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ON THE LONGITUDINAL STRUCTURE FUNCTION
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We compare new HERA data for the longitudinal structure function FL

with the predictions of different variants of the dipole model. In particular,
we show that the ratio FL/F2 is well described by the dipole models and
is rather insensitive to the details of the fit. Fits to F2 are performed with
the help of geometrical scaling (GS). Using the property of GS, we derive
the bounds for FL/F2 both for the different versions of the dipole model
and in the general case. Finally, we briefly discuss how the higher Fock
components of the photon wave function may affect these bounds.
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1. Introduction

Recently, H1 [1] and ZEUS [2] collaborations have published new data on
the longitudinal structure function FL(x,Q2) in deep inelastic ep scattering
(DIS). The H1 analysis extends and improves previous data [3], which now
covers the kinematical range from Q2 = 1.5 GeV2/c2 and x = 0.279× 10−4

up to Q2 = 800 GeV2/c2 and x = 0.0322. ZEUS data has been taken in much
smaller region from Q2 = 9 up to Q2 = 110 GeV2/c2 (see [4] for summary).
In both data sets, there is a strong correlation between Q2 and x values;
for each Q2, the structure function FL (and also F2 that has been measured
in the same kinematical points) has been measured over a limited x range,
with small xs concentrated around small values of Q2, see Fig. 1. Moreover,
since FL is difficult to extract experimentally, even recent improved data has
still large errors.
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The longitudinal structure function is of particular interest since, in
the first approximation of the parton model, it is equal identically zero [5]
(Callan–Gross relation) and, therefore, it is generated entirely by radiative
corrections. On the contrary, in the dipole model FL is nonzero, albeit small.
Indeed, Nachtmann and collaborators have shown that in the dipole model,
there exists a strict bound that [6–8]

FL ≤ gmax × F2 = 0.27× F2 . (1)

This result, hereafter referred to as an EMNS bound, is independent of the
dipole–proton cross section, and — strictly speaking — follows solely from
the properties of the photon-q̄q wave function.
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Fig. 1. H1 (blue circles) and ZEUS (red squares) data [1, 2] for F2/Q
2 (left) and

FL/Q
2 (right) plotted as functions of Q2. Different points for one value of Q2

correspond to different Bjorken xs.

Using previous H1 data [3], the authors of Ref. [8] have shown that
the bound (1) was almost saturated, which is difficult to realize in realis-
tic dipole models. In this paper, we are going to check if this conclusion
remains still valid for the new data and what is the value of bound (1) for
commonly used dipole–proton cross sections. Similar analysis for the Golec-
Biernat–Wüsthoff model [9, 10] has been already performed in Ref. [11]. To
simplify the analysis, we use here the property of geometrical scaling [12]
(GS) which is to large precision exhibited by the DIS data up to relatively
large Bjorken xs [13]. We find that for realistic dipole–proton cross sections,
the bound is indeed lower than (1) with g ' 0.22 (i.e 18.5% below the bound
of Eq. (1)). In reality, these bounds would be lowered if the charm-quark
mass was included.

With the present experimental accuracy we do not find any significant
tension between FL/F2 data and the dipole model. Should such tension arise
when new data appear, higher order corrections to the dipole model might
resolve the issue. Therefore, we discuss a possibility that corrections to the
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dipole model coming from higher Fock states in the virtual photon may
change (1). Higher Fock components are needed e.g. in the dipole model [9]
description of the diffractive data [10]. We show that this is possible only
if there exists a bound for higher Fock components that is analogous to (1),
but with longitudinal contribution to F2 that is significantly different than
in the case of the q̄q state. Only explicit calculation of the q̄qg contribu-
tion to the virtual photon wave function might give here a definite answer.
Such calculations have been recently carried out by various authors [14–16],
however these results have not been so far applied to the phenomenolog-
ical analysis of DIS. Although the calculation of F q̄qgL /F q̄qg2 with the help
of Refs. [15, 16] might be probably possible, it is beyond the scope of the
present paper.

The paper is organized as follows. In Sect. 2, we rederive the EMNS
bound using geometrical scaling. Next, in Sect. 3, we fit two versions of the
dipole model to the present data set for F2. To this end, we also use the
property of geometrical scaling. We then compare these fits with the data for
FL and discuss fit uncertainties. In Sect. 4, we calculate ratio FL/F2 for the
aforementioned fits and compare it with the data and with the EMNS bound.
We do not find a large tension between the data and model predictions. An
influence of higher Fock states on the EMNS bound is discussed in Sect. 5.
We conclude in Sect. 6.

2. Geometrical scaling and the EMNS bound

For three massless flavors, DIS structure functions read [17]:

F2

(
x,Q2

)
=

Q2

4π3

∫
dr2

{∣∣ψT

(
r,Q2

)∣∣2 +
∣∣ψL

(
r,Q2

)∣∣2} σdp
(
r2
)
,

FL

(
x,Q2

)
=

Q2

4π3

∫
dr2

∣∣ψL

(
r,Q2

)∣∣2 σdp
(
r2
)
,

where photon wave functions take the following form

∣∣ψT

(
r,Q2

)∣∣2 =

1∫
0

dz
[
z2 + (1− z)2

]
Q

2
K2

1

(
Qr
)
,

∣∣ψL

(
r,Q2

)∣∣2 = 4

1∫
0

dz z(1− z)Q 2
K2

0

(
Qr
)
. (2)

Here, Ki are modified Bessel functions and

Q
2

= z(1− z)Q2 . (3)
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It is convenient to define functions ΦT,L

ΦT,L(u = rQ) = r2
∣∣ψT,L

(
r,Q2

)∣∣2 (4)

that depend only on the combined variable u = Qr. Therefore,

F2

(
x,Q2

)
=

Q2

2π3

∫
du {ΦT(u) + ΦL(u)}

σdp(u/Q)

u
,

FL

(
x,Q2

)
=

Q2

2π3

∫
duΦL(u)

σdp(u/Q)

u
. (5)

This parametrization is very convenient for the following reasons. First of
all, wave functions ΦT,L(u) are universal and do not depend on external
kinematical variables. Secondly, unlike functions ψT,L(r,Q2), they are ev-
erywhere regular in u. And finally, cross section σdp(u/Q)/u is a localized
function of variable u that vanishes both for u→ 0 and u→∞.

If — as it is in the case of the GBW model — the dipole–proton cross
section exhibits geometrical scaling, i.e. σdp(r) = σdp(rQs(x)) then the in-
tegral∫

duΦT,L(u)
σdp (u/Q)

u
=

∫
duΦT,L(u)

σdp (uQs/Q)

u
= function(τ) (6)

depends only on a scaling variable

τ = (Q/Qs)
2 . (7)

Here, Q2
s is a saturation scale

Q2
s = Q2

0

(
x

x0

)−λ
. (8)

Now, we can rederive the EMNS bound by considering the ratio

FL(τ)

F2(τ)
=

∫
duΦL(u)σdp(u/Q)/u∫

du {ΦT(u) + ΦL(u)} σdp(u/Q)/u

(9)

and observing that function

g(u) =
ΦL(u)

ΦT(u) + ΦL(u)
, (10)



On the Longitudinal Structure Function in the Dipole Model 2023

� � � � � � � �
����

����

����

����

����

����

����

�

�
(�
)

Fig. 2. Solid (red) line: function g(u) defined in Eq. (10). Short dashed (brown)
line: function g(u) in the case of massive quarks for δf = mf/Q = 0.5 and long
dashed (blue) line: for δf = mf/Q = 1.06, which corresponds to the charm-quark
mass mc = 1.3 GeV/c and Q2 = 1.5 GeV2/c2.

which is plotted in Fig. 2, has a maximum gmax = 0.2714 for u = 2.591.
Therefore, it follows that

FL

(
x,Q2

)
F2 (x,Q2)

≤ gmax = 0.27 . (11)

The bound (11) has been derived for the case of massless quarks. While
this is certainly a good approximation for three light flavors, given the fact
that the lowest photon virtuality in the data set we use is Q2 = 1.5 GeV2/c2,
the inclusion of charm mass effects is going to change (11). For a given flavor,
function g defined in Eq. (10) is no longer a function of scaling variable
u only but in addition depends on the ratio δ2

f = m2
f /Q

2. For large Q2

(i.e. small δf), g(u, δf) → g(u). Moreover, we have found numerically that
everywhere in u, we have

g(u, δf) ≤ g(u) (12)

and the maxima g(f)
max of g(u, δf) are decreasing with increasing δf , as illus-

trated in Fig. 2. This is consistent with the observation of Ref. [6] that g(f)
max

is a monotonically growing function of Q2. Therefore,

0 ≤ g(f)
max

(
Q2
)
≤ gmax . (13)

This allows us to estimate the effect of the charm quark on the ratio:

F
(light+c)
L

F
(light+c)
2

=
FL + F

(c)
L

F2 + F
(c)
2

=
FL/F2 + F

(c)
L /F

(c)
2 F

(c)
2 /F2

1 + F
(c)
2 /F2

≤ gmax
1 + g

(c)
max/gmax F

(c)
2 /F2

1 + F
(c)
2 /F2

≤ gmax , (14)
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where the last inequality follows from (13). Note that F2,L without any
superscript refers to the structure function with light flavors only and that
dependence on Q2 has been suppressed. We see therefore, in agreement with
Ref. [8], that inclusion of charm lowers the bound on F (light+c)

L /F
(light+c)
2 in

proportion that depends on F (c)
2 /F2. For mc = 1.3 GeV/c and for the lowest

Q2 in the present data set, we get numerically g(c)
max ≈ 0.05 (see Fig. (2)),

which gives g(c)
max/gmax ≈ 0.19. We do not know what is the fraction of charm

in the present data sample, however taking a typical value of F (c)
2 /F2 ∼ 25%,

we get that g(light+c)
max ∼ 0.23. This means that bound (11) is lowered for the

lowest Q2 bin by approximately 18% and is approaching (11) for higher Q2.
In the following, we will ignore charm contribution and stick to the bound
(11) coming back to this point in Sect. 4.

3. Dipole models and geometrical scaling

In order to check how far the bound (11) overestimates actual predictions
of the dipole model with realistic dipole–proton cross section, we are going
to compute ratio (11) for a given σdp in terms of scaling variable τ . We
will see that for commonly used parametrizations of σdp, ratio FL/F2 is a
slowly varying function of τ with a maximum equal approximately to 0.216–
0.224, which only slightly depends on the parametrization actually used. To
this end, we have decided to perform our own fits to the F2 data over the
restricted kinematical range where the longitudinal structure function FL

has been measured by H1. The reason for this is threefold. Firstly, new
data is of much better quality than the previous data to which the dipole
model parameters have been fitted. Secondly, we do not aim at a global fit,
but rather at a fit which covers only the points where FL has been measured
as well. Therefore fit parameters — as we shall see in the following — will
be different from the ones obtained in the global fits. And finally, we have
decided to fit the data with the help of geometrical scaling — a procedure
not used so far in the fits to the DIS data.

Fitting dipole models to the data becomes very easy when F2 depends
only upon single scaling variable τ . This happens because points correspond-
ing to one particular value of Q2 but different xs (see “stacks” in Fig. 1)
correspond to different values of τ and are, therefore, shifted horizontally —
if plotted in terms of τ — by values that are different for different xs. As
a consequence, dipole model predictions fall on a universal curve (up to an
overall normalization σ0), and data fitting consists in changing σ0 and the
parameters defining scaling variable τ , i.e. x0 and λ. By varying these three
parameters, one forces experimental points to fall on theoretical prediction,
rather than by changing theoretical predictions, one is trying to reproduce
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experimental points. Therefore, this method is very efficient, as it does not
require time consuming recalculations of the theoretical curve.

Even in the case of dipole–proton cross sections that violate GS by ex-
plicit (albeit weak) dependence on x, like in the model of Iancu, Itakura
and Munier [18], it is still possible to make a GS-like fit by keeping x at
some fixed average value xave and then study the uncertainty of theoretical
predictions by changing x over the range that is covered by experimental
data. We shall come back to this point later.

Let us first consider the simplest version of the dipole model, namely the
GBW parametrization [9], which — up to an overall normalization σ0 —
takes the following form in terms of scaling variable τ

σGBW
dp (u, τ)

σ0
= 1− exp

(
−u

2

4τ

)
. (15)

Plugging (15) into Eqs. (5) gives unnormalized theoretical prediction for the
structure functions divided by Q2, which will be denoted in the following by
small characters f2,L(τ). Experimental data are tabulated in a set of discrete
points {Q2

i , xi}, and we fit three free parameters of the model, σ0, x0 and λ,
by transforming experimental entries in the following way:

F2

(
xi, Q

2
i

)
→ 1

Q2σ0
F2

(
xi, Q

2
i

)
= f2

(
τi =

Q2

Q2
s (xi)

)
(16)

and demanding that they are equal to the theoretical prediction at the per-
tinent value of scaling variable τi with Qs given by Eq. (8). The results are
shown in Table I. Since GS is supposed to work the best for small values of
Bjorken xs we have performed a number of fits restricting the allowed x re-
gion up to a maximal value denoted as xmax. We see that even without any
cut on the maximal value of x, i.e. for x as large as 0.0322 (the highest x
in the analyzed data set) χ2 of the fit is quite reasonable. By restricting
analyzed data to the smaller and smaller range of Bjorken xs, χ2 is get-
ting smaller, but also model parameters vary substantially. Parameter σ0 is

TABLE I

Parameters of the GBW model fitted to F2 H1 data up to xmax.

xmax σ0[1/GeV2] λ x0 χ2/dof

none 23.68 0.389 0.010497 1.18
0.01 27.11 0.353 0.007786 0.87
0.005 29.33 0.333 0.006435 0.79
0.0005 38.37 0.253 0.003090 0.70
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much smaller than in the original fit of Ref. [9] σGBW
0 = 23 mb = 59 GeV−2.

Exponent λ approaches the value of Ref. [9] λGBW = 0.288 only for small
xmax (note that maximal x in Ref. [9] was equal to 0.01, whereas the lowest
x = 6× 10−6 was much below the minimal x of present analysis), otherwise
being consistent with model-independent analysis of Ref. [13]. The results
of the fits, together with the original parametrization of Ref. [9], are plotted
in Fig. 3. One can see rather good agreement of fits from Table I with the
data, and — also quite importantly — good quality of GS of the data.
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Fig. 3. H1 (blue circles) and ZEUS (red squares) data [1, 2] for F2/Q
2 plotted as

a function of scaling variable τ for different values of fit parameters corresponding
to the GBW model given in Table I. Fit parameters in the first panel correspond
to the original fit of Ref. [9] with no charm data included.

Finally, in Fig. 4, we plot data for FL/Q
2 as a function of τ together with

theoretical parametrization of Ref. [9] and the present fits corresponding to
Table I. We can see that due to still large experimental errors of FL, all
parametrizations, although different, describe well the data.

As a second example, let us consider a dipole model by Iancu, Itakura
and Munier (IIM) [18], where the dipole–proton cross section is defined in
terms of two functions
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Fig. 4. H1 (blue circles) and ZEUS (red squares) data [1, 2] for FL/Q
2 plotted as

a function of scaling variable τ . Solid curves correspond to the GBW model fits of
Table I.

A1(u, τ, x) = A0

(
u2

4τ

)γ+
ln(4τ/u2)
2κλ ln(1/x)

,

A2(u, τ) = 1− exp
(
−a ln2

(
bu/
√
τ
))

(17)

and
σIIM

dp (u, τ, x)

σ0
=

 A1(u, τ, x) for u2 < 4τ

A2(u, τ) for 4τ ≤ u2
. (18)

Here, γ = 0.63 is related to the anomalous dimension of the forward scat-
tering amplitude in the BFKL formalism, while κ = 9.9 corresponds to the
diffusion coefficient. Parameters a and b are determined uniquely by gluing
A1 and A2 and their derivatives at u2 = 4τ . Parameter A0 is, in princi-
ple, free, however, as it was shown in Ref. [18], the best χ2 was obtained for
A0 = 0.7 and for the purpose of the present work, we will keep it fixed at this
value. Therefore, the only free parameters are, as in the case of the GBW
model, an overall normalization σ0 and two parameters of the saturation
scale: λ and x0.
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However, there are two important differences between IIM and GBW
parametrizations. First of all, for small value of u, amplitude A1 exhibits
explicit violation of GS, since it depends both on τ and x. For the purpose
of the present work, we will keep x entering A1 fixed at the average value
xave calculated for the interval where the fit is performed. The accuracy of
this procedure is then checked by putting in (18) x equal to the maximal
and minimal value of x in a given interval. It will turn out that the structure
functions are sensitive to this variation of x at the level of a few percent,
however the ratio FL/F2 is almost independent. Next difference appears
due to the dependence of A1 on λ. To solve this issue, we have adopted
an iterative procedure, consisting in fixing λ at some initial value, then
performing the fit and plugging in the fitted value of λ to A1 and performing
the fit again. Usually, after four, five steps, a satisfactory convergence has
been achieved. The results are given in Table II.

TABLE II

Parameters of the IIM [18] model fitted to F2 H1 data up to xmax.

xmax xave σ0[1/GeV2] λ x0 χ2/dof

none 0.00359 20.22 0.597 0.002553 1.76
0.01 0.00182 21.50 0.583 0.002140 1.57
0.005 0.00121 25.56 0.531 0.001392 1.31
0.0005 0.00022 34.30 0.389 0.000645 0.75

By inspecting Table II, we see that the quality of fits is worse than in the
case of the GBW model. This is in contrast with the original fits of Ref. [18]
which, however, were performed over the data set covering much lower xs
than in our present analysis. One should also note that the errors of the old
data sets are bigger than the ones of the present data. This is also the reason
why fit parameters are different than in our case. For illustration purposes,
we have plotted in Fig. 5 F2(τ)/Q2 for the original IIM parameters and for
three choices of xmax from Table II. Magnifying the first plot in Fig. 5, one
could see that for τ > 10 the original IIM curve missed the experimental
points, which have rather small errors.

In order to check sensitivity of the IIM fits to the fact that x-dependent
piece of A1 amplitude (17) has been replaced by a constant value xave, we
plot in Fig. 6 F2(τ)/Q2 for the parameters from the third row of Table II
with x in A1 replaced by xmin (upper curve) and xmax (lower curve). For
better resolution, the plot is restricted to τ < 5. We can see that theoretical
uncertainty introduced by this procedure is, in fact, much smaller than the
experimental errors.
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Fig. 5. H1 (blue circles) and ZEUS (red squares) data [1, 2] for F2/Q
2 plotted as a

function of scaling variable τ for different values of IIM model fit parameters given
in Table II.
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Fig. 6. F2(τ)/Q2 for the parameters from the third row of Table II with x in A1

from Eq. (17) replaced by xmin (upper curve), xave (solid middle curve) and xmax

(lower curve).

Finally, in Fig. 7, we plot FL/Q
2 as a function of τ for three sets of

parameters from Table II and for the original set of parameters from Ref. [18].
One can see that all curves describe the data reasonably well due to the large
error bars of FL.
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Fig. 7. H1 (blue circles) and ZEUS (red squares) data [1, 2] for FL/Q
2 plotted as

a function of scaling variable τ . Solid curves correspond to the IIM model fits of
Table II.

4. EMNS bound for dipole models

Now, we are able to compare the EMNS bound with FL/F2 ratio cal-
culated in the dipole model for realistic dipole–proton cross sections σdp

discussed in the previous section. One should note that for the GBW dipole
model, FL/F2 does not depend on the values of x0, λ and σ0. It is not the
case for the IIM dipole model, but we have checked explicitly that for all
parametrizations of Table II, the differences in FL/F2 are negligible. There-
fore, in Fig. 8, we plot ratios FL/F2 as functions of τ for the GBW dipole
model and for the IIM model with parameters corresponding to the fit with
x < 0.005. We see that ratios FL/F2 are, in fact, almost model-independent.
This is further confirmed in Table III where we collect the maximal value of
FL/F2 for the GBW and IIM parametrizations.

One should note that each curve in Fig. 8 corresponds to a different
definition of scaling variable τ , so one cannot superimpose experimental data
on that plot. This is done in Fig. 9 where we plot FL/F2 for the unrestricted
fits of the GBW and IIM models corresponding to the first rows of Tables I
and II respectively. The errors of the ratio have been calculated neglecting
correlation between errors of F2 and FL:
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∆

(
FL

F2

)
=
FL

F2

√(
∆FL

FL

)2

+

(
∆F2

F2

)2

. (19)

This procedure overestimates the errors, however, given the fact that FL <
0.27F2 and that experimentally absolute errors of FL are 2–10 times larger
than ∆F2, the error of the ratio (19) is determined to very high precision by
∆FL alone. We shall come back to this point later.

EMNS bound

GBW any x

IIM x ≤ 0.005
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Fig. 8. Ratios FL/F2 as functions of τ for the GBW dipole model and for the IIM
model with parameters corresponding to the fit with x < 0.005. The scale of the
plot has been enlarged in order to make small differences between the two curves
visible.

TABLE III

Maxima of FL/F2 for different fits to F2.

Model τmax (FL/F2)max

GBW any fit 1.165 0.224
IIM all x 1.417 0.217
IIM x < 0.01 1.411 0.216
IIM x < 0.005 1.413 0.216
IIM x < 0.0005 1.418 0.217

We can see from Figs. 8 and 9 that for realistic σdp theoretical predictions
lie below the EMNS bound. Indeed, we see that the maximum of FL/F2 is
of the order of 0.216–0.224 and only slightly varies from fit to fit. This
is illustrated in Table III. A question arises whether data points — which
for some values of τ exceed the EMNS bound — are indeed, as suggested
by the authors of Ref. [8], saturating bound (11), being as a consequence
incompatible with the dipole model. To this end, we have simply calculated



2032 M. Niedziela, M. Praszalowicz

● ●

●

●
●

●

●●

●

●
●
●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■

■
■

■
■

■

■
■

■

■

■

■

■

■

■
■

■

■

��� � ��� ��

� �� ��� ����
-���

���

���

���

τ

�
�
/�
�

● ●

●

●
●

●

●●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■

■
■
■
■

■

■
■

■

■

■

■

■

■

■
■

■

■

��� � ��� ��

��� � �� ��� ����
-���

���

���

���

τ

�
�
/�
�

Fig. 9. Ratios FL/F2 plotted as functions of scaling variable τ . Straight line corre-
sponds to the EMNS bound. Solid line in the left panel corresponds to the unre-
stricted GBW fit of Table I (first row), and in the right panel, to the unrestricted
IIM fit of Table II (first row).

χ2 of FL/F2 for the unrestricted GBW fit and obtained a very good result:
0.7425. To check whether this value is affected by the fact that we have
not taken into account correlations between errors of FL and F2, we have
recalculated χ2 neglecting F2 errors, which gives χ2 that changes by less
than 1%. Therefore indeed, as already mentioned above, the χ2 value is
totally driven by the large errors of FL.

It is interesting to check whether an overall shift of the dipole model
prediction for FL/F2 would improve the agreement with the data. In this
way, we shall have a quantitative measure of the quality of the dipole model
prediction for the ratio FL/F2 and also an indication how much room is
there for the higher order corrections that we are going to discuss in Sect. 5.
To this end, we use the GBW fits allowing for arbitrary normalization of the
ratio

FL

F2
→ N FL

F2
(20)

and calculate χ2/dof (assuming one degree of freedom, namely N ) as a
function of N . This is illustrated in Fig. 10 for two GBW fits of Table I:
unrestricted x and x < 0.0005. We see that depending on the fit the data
prefers N slightly smaller (unrestricted x) or slightly larger (x < 0.0005)
than 1. These are negligible changes and, therefore at this stage, we conclude
that the data for the ratio FL/F2 is compatible with the dipole model. One
should perhaps remind here again that this ratio is quite stable, even for fits
to F2 that are visibly different.

One can also see that lowering N by 20%, which would be required by
taking into account charm mass effects (c.f. discussion at the end of Sect. 2)
increases χ2, but only by a small amount. Of course, the detailed study of
charm mass effects would require to go beyond GS used in this analysis —
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which, in turn, would result not only in the change of N , but also in the
change of the shape of FL/F2 — but no drastic difference to the present
analysis should be expected.

�� � �����������

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

N

χ
�
/�
�
�

� ≤ ������

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

N
χ
�
/�
�
�

Fig. 10. Change of χ2 of N × FL/F2 as a function of N for the GBW fits from
Table I for unrestricted x (left) and x < 0.0005 (right).

5. EMNS bound and higher Fock states

In the dipole model, the virtual photon dissociates into a q̄q pair which
subsequently interacts with the proton target. However, it is clear that
higher Fock states have to contribute as well, similarly to the diffractive
DIS where the next Fock component, namely the q̄qg state, is dominant at
small β [10]. Full calculations of the q̄qg component of the photon wave
function have recently appeared in the literature [14–16], however they have
not been yet applied to the phenomenological analysis of DIS.

Structure functions in the dipole model are given as an expansion

F2,L

(
x,Q2

)
= F

(q̄q)
2,L

(
x,Q2

)
+ F

(q̄qg)
2,L

(
x,Q2

)
+ . . . (21)

The EMNS bound (11) derived in Sect. 2 is, in fact, valid only for the first
component of (21)

G =
F

(q̄q)
L

(
x,Q2

)
F

(q̄q)
2 (x,Q2)

< gmax = 0.27 . (22)

One should note, however, that at this order of perturbative expansion, the
loop corrections to the leading order Fock component may change the value
of the bound (22). Similarly, for the next Fock component, we would have

H =
F

(q̄qg)
L

(
x,Q2

)
F

(q̄qg)
2 (x,Q2)

< hmax , (23)
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where
0 ≤ hmax ≤ 1 . (24)

Up to this order, one can derive the modified EMNS bound

FL

(
x,Q2

)
F2 (x,Q2)

=
F

(q̄q)
L

(
x,Q2

)
+ F

(q̄qg)
L

(
x,Q2

)
F

(q̄q)
2 (x,Q2) + F

(q̄qg)
2 (x,Q2)

<
gmax F

(q̄q)
2

(
x,Q2

)
+ hmax F

(q̄qg)
2

(
x,Q2

)
F

(q̄q)
2 (x,Q2) + F

(q̄qg)
2 (x,Q2)

= gmax
1 + δ ε

(
x,Q2

)
1 + ε (x,Q2)

, (25)

where
δ =

hmax

gmax
, 0 ≤ δ ≤ 1

gmax
' 3.7

and

ε
(
x,Q2

)
=
F

(q̄qg)
2

(
x,Q2

)
F

(q̄q)
2 (x,Q2)

. (26)

Since the dipole model with q̄q component only describes F2 rather well over
the wide kinematical range, we do not expect ε to be large. For the purpose
of the present analysis, we assume that ε does not exceed 20%.

In order to change the value of the EMNS bound, we need the modifica-
tion factor

f =
1 + ε δ

1 + ε
(27)

to be significantly different from 1. In Fig. 11, we plot f(ε, δ) for 0 ≤ ε ≤ 0.2
and 0 ≤ δ ≤ 1/gmax. We see from Fig. 11 and from Eq. (27) that f = 1 for
δ = 1 and that f gets smaller than 1 if δ < 1 and f > 1 for δ > 1, and that
the difference |f − 1| is growing with ε. From Fig. 11, one may conclude that
the modification of the EMNS bound by more than ±20% might be rather
difficult. Most probably, higher Fock components would modify (11) by less
than 10%, but to quantify this statement, one needs to calculate explicitly
hmax which is beyond the scope of the present paper. One should note at
this point that in this case, an inclusion of mass corrections due to the charm
and possibly bottom quarks should be included, as these corrections would
be of the same order or even larger than a contribution from the higher Fock
components.

To conclude this section, let us only remark that ε depends on kinemat-
ical variables, so one cannot exclude a priori a situation that there exists a
kinematical corner where a correction to (11) is of importance.
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Fig. 11. Modification factor f of Eq. (27) as a function of ε and δ. Horizontal (light
green) plane corresponds to f = 1.

6. Conclusions

The dipole model offers an effective and intuitive description of deep in-
elastic scattering which goes beyond the leading twist approximation. In this
paper, we have used different variants of the dipole model, i.e. two different
forms of photon–proton cross section fitted to F2 data over different ranges
of Bjorken xs. We have decided to perform our new fits in the kinematical
range where both F2 and FL have been measured. This kinematical region
does not extend to very small xs as it is in the case of the recently published
combined HERA data [19] and, therefore, fitted parameters are different
than the ones of global fits. For the same reason, the IIM model [18] that
has been specifically devised for low x region gives larger χ2 than the sim-
plest version of the the GBW model [9], which quite satisfactorily describes
F2.

In order to fit model parameters, we have used the property of geomet-
rical scaling, which boils down to the fact that data points of the same Q2

but different xs disperse when plotted in terms of scaling variable τ and fall
on one line (compare Figs. 1 and e.g. 3). We have found that GS is present
both in the case of F2 and FL. One should, however, take this property with
care for the present set of data, since for each value of Q2 only a few points
of different Bjorken xs have been measured. This x–Q2 correlation of the
DIS data, particularly pronounced in the present case of FL, is a common
obstacle in deriving firm conclusions on the quality of GS. In this context,
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it is also worth mentioning that there exist different sources of GS. The
first one is related to the genuine property of the initial state of the proton
target described theoretically by the Color Glass Condensate formalism [20]
and nonlinearities in the parton evolution [21], which are of importance at
small values of Bjorken x. The other one is a property of the linear parton
evolution equations [22], which build GS at larger Q2 and at not necessarily
very small xs.

We have next compared dipole model predictions — with parameters
fixed by fits to F2 — with FL data. Here, due to large experimental errors,
the agreement is quite good. Next, we have studied a ratio of the structure
functions G = FL/F2 for which in the dipole model there exists a strict
bound gmax = 0.27 (1) derived in Ref. [8]. We have rederived (1) with the
help of geometrical scaling. We have also shown that in the dipole models
discussed above, gdp

max ≈ 0.216–0.224 which is approximately 18.5% below
the EMNS bound. Different fits give very similar ratio g, which is only
residually dependent on the values of fit parameters (this concerns only the
IIM dipole model, since ratio FL/F2 is parameter independent in the GBW
case). Comparing G = FL/F2 with the data, we have established that the
GBW model reproduces G with high precision. We do not see any tension
between the data and the dipole model as far as ratio G is concerned, even
if charm mass effects, which lower the EMNS bound, are taken into account.

Dipole model and the EMNS bound, discussed so far, rely on the first
Fock component of the photon wave function. Including higher Fock com-
ponents, like a q̄qg state, might, in principle, change theoretical prediction
for gmax. For this to happen, longitudinal part of the q̄qg state compared to
the transverse one has to be significantly different than in the q̄q case.

The authors want to thank Aharon Levy for bringing to their attention
new data on FL and for an access to this data prior to publication. M.P.
thanks Otto Nachtmann for a conversation that started this project and for
remarks on the final version of the manuscript. We thank Guillaume Beuf for
bringing our attention to Refs. [15, 16]. The research of M.P. has been sup-
ported by the Polish National Science Center grants 2011/01/B/ST2/00492
and 2014/13/B/ST2/02486.
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