compliance with the symmetries of r0(α). The first function, f0, gives r20
when d2 = 0. Thus, we put d2 = 0 and r20(α) = f0(α) in conditions (13);
f0(α) has the Fourier form (14). Simple analysis based on the formulas
2 cos(2kα) = exp(2ikα) + exp(−2ikα) and

∫ 2π
0 dα exp(inα) = 2πδn0 shows

that the conditions for f0(α) are satisfied only if this function is constant,
f0(α) = 2. This result is in agreement with the fact that for d = 0, we actu-
ally have the single point charge of the strength 2q, which has the circular
screening cloud of the radius R2

0(2q) = 2R2
0(q), i.e., r20 = 2 for our rescaled

radial coordinate.
In order to determine the function f2(α), we differentiate conditions (13)

with respect to d2, and we put d2 = 0, f0 = 2. This gives the conditions

2π∫
0

dα e2ilαf2(α) = 2π δl1 ,

where l = 0, 1, 2, . . . It follows that f2 = 2 cos(2α). Taking higher derivatives
of (13) with respect to d2 and performing similar calculations as above, we
have found that f4 = 0, f6 = 0, f8 = 0. With such partial results, we have
made the educated guess that f2n = 0 for all n ≥ 2, i.e., that

r20(α) = 2
[
1 + d2 cos(2α)

]
. (15)

It turns out that indeed, r20(α) given by this formula satisfies all condi-
tions (13). The pertinent integration on the l.h.s.’s. of (13) is elementary.

The form of formula (15) implies that it holds only if d ≤ 1, because
r20 ≥ 0. In the case of d = 1, i.e., |~b | = R0(q), this formula gives two
circles which touch each other at the origin, and have the point charges at
their centers. For d > 1, each charge has its own circular screening cloud,
separated from the other.

It remains to check whether all values of the total field ϕ(~x ) = ϕcloud(~x )
+ ϕ0(~x ) are strictly positive inside the region Σ, as it has been assumed.
We can do this only numerically. It is a rather straightforward computation
since the integral (6) giving ϕcloud has the already known compact domainΣ.
Moreover, the two-dimensional integral can be reduced to one-dimensional
one over the boundary of Σ, see formula (19) below. The numerical results
corroborate our assumption. They also show that ϕ and ∂nϕ are continuous
on ∂Σ.
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Fig. 1. The contour plot of ϕqq for d = 1/2. The outermost contour corresponds to
ϕ = 0 and it is given by r0(α), formula (15). This contour encircles the compact
domain Σ. The horizontal and vertical axises correspond to x1/R0(q), x2/R0(q),
respectively.
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Fig. 2. The contour plot of ϕqq for d = 3/4. The meaning of the lines is the same
as in Fig. 1. The picture shows the deformation of outer contours in vicinity of
the vertical line x1 = 0, that ultimately leads to the breakup of the cloud into two
nonoverlapping circular clouds when d = 1.
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Thus, we conclude that the pertinent solution of Eq. (5), denoted below
as ϕqq(~x ), has the following form

ϕqq(~x ) =

{
ϕcloud(~x ) + ϕ0(~x ) for ~x ∈ Σ ,

0 for ~x /∈ Σ ,
(16)

where the compact region Σ has the boundary with the rescaled radial co-
ordinate r0(α) given by formula (15). Example plots of levels of ϕqq(~x ) are
presented in Figs. 1 and 2.

3. The force exerted on the charge located at ~x = ~b

The method of calculating the force exerted on an external charge cou-
pled to a field is discussed in detail in [4]. Adapting it to the case at hand,
we extract from the field ϕqq the logarithmically divergent proper field of
the charge located at ~x = ~b

ϕqq(~x ) = −
q

2π
ln

∣∣∣~x− ~b ∣∣∣
R0(q)

+ u(~x ) .

Here,

u(~x ) = − q

2π
ln

∣∣∣~x + ~b
∣∣∣

R0(q)
+ ϕcloud(~x )

is smooth at the point ~x = ~b. Next, we calculate the time rate of the transfer
of momentum from the field to the charge located at ~x = ~b. It is equal to
the force ~F exerted on that charge, see [4] for details and examples. It turns
out that

~F = q∇u|
~x=~b

, (17)

where ∇u = (∂u/∂x1, ∂u/∂x2). We see that the proper field of the charge
does not contribute to the force exerted on that charge, as expected. The
symmetry of the set of charges implies that F 2 = 0. The formula for the
nonvanishing component F 1 can be rewritten in the polar coordinates as

F 1 = q
∂u

∂|~x |

∣∣∣∣ θ=0

|~x |=b
=

q

R0(q)

∂u

∂r

∣∣∣∣θ=0
r=d

. (18)

Computation of the force from formula (18) is significantly simplified
when we rewrite ϕcloud inside the region Σ as a line integral over the bound-
ary ∂Σ. First, we write ϕcloud in the form

ϕcloud(~x ) =
g

8π

∫
Σ

d2y
(
∂y1W

2 − ∂y2W 1
)
,
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where

W i(~x, ~y ) = εik
(
xk − yk

)(
ln

(~x− ~y )2

R2
0(q)

− 1

)
,

∂y1W
2 − ∂y2W 1 = 2 ln

(~x− ~y )2

R2
0(q)

,

and εik is the antisymmetric symbol, i, k = 1, 2. Next, we apply the Stokes
theorem

ϕcloud(~x ) =
g

8π

∮
∂Σ

dα ∂α~y0(α) ~W (~x, ~y0(α)) . (19)

The curve ~y0(α), defined by

~y0(α) = R0(q) r0(α)

(
cosα
sinα

)
,

represents ∂Σ. Using the contour representation (19), we obtain

∂ϕcloud

∂r

∣∣∣∣θ=0
r=d

=
gR2

0(q)

4π

 2π∫
0

dα h1(α) h2(α) +
1

2

2π∫
0

dα h3(α) h4(α)

 , (20)

where

h1(α) =
d− r0(α) cosα

d2 − 2 d r0(α) cosα+ r20(α)
,

h2(α) = r20(α)− d r0(α) cosα+
2d3 sinα sin(2α)

r0(α)
,

h3(α) = ln
[
d2 − 2 d r0(α) cosα+ r20(α)

]
− 1 ,

h4(α) =
2 d2 sinα sin(2α)

r0(α)
− r0(α) cosα ,

r0(α) is given by formula (15), 0 < d < 1.
In spite of their appearance, the integrals in (20) are elementary. First,

notice that h4(α) = −∂α(r0(α) sinα). Therefore, in the second integral
in (20), we may use integration by parts in order to eliminate the loga-
rithm function. Second, we write the sin and cos functions in terms of
exp(±iα) and observe that

∫ 2π
0 dα exp(ikα) = 0 for any integer k except

k = 0. This eliminates many terms, in particular all terms proportional to√
1 + d2 cos(2α). This last function is thought of as the Taylor series with

respect to d2 cos(2α), obviously it contains only even powers of exp (± iα).
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Finally, we use the integral
2π∫
0

dα

4 + d4 + 4d2 cos(2α)
=

2π

4− d4
,

and formula (4) for R0(q). We obtain

∂ϕcloud

∂r

∣∣∣∣θ=0
r=d

=
q

4π
d
(
2− d2

)
. (21)

The nonvanishing component of the force exerted on the charge located
at the point x1 = b, x2 = 0 is computed from formula (18)

F 1 = − q2

4πb

(
1− b2

R2
0(q)

)2

= − q2

4πb

(
1− πgb2

q

)2

. (22)

Here, we have returned to the original coordinate b = R0(q)d. The force
is attractive one, as expected from the scalar field. Formula (22) holds for
b < R0(q), outside this range of b the force vanishes1.

The factor −q2/4πb in formula (22) represents the standard two-dimen-
sional Coulomb force characteristic for the free field (g = 0). This force
dominates at short distances, l � l0, also in the case of self-interacting
field. Here, l = 2b is the distance between the charges, and l0 = 2R0(q) is
the critical distance between them. At distances l / l0, the force becomes
weaker, and it exactly vanishes for l ≥ l0. When the distance l reaches l0,
the screening cloud splits into two nonoverlapping circular clouds that screen
each charge separately.

Formula (22) for the force can easily be generalized to the case one
particle is located at the point ~x and the other one at ~y. It is sufficient
to substitute b = l/2, where l = |~x − ~y |, and to include the unit vector
~n = (~x − ~y )/|~x − ~y | directed from ~y to ~x. Thus, the force exerted on the
particle located at ~x is given by formula

~F (~x ) = − q2

2πl

(
1− l2

l20

)2

~n (23)

if l = |~x − ~y | < l0, otherwise ~F (~x ) = 0. This force possesses the potential
Uqq such that ~F (~x ) = −∂~xUqq, namely

Uqq =
q2

2π

[
ln

l

l0
−
(
l

l0

)2

+
1

4

(
l

l0

)4

+
3

4

]
if l < l0, otherwise Uqq = 0.

1 R0(q) vanishes in the limit q → 0. Therefore, the force also vanishes in this limit, in
spite of the fact that the r.h.s. of formula (22) gives −πg2b3/4. The point is that in
that limit formula (22) is not valid for any b — the force vanishes for all b ≥ R0(q).
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4. Summary and remarks

1. As the most valuable result of our work we regard the exact for-
mula (23) for the force exerted by one point charge on the other. This force
vanishes quadratically when the distance l between the charges approaches
(from below) the critical value l0 = 2

√
q/πg. In the one-dimensional case

investigated in [4], the force vanishes linearly, F = q2 (1−a/a∗)/2, where a is
the distance between the charges, and the critical distance a∗ is given by the
formula a∗ = q/g (we keep the same form of the field equation in all dimen-
sions). The situation in three-dimensional case remains to be investigated
because in [4] we have been able to compute the force only approximately,
under the assumption that the charges are close to each other.

The field ϕ is the sum of ϕcloud, given by the exact integral formula (19),
and of the two logarithmic Coulomb terms. In the one-dimensional case the
pertinent field is known analytically [4], while in three dimensions, we only
have an approximate formula for it. Note that formula (19) provides the
quite convenient starting point for numerical computations of the field.

2. The total screening of the charges coupled to the signum-Gordon
scalar field may resemble the phenomenon of total screening of external
color charges interacting with a classical Yang–Mills field [1, 2]. One should
however note that there are several differences: in the Yang–Mills case the
total screening is proven for external charges that are spatially extended;
the screening field is time-dependent; the complete screening appears only
in a certain limit. Moreover, the analytic form of the screening field is not
known. It is not clear to us whether the two cases of the total screening are
interrelated in some way.

3. In paper [10], it is shown that a classical scalar field in the presence of
point-like external charges can be utilized in order to unravel certain essential
features of the corresponding quantum theory, like asymptotic freedom or
triviality, depending on the sign of coupling constant. The main role is
played by a classical perturbative solution that has the form of a formal
series in powers of the coupling constant. The field studied there is the
real, massless scalar field with the self-interaction of the form λϕ4. Similar
investigations in the cases of a massive scalar field and Yang–Mills field are
presented in [11, 12], respectively. We think it would be interesting to employ
such a method to the signum-Gordon model, in particular because very little
is known about the properties of the quantum version of this model.
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