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1 Introduction

Higher-order perturbative corrections in Quantum Chromodynamics (QCD), important for

the LHC data analysis, are calculated order by order in the strong coupling, αs, while some

numerically important ones, related to soft and collinear singularities, can be resumed to

the infinite order. The most valuable, albeit technically difficult, way of QCD resummation

is in form of a Monte Carlo (MC) event generator [1]. It is widely recognized that the most

promising way of getting high precision QCD calculation for hadron collider data analysis

is a common framework of fixed-order calculations combined with a parton shower Monte

Carlo (PSMC). The pioneering work, in which the complete first-order QCD corrections

to the hard process of heavy boson production in hadron-hadron collision were combined

with PSMC, was that of ref. [2]. Shortly later another interesting variant was proposed in

ref. [3]. Presently both methods are available for many processes, see ref. [4].
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It is worth to mention that partial efforts in this direction were done earlier in the

course of development of the most popular PSMCs, like for instance in ref. [5] or [6] and

in many other works. In these earlier attempts, the distributions generated in PSMC were

improved using a tree-level exact matrix element (ME) of QCD, while virtual corrections

were neglected or taken in the leading-logarithmic approximation [7]. It was also known

for a long time, that an ad hoc approach, in which PSMC differential distributions were

corrected using the exact ME and the overall normalization was corrected by hand to fixed-

order next-to-leading (NLO) integrated cross section, was providing distributions in a quite

good agreement with experimental data. It may be therefore a little bit surprising that it

took two decades to work out a systematic method of combining the NLO-corrections to

the hard process, known from the early 1980’s, see for instance ref. [8], with the leading-

order (LO) PSMC, also dating from the early 1980’s. Apart from the lack of interest

in more precise QCD calculations due to poor data quality, main reasons for this much

delayed development can be seen from problems addressed in refs. [2, 3]. Namely, any such

a method requires a very good NLO-level analytic understanding/control of distributions

from PSMC and, either NLO-level complete phase space coverage for the hard process or a

practical methodology of correcting for the lack of it. Luckily, a new wave of developments

of the LO parton showers, see refs. [9–12], has lead to modernized PSMCs, better suited

for merging/matching with the fixed-order QCD calculations, in particular with better or

even complete coverage of the hard process phase space.

It is now obvious that the next challenge on the way to even higher-precision pertur-

bative QCD calculations needed until the end of the LHC era two decades from now, is

to combine the fully exclusive NNLO corrections to the hard process and the NLO parton

shower. The fixed-order NNLO corrections to many processes are already well established,

see for instance refs. [13, 14], but the NLO PSMC needed for such a progress is still not

available, except of feasibility studies summarized in ref. [15]. Interesting partial solution

of combining the NNLO-corrected hard process with the LO parton shower can be found

in1 refs. [16–18]. The present work is relevant for the above future developments it the

sense that it presents a simplified method of correcting the hard process to the NLO level

in combination with the LO parton shower (PS). In other words, it offers a simpler alter-

native to the MC@NLO and POWHEG methods of refs. [2, 3], which may hopefully pave

the way to the NNLO hard process combined with NLO PSMC.

The new method described here, nicknamed as KrkNLO, was already proposed in

ref. [19], where its first numerical implementation was done on top of the dedicated toy

model PSMC and was limited to the gluonstrahlung subset of the NLO corrections. Later

on it was tested numerically in a more detail in refs. [15, 20]. In the present work the

KrkNLO method is implemented within the standard PSMC Sherpa 2.0.0 [11]. A pilot study

of KrkNLO implementation outside PS MC, using MC event encoded in the event records

produced by Herwig++ 2.7.0 [9, 21, 22] and Sherpa 2.0.0 was also done. Let us stress,

however, that the overall simplifications of the KrkNLO method comes not completely for

free, as it requires to use parton distribution functions (PDFs) in a special Monte Carlo

1In these methods only certain selected important distributions are upgraded to the NNLO level.
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(MC) factorization scheme (obtained, however, easily from reprocessing the MS PDFs),

and it is required that the basic LO PSMC provides for the NLO-complete coverage of the

hard process phase space (this is also not a problem for all modern PSMCs). Our method

is simpler to implement in the case of PSMC with an ordering based on the transverse mo-

mentum kT or a q2 variable of ref. [23], inspired by the classic Catani-Seymour work [24].

However, it can be also easily implemented on top of PSMC that uses the angular ordering

— without the need of the so-called truncated showers required in the POWHEG method,

see refs. [20, 25] for more discussion on that.

The main advantage of the KrkNLO method is a simplification of the NLO corrections

due to the use of PDFs in the MC factorization scheme. The implementation of the entire

NLO corrections with the help of a single multiplicative simple weight on top of the LO

distribution is a quite unique feature of the KrkNLO method.

Numerical studies presented here will be extended in the future publications to a

wider range of distributions, energies, implementation variants, including comparisons with

experimental data.

The paper is organized as follows. In section 2 we introduce the kinematics and the

phase space parametrization for the considered process. In section 3 we describe in detail

the KrkNLO method. Sections 4 and 5 contain some numerical results of the KrkNLO

implementation: section 4 from the fixed-order NLO cross-checks while section 5 from the

NLO+PSMC comparisons with the MCFM, MC@NLO and POWHEG programs for the main

Z-boson observables. Section 6 summarizes the paper. In appendix A we add some details

on the first gluon emission in the backward evolution in PSMC.

2 Kinematics and phase space parametrization

In the present work we are going to concentrate on the Drell-Yan process, specifically

production and decay of the heavy boson2 Z/γ∗ in proton-proton collisions. At the leading

order (LO), qq̄ → Z is the only partonic subprocess that contributes. At the next-to-leading

(NLO) level, the real correction qq̄ → Zg and the virtual correction to qq̄ → Z contributes

— to be referred to collectively as qq̄ channel. The remaining NLO contributions, qg → Zq

and q̄g → Zq̄, are tree-level only — to be called the qg channel.

2.1 Single emission

Figure 1 illustrates part of the notation that will be used throughout the paper. The

diagram shows the real correction to the Z-boson production in the qq̄ channel with the

gluon four-momentum denoted by k1. The four-momenta of the incoming forward and

backward partons, p1F and p1B are related to the four momenta of the incoming protons,

PF and PB, as follows

p0F = xFPF , p0B = xBPB , (2.1)

2For brevity, in what follows, we shall often speak about the Z boson only, but in all cases we really

mean Z/γ∗ → `+`−.
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Figure 1. Kinematics of Z-boson production in the qq̄ channel.

where

PF =

√
s

2
(1, 0T , 1) , PB =

√
s

2
(1, 0T ,−1) . (2.2)

The invariant masses of the incoming parton pair prior to gluon emission and that of

the produced Z boson are denoted by s0 and ŝ = s1, respectively. Their ratio3

z1 =
s1

s0
=

ŝ

s0
, (2.3)

can be related to light-cone variables of the emitted gluon, as seen from the kinematics of

the emitted gluon expressed in terms of the light-cone Sudakov variables

α1 =
2k1 · p0B

s0
=

2k+
1

s0
, β1 =

2k1 · p0F

s0
=

2k−1
s0

, α1 + β1 ≤ 1, α1, β1 ≥ 0,

z1 = 1− α1 − β1 , k2
1T = α1β1s0 , y1 =

1

2
ln
α1

β1
, s0 = 2p0F p0B , (2.4)

spanned on the four-momenta p1F and p1B of the incoming partons, prior to the gluon emis-

sion. As seen in eqs. (2.4), the variables α1, β1 are simply the fractions of the light-cone

components of the gluon four-momentum to the centre-of-mass (CM) energy of the incom-

ing partons (prior to the gluon emission). The ratio z1, the gluon transverse momentum

k1T and the gluon rapidity y1 are related to the α1, β1 variables as well.

In PSMC, the (eikonal) phase space measure of the emitted gluon

d3k1

2k0
1

1

k2
1T

=
π

2

dφ1

2π

dα1

α1

dβ1

β1
(2.5)

is always split one way or another into two parts belonging to the quark and antiquark

emitters. A sharp division along the y1 = 0 angular boundary was used in ref. [19], while

in modern PSMCs, see refs. [9, 11, 12], a more gentle division, introduced in refs. [26, 27]

and inspired by the Catani-Seymour work [24], is exploited:

dα1

α1

dβ1

β1
(mF +mB ) =

dα1dβ1

β1(α1 + β1)
+

dα1dβ1

α1(α1 + β1)
, mF =

α1

α1 + β1
, mB =

β1

α1 + β1
, (2.6)

3The subscript in k1 and s1 is kept to underline that, in the context of PSMC, there is more parton

emissions further away from the hard process qq̄Z vertex.
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where mF ,B are the so-called soft partition functions. What is important for our method-

ology in the following is that the sum of the two parts attributed to two emitters/showers

reproduces the original 1-particle phase space without any gaps and (or well-controlled)

overlaps. Clearly the mF + mB = 1 property of the functions used in eq. (2.6) takes care

of that.

Once the above (overlapping) separation of the emission phase space into two part is

applied, a different evolution variable of PSMC in each of them is defined

q2
1F

= s0(α1 + β1)β1, q2
1B

= s0(α1 + β1)α1 , (2.7)

instead of a common one, like k2
T = α1β1s0 or rapidity.

Using the above evolution variable and z1, the single-emission (eikonal) phase

space (2.5) is easily re-parametrized

dα1dβ1

α1β1
=
dq2

1F

q2
1F

dz1

1− z1
+
dq2

1B

q2
1B

dz1

1− z1
. (2.8)

The relation between the old and new variables are illustrated graphically in figure 2. The

transformation back to the Sudakov variables is different for each part:

β1 =
(q2

1F
/s0)

1− z1
, α1 = 1− z1 −

(q2
1F
/s0)

1− z1
,

α1 =
(q2

1B
/s0)

1− z1
, β1 = 1− z1 −

(q2
1B
/s0)

1− z1
.

(2.9)

The upper phase-space limit α1 + β1 ≤ 1 transforms into

z1 ≥ 0 and q2
1F ,1B

≤ s0, (2.10)

while the positivity conditions, α1 > 0 and β1 > 0, enforce the IR-boundary cut-offs

(1− z1)2 >
q2

1F

s0
or (1− z1)2 >

q2
1B

s0
, (2.11)

for the two parts, correspondingly. Also, in most of the phase space region populated

according to the ∼ mF factor we may approximate q2
1F
' k2

1T . Similarly q2
1B
' k2

1T in the

∼ mB phase-space sector. The above kinematical limits are also shown on the logarithmic

Sudakov plane in figure 2 for the ∼ mF sector. NB. The IR cut-off k2
1T > k2

T min marked in

this figure translates into a slightly stronger cut-off on 1 − z1, easily calculable. The same

kinematical limits for one emission are also illustrated directly in terms of the 1 − z1 and

q2
1F

variables in figure 3, including also the second emission for the purpose of the following

discussion.

The essential ingredient of the 1-particle phase space reorganization towards PSMC

is introduction of the on-shell “effective beams” p1F and p1B , such that p1F + p1B =

p0F + p0B − k1. Their definition is not unique. For example, for the ∼ mF branch one

may choose

p1B = (1− ε)p0B , p1F = p0F − k1 + εp0B , ε = β1/(1− α1). (2.12)

– 5 –
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Figure 2. The Sudakov logarithmic plane with lines marking q21F = const. (thick green) and

z1 = const. (thin blue). The dashed (red) line marks IR cut-off on k1T = const.. The shaded

(yellow color) triangle marks the part of the phase space where ∼ mF dominates.

Figure 3. The illustration of the kinematic boundaries in the forward evolution (FEV) algorithm

with n = 2 particles. The parton no. 1 is emitted as a first one, within the biggest shaded triangular

(blue) area defined by (1 − z1)2 > q21/s0 and q21 > q2s . The parton no. 2 is generated as a smaller

triangular area marked with dashed (red) line according to (1 − z2)2 > q22/s1 and q22 > q21 . Third

parton is not generated, but its would-be-allowed space is marked by the smallest triangle below

s2 = ŝ. The vertical line marking the upper phase-space boundary q2 < Q2 in D(Q2, x) of eq. (3.24)

is also marked.

– 6 –



J
H
E
P
1
0
(
2
0
1
5
)
0
5
2

The same for the ∼ mB branch modulo the obvious variables interchange. All that in the

rest frame of P0 = p0F + p0B . However, in practice of a typical PSMC with the backward

evolution, all four-momenta are reconstructed starting from q2
1F ,1B

and z1 variables in the

rest frame of the effective beams P1 = p1F + p1B , which are constructed in the first place.

Technical details of the construction of effective beams are not so important for our

analysis. Just as an illustration let us define explicitly one possible construction, which

was introduced in ref. [23]. In the rest frame of the hard process and the effective beams

P1 = p1F + p1B = (
√
ŝ, 0, 0, 0) one may construct all four-momenta — starting from the

(q1F , z1, φ1) set, then translating it into (α1, β1) and using (for ∼ mF ):

kµ1 = α∗1p
µ
1F

+ β∗1p
µ
1B

+ qµT,1, q2
T,1 = α∗1β

∗
1 ŝ,

pµ0B =
β1 + z1

z1
pµ1B , pµ0F = Pµ1 + kµ1 − p

µ
0B
, (2.13)

α∗1 =
1− β1 − z1

β1 + z1
, β∗1 =

1

β1 + z1

β1

z1
.

Finally, knowing P0 = P1 − k1 one may transform all newly constructed four-momenta

k1, p0F , p0B to the rest frame of P0.

Altogether, the complete reorganization of the 1-real emission phase space from a

simple form based on the Sudakov variables to an equivalent parametrization using the

variables of PSMC, based on the backward evolution algorithm (applying the Catani-

Seymour soft-partition factor mF ), keeping track of the kinematical limits, and defining

x̂ = x1 = x0z1, ŝ = s1 = sx1, looks as follows:

dσ1F '
1∫

0

dx1 D(µ2
F , x1)

∫
α1+β1≤1

dβ1dα1

β1(α1 + β1)
P̄ (z1) dσ0(sx0z1)

=

1∫
0

dx1

s0∫
q2
min

dq2
1

q2
1

1−
√
q2
1/s0∫

0

dz1
P̄ (z1)

1− z1
dσ0(sx1) D(µ2

F , x1)

=

1∫
0

dx̂

s∫
q2
min

dq2
1

q2
1

1∫
x0

dz1 θ(1−z1)2sx̂/z1≥q2
1
Pqq̄(z1) dσ0(sx̂) D

(
µ2
F ,

x̂

z1

)
,

(2.14)

where q2
1 = q2

1F
, P̄ (z) ≡ (1 − z)Pqq̄(z) and Pqq̄(z) is the DGLAP [28] splitting function.

It is important to see that the full phase coverage requires integration over q2
F

to extend

above the effective mass squared ŝ = s2 of the LO hard process. Since q2
F
' k2

1T , it means

that the transverse momentum above ŝ is included in the above phase space.

In section 5 presenting numerical results, it will be commented more on what kind of

evolution variable is chosen in the parton shower generation of Sherpa and Herwig++.

2.2 Multiple emissions

Although the above 1-emission kinematics is enough for most of our prescription for the

NLO-correcting of the hard process, for better understanding of the role of the underlying

– 7 –
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Figure 4. Labelling in the reconstruction of the four-momenta.

multi-emission PSMC, it is useful to extend the 1-emission treatment of the kinematics to

two and more emissions in the initial-state parton showers.

The important technical point is the choice of the numbering (labelling) of the emitted

particles. In figure 3 we use the numbering in the emission chain (ladder) starting at

the incoming hadron and ending next to the hard process, that is the labelling of the

forward evolution (FEV) algorithm. From now on we switch to the backward evolution

(BEV) labelling which starts next to the hard process and ends at the incoming hadron,

see figure 4 for illustration.

Let us summarize briefly on the effective beam technique, for simplicity limiting its

description to a single tree F of emissions (shower). The sequence of the effective emitter

beams (p̃iF , p̃iB ) is defined starting from the hard process, with the four-momentum Pi,

such that

Pi = p̃iF + p̃iB , Pi+1 = Pi + ki, P 2
i = ŝ/

( i∏
j=1

zi

)
,

and they are used to span the four-momentum of the emitted gluon

ki = α̃ip̃iF + β̃ip̃iB + kT i, α̃i =
kip̃iB
p̃iF p̃iB

, β̃i =
kip̃iF
p̃iF p̃iB

,

introducing the Sudakov variables α̃i, β̃i. These Sudakov variables are related to the

evolution variable q2
iF

and the light-cone variable zi of PSMC as follows:

β̃i =
q2
i Zi

ŝ(1− zi)
, α̃i = 1− zi − β̃i, Zi =

i∏
j=1

zj , ŝ = sx̂ = sx0. (2.15)

Finally, in the recursive backward reconstruction of the four-momenta starting from

the hard process, one employs the Sudakov-like decomposition of the emitted parton in

terms of the emitters after the emission:4

kµi = α∗i p̃
µ
(i−1)F

+ β∗i p̃
µ
(i−1)B

+ qµT,i,

α∗i =
α̃i

1− α̃i
, β∗i =

1

1− α̃i
β̃i
zi
.

(2.16)

All exact kinematical limits (including ordering in the evolution variable) are represented

by the following inequalities:

(1− zi)2 ≥ q2
i Zi/ŝ and q2

i+1 ≤ q2
i ≤ ŝ(1− zi)2/Zi. (2.17)

4Generalizing eq. (2.13).
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Figure 5. The illustration of the kinematic boundaries in the BEV algorithm with n = 2

particles. The parton no. 1 is emitted within the semi-triangular shaded (blue) area defined by

(1 − z1)2 > q21/(s0/z1) and s > q21 > q2s . The parton no. 2 is generated within the second semi-

trapezoid area marked by the dashed (red) line according to (1−z2)2 > q22/(s1/z2) and q21 > q22 > q2s .

The third parton is not generated, but its would-be-allowed space is marked by the leftmost almost-

trapezoid line.

In particular, the kinematical limits for the first emission in the backward-evolution (BEV)

labelling are

q2
max,1 = ŝ(1− z1)2/z1, zmax

1 ' 1− q0/
√
ŝ.

The above kinematical limits in terms of the BEV variables q2
i and zi look more complicated

than in the FEV scenario, although they represent exactly the same phase space region,

and are illustrated graphically in figure 5.

As already underlined, in terms of the BEV variables, the phase space gets apparently

widened after each emission, for instance q2 > ŝ is already available for the first emission

and, due to lowering of the IR boundary by the 1/z1 factor, more phase space is available

for the second emission. This phenomenon, important for the full coverage of the phase

space, is illustrated graphically in figure 6. It is, of course, an artefact of the BEV phase-

space parametrization, which in the FEV world corresponds to the phase-space reduction

due to energy conservation.

We omit here the discussion of the “kinematical cross-talk” between two parton show-

ers, which means that for emissions with the common q2-ordering in two initial showers (as

in any realistic PSMC), the emission in one shower reduces the available phase space in the

other shower. This effect is easily incorporated in the kinematical construction (mappings)

of PSMC. The only thing one has to watch out is the correctness of the soft-emission limit

in the case of two and more emissions, see for instance the discussion in ref. [23]. This

subject will be covered in a more detail in our future publications.

– 9 –
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Figure 6. The illustration of the kinematic of the BEV algorithm with n = 2 particles in the

extreme case when the parton no. 1 is emitted with q21 > s0 = ŝ and the parton no. 2 is generated

within the area not accessible for the parton no. 1 due to a higher IR boundary.

3 KrkNLO methodology

Very briefly, the essence of the KrkNLO prescription defined in ref. [19] is that NLO cor-

rections are introduced by a multiplicative weight on top of distributions from the LO

PS acting, either inside PSMC or outside it, on a MC event record. This NLO weight is

sensitive to the parton four-momentum with the highest q2 (or maximum k2
T in the case

of kT -ordering), although in ref. [19] it was demonstrated that such a NLO multiplicative

weight works also in the case of the angular ordering, provided that summation over all

emitted partons is performed.

In MC@NLO [2], the correcting weight is essentially additive and the NLO−LO cor-

rection to PSMC is provided from outside in form of additional MC events, with a non-

positive-definite weight. In parts of the phase space which are not covered by the LO

PS, extra events provide the entire NLO distributions (positive weights), otherwise extra

events, correcting the LO distributions to the NLO level, have typically (inconvenient)

negative weights.

In POWHEG [3], the entire NLO correction to LO PS is provided by an external MC

generator — the highest k2
T emission is isolated/subtracted from PSMC, following the

double-logarithmic Sudakov exponential factor, and generated according to the NLO dis-

tribution outside PSMC, while trailing emissions with lower k2
T (suppressed by the Sudakov

exponent) are left for generating within LO PSMC.

Both KrkNLO and MC@NLO require good analytical control of the LO PS distributions,

while for POWHEG it is less important. In addition, KrkNLO requires that LO PS fills in

the entire NLO phase space with some non-zero distribution. The Sudakov suppression is

also exploited in KrkNLO, but in a different way than in POWHEG.
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In the standard NLO corrections to a hard process with MS PDFs, part of the NLO

corrections feature degenerate 1-dimensional longitudinal phase space with k2
T = 0 exactly.

These corrections enforce in practice certain convolution on the MS PDFs, which in the

case of POWHEG and MC@NLO is done in-flight inside MC. In the KrkNLO prescription,

the implementation of these corrections is moved outside MC (simplifying it). This leads

to the use in KrkNLO of the modified LO PDFs, in the so-called MC factorization scheme.

This reorganization is mandatory because one of the main aims of the KrkNLO method, that

the NLO corrections are implemented with a well-behaved multiplicative positive weight,

is not compatible with such a degenerate collinear phase-space contribution to the NLO

MC distributions.

Last but not least, any scheme for correcting the hard process of LO PSMC to the NLO

level requires a formal proof that the resulting distributions are indeed of the NLO class (no

double-counting, no NLO leak). Such a proof in an algebraic form is not trivial, not only

because the NLO total cross section has to be verified, but also any NLO-class observable

(experimental event selections) has to be properly reproduced. In other words, it has to

be done using functional space of all the NLO observables. In the case of KrkNLO such

a proof was done in ref. [19], both algebraically and numerically, for a toy-model PSMC

with the angular ordering. Here, we shall provide such an algebraic proof starting from

the NLO-corrected multiparton distributions for realistic PSMC of the kind implemented

in Sherpa and Herwig++ using the BEV algorithm.

In the following, we are going to collect building blocks for the NLO weight, then we

shall elaborate on the multiparton distributions of LO PSMC without and with the NLO

weight of KrkNLO. We shall pay particular attention to the question of the completeness

of the phase space in PSMC and to the equivalence between the backward and forward

evolution algorithms in PSMC. Finally, we shall show that for an arbitrary NLO-class

observable, KrkNLO gives the same result as simpler NLO calculations with the collinear

PDFs, instead of PSMC, such as for instance MCFM [32].

3.1 NLO-correcting weight

Let us collect the ingredients for construction of the NLO corrections to the hard process

of the Z-boson production and decay in the proton-proton collisions.

The fully differential NLO cross section of the production and decay of the Z boson in

the quark-antiquark annihilation process, with the simultaneous emission of a single real

gluon, can be cast in a well-known compact form, see ref. [19]:

d5σNLOqq̄ (α, β,Ω) =
CFαs
π

dαdβ

αβ

dϕ

2π
dΩ

[
dσ0(ŝ, θF )

dΩ

(1− β)2

2
+
dσ0(ŝ, θB )

dΩ

(1− α)2

2

]
, (3.1)

where the Sudakov variables5 (α, β) are spanned on momenta of the effective beams of q and

q̄ prior to the gluon emission, see eq. (2.4). The Born differential cross section
dσ0(ŝ,θ

B
)

dΩ for

Z-boson production and decay is well known (see for instance [25] for the exact expression).

5For better readability of the formulae given in this section, we shall suppress “1” in the lower index of

the Sudakov variables as well as other kinematical variables, such as s and q2
F,B .
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The solid angle Ω = (θ, φ) is the direction of the lepton from the decaying Z boson in its

rest frame and ŝ = (1− α− β)s1 (see figure 4). The angles θF and θB depend on α and β

as well — their precise definition was given6 in ref. [33]. The integration over luminosities

of q and q̄ is not yet included.

How does the above compare with the distributions from PSMC also restricted to the

single gluon emission? The differential cross section for the gluon emission from the quark

emitter (i.e. the ∼ mF part in eq. (2.6)) in PSMC reads

d5σFqq̄(α, β,Ω) =
CFαs
π

dq2
F

q2
F

dϕ

2π
Pqq̄(z)dz

dσ0

dΩ

(
ŝ, θ̂
)
dΩ

=
CFαs
π

dαdβ

(α+ β)β

dϕ

2π
dΩ

1 + (1− α− β)2

2

dσ0

dΩ

(
ŝ, θ̂
)
,

(3.2)

where qF is the evolution variable defined in eq. (2.7) and θ̂ is another effective angle in

Z decay specific to LO PSMC, for instance the so-called Collins-Soper angle [34]. Adding

the gluon emission from q̄ simply amounts to the α↔ β symmetrization, resulting in

d5σLO
qq̄ (α, β,Ω) = d5σFqq̄ + d5σBqq̄ =

CFαs
π

dαdβ

αβ

dϕ

2π
dΩ

1 + (1− α− β)2

2

dσ0

dΩ

(
ŝ, θ̂
)
, (3.3)

where

d5σFqq̄ =
α

α+ β
d5σLO

qq̄ = mF d
5σLO
qq̄ , d5σBqq̄ =

β

α+ β
d5σLO

qq̄ = mBd
5σLO
qq̄ . (3.4)

The integration limits are not explicit, but they are the same as in eq. (2.4).

In our discussion, we shall often use the following objects: the additive NLO correction

d5β̄qq̄(α, β,Ω) = d5σNLO
qq̄ (α, β,Ω)− d5σLO

qq̄ (α, β,Ω) (3.5)

and the NLO multiplicative weight for the qq̄ channel

W
(1)
qq̄ (α, β) = 1 +

d5β̄qq̄

d5σLO
qq̄

=
d5σNLO

qq̄

d5σLO
qq̄

. (3.6)

The above weight is especially simple in the case of averaging over the angles in Z decay:

〈W (1)
qq̄ 〉Ω = W qq̄

R = 1− 2αβ

1 + (1− α− β)2
, (3.7)

and it can be used in approximate implementations of the NLO corrections.

The analogous weight for the qg channel is

〈W (1)
qg 〉Ω = W qg

R = 1 +
β(β + 2z)

(1− z)2 + z2
. (3.8)

After summing up the contributions from the two emitters, d5σLO
qq̄ is obtained, which

is exactly the same7 as in ref. [19]. The important consequence of the above is that many

6In fact they coincide with the polar angles with respect to the effective beams defined in eq. (2.12).
7In spite of the differences of the LO PSMC distributions for each emitter separately.
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details of the matching between the MS NLO corrections and the LO PSMC in the present

KrkNLO implementation remains the same as in ref. [19]. In particular, the virtual plus

soft-real correction, when the PDFs in the MC factorization scheme are used, is the same

as in ref. [19] and reads8

B̄ij
MC = 1 +∆ij

V S , (3.9)

where

∆qq̄
V S =

αs
2π
CF

[
4

3
π2 − 5

2

]
, ∆qg

V S = 0. (3.10)

As one can see, this virtual+soft-real correction is constant, i.e. kinematics-independent.

3.2 MC factorization scheme

In this subsection we extend the definition of the MC factorization scheme, introduced in

ref. [19] for the quark-antiquark channel, to the NLO DY process with the quark-gluon

initial state. For the completeness and convenience of the reader we first provide the main

formulae for the qq̄ initial state.

The NLO qq̄-channel coefficient function for the DY process in the MS factorization

scheme is given by [19]

CMS
2q (z) =

αs
2π

CF

{
δ(1− z)

(
4

3
π2 − 7

2

)
+

[
2

1 + z2

1− z
ln

(1− z)2

z

]
+

}
. (3.11)

The corresponding coefficient function in the MC factorization scheme, defined in ref. [19],

reads

CMC
2q (z) =

αs
2π

CF

[
δ(1−z)

(
4

3
π2 − 7

2

)
− 2(1− z)+

]
= δ(1−z)∆V S −

αs
π
CF (1− z), (3.12)

where ∆V S ≡ ∆qq̄
V S is the virtual plus soft-real gluonstrahlung correction given in eq. (3.10).

From the above equations, following ref. [19], we can obtain a qq̄ contribution to the

relation between the MC-scheme and MS-scheme quark (antiquark) PDFs:

∆C2q(z) =
1

2

[
CMS

2q (z) − CMC
2q (z)

]
=
αs
2π

CF

[
1 + z2

1− z
ln

(1− z)2

z
+ 1− z

]
+

. (3.13)

Similarly, for the NLO qg-channel contribution to the DY process we have:

CMS
2g (z) =

αs
2π

TR

{[
z2 + (1− z)2

]
ln

(1− z)2

z
− 7

2
z2 + 3z +

1

2

}
, (3.14)

CMC
2g (z) =

αs
2π

TR
1

2
(1− z)(1 + 3z), (3.15)

∆C2g(z) = CMS
2g (z) − CMC

2g (z) =

=
αs
2π

TR

{[
z2 + (1− z)2

]
ln

(1− z)2

z
+ 2z(1− z)

}
. (3.16)

8Note that B̄ijMC, though conceptually similar, is not identical to the well known B̄ used in the context

of POWHEG [35], as the quantity from eq. (3.9) is defined in the MC scheme.
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Using eqs. (3.13) and (3.16), we can relate the MC-scheme quark (antiquark) PDFs to

the corresponding MS-scheme PDFs in the following way

fMC
q(q̄)(x,Q

2) = fMS
q(q̄)(x,Q

2) +

∫ 1

x

dz

z
fMS
q(q̄)

(x
z
,Q2

)
∆C2q(z) +

∫ 1

x

dz

z
fMS
g

(x
z
,Q2

)
∆C2g(z) .

(3.17)

The above relation is universal, i.e. process-independent, at the NLO level. It is simply

because it is defined uniquely with respect to the MS scheme.

The gluon PDF is equal between the MC and MS schemes up to the O
(
αs

2
)

corrections

for processes with no gluons at the Born level, such as the Drell-Yan process considered in

this work. Hence for the DY process we may use

fMC
g (x,Q2) = fMS

g (x,Q2) . (3.18)

As one can see, in the MC factorization scheme the NLO coefficient functions in both

the qq̄ and qg channels are substantially simpler than the corresponding ones in the MS

scheme; in particular they are free of logarithmic singular terms. Since the latter terms

are absorbed into the MC PDFs, i.e. they are included in a resummed way, one may also

expect that the higher-order QCD corrections in the MC scheme are smaller than in the

standard MS scheme.

Let us finally add a comment on the universality (process-independence) of the MC

factorization scheme. This issue was discussed quite extensively in ref. [19] for the DIS and

DY processes, albeit restricting the problem to QED-like gluonstrahlung diagrams only.

The main point is that the MC factorization scheme is in reality defined operationally as

a modification of the MS scheme, consequently it inherits automatically the universality

from the latter.9 On the other hand, it is true that the procedure of defining extra O(ε0)

terms, added to the MS collinear counter-terms to define the PDFs in the MC scheme,

is clearly guided by the inspection of a number of simplest physical processes, like DIS,

DY and/or Higgs production. However, once this is done, these extra terms are frozen

and the resulting (modified) counter-terms are ready to apply for any other process. They

also define completely the PDFs in the MC scheme. What is new in the present work

with respect to ref. [19] is the inclusion of the quark-gluon transitions. Generally, the

transformation of the PDFs from the MS to the MC scheme is a matrix in the flavor space.

The DY process at the NLO level, discussed in the present work, fixes only a subset of terms

in this matrix, while the remaining ones will be fixed by inspecting the NLO corrections to

the process of gluon-gluon fusion into the Higgs boson.10 At the next step, after including

Higgs production in the game, the MC scheme will be fully defined and will be applicable

to any process, including also more color particles in the final state.

9In particular, the MC scheme is neither the DIS nor the DY scheme, as can be seen from the fact that

the coefficient functions for any of these processes in the MC scheme are not equal to δ(1− z).
10They are set temporarily to zero in the present work, as for the DY process they become relevant only

at NNLO.
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3.3 Multiparton reality of PSMC

In the above we have restricted ourselves to a single emission and hence omitted all the

multi-emission reality of PSMC. Let us elaborate on that in a more detail now, because

the NLO correcting weights are put not on top of single-emission distributions but on top

of multiparton distributions of LO PSMC, so they have to be known and controlled for the

hard process within the NLO precision, preferably in a closed algebraic form.

Let us start from LO PSMC in the forward-evolution (FEV) formulation. The equiva-

lent backward-evolution (BEV) formulation will be presented later on. Restricting ourselves

temporarily to the pure gluonstrahlung case, the FEV differential cross sections of gluons

emitted from the q and q̄ emitters11 reads as follows

σLO
MC =

∫
dxF dxBdΩ

∞∑
n
F

=0

∞∑
n
B

=0

∫
dσLO

n
F
n
B
, (3.19)

dσLO
n
F
n
B

=

n
F∏

i=1

n
B∏

j=1

{∫
d3ρFi θq2

i−1>q
2
i>q

2
s
e−SF (q2

i−1,q
2
i )

}{∫
d3ρBj θq2

j−1>q
2
j>q

2
s
e−SB (q2

j−1,q
2
j )

}

× e−SF (q2
nF

,q2
s)e−SB (q2

nB
,q2
s) dσ

dΩ
(sxF xB , θ̂)

1

ZnF
DF

MC

(
q2
s ,

xF
ZF
nF

)
1

ZnB
DB

MC

(
q2
s ,

xB
ZB
nB

)
,

where Zi =
∏i
l=1 zl, Z0 = 1, q2

0 ≡ s and P̄(z) = (1 − z)P(z), P(z) ≡ CFαs
π Pqq̄(z). The

principal evolution variable q2
i was introduced in section 2, eq. (2.7), and the labelling of

the emissions starts from the hard process,12 as in figure 4. The emission distributions for

the ladder labelled with F are the following:

d3ρFi = d3ρFi (sij) =
dβ̃idα̃i

β̃i(α̃i + β̃i)

dφi
2π

P̄(1− α̃i − β̃i) θα̃i>0 θα̃i+β̃i<1

=
dq2
i dzi
q2
i

dφi
2π

θ(1−zi)2sij>q2
i
P(zi) =

dq2
i

q2
i

dφi
2π

dzi
P̄(zi)

1− zi
θ(1−zi)2sij>q2

i
,

(3.20)

where the Sudakov function reads

SF (q2
b , q

2
a) = SF (sij |q2

b , q
2
a) ≡

∫
q2
a<q

2
i<q

2
b

d3ρFi (sij), (3.21)

and for the ladder B they look the same, except for the α̃i ↔ β̃i swap.

The important variable sij entering d3ρF ,Bi and SF ,B for the single shower/ladder was

already defined in section 2 as si = ŝ/Zi, with ŝ = sxF xB . For two showers, in any

realistic PSMC, the emissions are generated (and the four-momenta are reconstructed)

simultaneously in both showers using the competition algorithm, in which a common q2-

ordering in both showers is emerging in a natural way.13 Within such a common ordering

11We adopt a convention in which
∑0
n=1 dn = 1.

12This is unnatural for the present FEV scenario, but better suited for the BEV algorithm in the following.
13This method leads to forward-backward symmetric distributions, contrary to generating first the emis-

sions from q and later on all the remaining emissions from q̄.
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for the two showers, the variable sij = ŝ/(ZF
i Z

B
j ) includes all z’s from the emissions in

both the ladders, starting from the hard process.14

Strictly speaking, the above implicit “kinematical coupling” of the two showers through

sij variable prevents us from rewriting the distributions of eq. (3.19), without any approx-

imation, into the traditional convolution of two LO PDFs and the hard process, as it was

possible in the toy PS MC in refs. [19, 20]. However, a slight modification of the kine-

matical coupling (modulo N3LO corrections) allows us to get from eq. (3.19) the following

equivalent factorized inclusive formula

σLO
MC =

∫
dxF dxBdΩ DF

MC(ŝ, xF )DB
MC(ŝ, xB )

dσ

dΩ
(sxF xB , θ̂), (3.22)

where dσ/dΩ is the hard cross section from eq. (3.1) and the LO PDF DF
MC is resulting from

the FEV algorithm run separately for each single shower, written in form of the following

time-ordered (T.O.) exponential15

DF
MC(ŝ, xF ) =DF

MC(q2
s , xF )e−SF (ŝ|s,q2

s) + (3.23)

+

∞∑
n=1

∫
e−SF (ŝ|s,q2

1)d3ρF1 (s1) e−SF (s1|q2
1 ,q

2
2)d3ρF2 (s2) e−SF (s2|q2

2 ,q
2
3) . . .

×e−SF (sn−1|q2
n−1,q

2
n)d3ρFn (sn) e−SF (sn|q2

n,q
2
s)

n∏
i=1

θs>q2
i−1>q

2
i>q

2
s
DF

MC(q2
s , xs) δxF=xs

∏n
j=1 zj

,

with si = ŝ/Zi, s0 = ŝ, q2
0 ≡ s. The other PDF, DB

MC(ŝ, xB ), is defined analogously.

It is important to note that the objects DF,B
MC appearing in eq. (3.22) are not just scalar

functions but they have non-trivial and well-defined internal structure, as explicitly seen

in eq. (3.23). In particular, the MC PDFs, DF,B
MC , result from the Markovian process and

thanks to kinematical mappings they respect the phase-space constraints exactly. There-

fore, they are not equal to the standard DGLAP parton distributions functions, in partic-

ular they integrate emissions up the absolute phase-space limit, cf. eqs. (2.4) and (2.10),

rather than stopping at some arbitrary scale Q2 = µ2
F .

The reader may check, analyzing one and two emissions in a detail, that the effect of

the above “kinematical coupling” of the two showers through the variable sij is conveniently

absorbed by the construction of the four-momenta defined in section 2.2, hence eq. (3.22)

is equivalent to eq. (3.19) up to the N2LO level, i.e. neglecting the N3LO and higher

corrections. The above equivalence could also be tested numerically, similarly as was done

in ref. [19].

Why do we insist on the FEV representation of PSMC knowing that any typical PSMC

is built using the BEV algorithm? The important reason is that in any methodology of

combining fixed-order perturbative corrections with PSMC one has to make an algebraic

contact with the standard diagrammatic perturbative calculations, including factorization

theorems, resummation techniques, etc., which are all defined within the standard Lorentz-

invariant phase space (LIPS). The FEV parton shower works directly within the LIPS,16

14In the PSMC jargon this is referred to as a recoil mechanism.
15See ref. [36] for the precise formal derivation of the T.O. exponent from the Markovian FEV algorithm.
16Modulo kinematical mappings, effective beam technique, recoils, etc.
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while in the BEV algorithm, the relation between LIPS and the PSMC distributions is

obscured due to the presence of ratios of the PDFs in the BEV distributions. The way

out is to define a framework in which the BEV and FEV distributions are by construction

exactly identical. This requires certain non-trivial extra care and effort. We shall follow

this path in the following.

The PDF of eq. (3.23) looks pretty standard, for instance, it is directly implementable

in form of the FEV Markovian MC. Its peculiarity is already quite obvious for a single

emission n = 1, where the upper phase-space boundary limit is not just regular q2
1 < ŝ,

but more complicated q2
1 < (1 − z1)2ŝ/z1, reflecting the realistic phase-space boundary of

the hard process, while the lower boundary is just regular q2
1 > q2

s , i.e. the same as from

the ordering in PSMC. This peculiarity influences mainly the first emissions, closest to

the hard process,17 as discussed in section 2. The consequence of the above peculiarity is

that for our aim of the rigorous correspondence of the multiparton distributions between

the FEV to BEV algorithms we need an auxiliary PDF with two competing factorization

scales, Q2 and ŝ:

DF

MC(ŝ|Q2, xF ) = DF (ŝ|q2
s , xF )e−SF (ŝ|Q2,q2

s) +

∞∑
n=1

∫
e−SF (ŝ|Q2,q2

1) (3.24)

×
n∏
i=1

{
d3ρFi (si) e

−S
F

(si|q2
i ,q

2
i+1)θQ2>q2

i−1>q
2
i>q

2
s

}
DF (ŝ|q2

s , xs) δxF=xs
∏n
j=1 zj

,

where qn+1 ≡ qs and it coincides with the PDF of eq. (3.19) for Q2 = s = ŝ/xF , i.e.

DF
MC(ŝ, xF ) = DF

MC(ŝ|ŝ/xF , xF ) = DF

MC(ŝ|∞, xF ). (3.25)

The main difference between this new PDF and the one introduced earlier in eq. (3.23)

is the θQ2>q2
i−1>q

2
i>q

2
s

function, see figure 3, that restrict emissions only to the region below

the scale Q2, which in principle is an arbitrary parameter, as long as Q2 � ŝ. In that sense

the new PDFs, D
F,B
MC , are closer to the standard DGLAP parton distribution functions.

With the above definitions we may work out the BEV algorithm providing the LO

distributions, which by construction are exactly the same as from the FEV algorithm:18

dσLO
n
F
n
B

=
dσ

dΩ
(sxF xB , θ̂)

n
F∏

i=1

{
d3ωFi θq2

i−1>q
2
i

} n
B∏

j=1

{
d3ωBj θq2

j−1>q
2
j

}
× e−∆F (xFnF |q

2
nF

,q2
s)e−∆B (xBnB |q

2
nB

,q2
s)DF (ŝ, xF ) DB (ŝ, xB ) dxF dxBdΩ,

xFi =xF /Z
F
i , x

B
j = xB/Z

B
j , ŝ = sxF xB ,

(3.26)

where xFi =
∏i
m=1 zm includes zi from d3ωFi and similarly for xBj from d3ωBi . The single-

17Already for the second emission, the limit q2
2 < q2

1 is more important than q2
2 < (1−z2)2ŝ/(z1z2), which

can be neglected modulo NNLO.
18Modulo the kinematical coupling mentioned above.
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emission distributions and form factors are defined as follows:

d3ωHi =
dq2
i dzi
q2
i

dφi
2π
KMC(xi−1|zi, q2

i ) e
−∆MC(xi−1|q2

i ,q
2
i−1),

KMC(x∗|z, q2) ≡ P(zi) θ(1−z)2sx∗/z>q2

DMC(sx∗/z|q2, x∗/z)

DMC(sx∗|q2, x∗)
,

∆MC(x∗|q2
j−1, q

2
j ) ≡

∫ q2
j−1

q2
j

dq2

q2

∫ 1

x∗

dz

z
KMC(x∗|z, q2),

(3.27)

and the shower label H = F ,B was temporarily omitted wherever it was unambiguous to

do so.

Although it may not look obvious, the integrated cross section

σLO
MC =

∞∑
n
F
,n
B

=0

∫
dσLO

n
F
n
B

and all the multiparton distributions are exactly the same as in eqs. (3.22) and (3.23). Let

us present a sketchy proof of that.19 Directly from the BEV algorithm for the PDF of

eq. (3.23) of the showering quark we get

DF
MC(ŝ, xF )

∣∣∣
BEV

= DMC(sx̂|s, x̂)

{
e−∆MC(s,q2

s |xF ) + (3.28)

+

∞∑
n=1

[ n∏
i=1

∫ q2
i−1

q2
s

dq2
i

q2
i

∫ 1

xi−1

dzi
zi

e−∆MC(xi−1|q2
i ,q

2
i−1)
KMC(xi−1|zi, q2

i )

]
e−∆MC(xn|s,q2

n)

}
.

In order to prove that the above PDF is the same as from the FEV algorithm one exploit

the fact that in the T.O. exponential representation of the double-scale PDF of eq. (3.24)

we may detach (factorize off) the first emission, obtaining the following integral equation:

DF

MC(ŝ|Q2, x) = DF (ŝ|q2
s , x)e−SF (ŝ|Q2,q2

s)+ (3.29)

+

∫ Q2

q2
s

dq2
1

q2
1

∫ 1

0
dx1

∫ 1

0
dz1 P(z1)θ(1−z1)2ŝ/z1>q2

1
e−SF (ŝ|Q2,q2

1)DMC(ŝ/z1|q2
1, x1)δx=z1x1 .

Differentiating both sides by ∂/∂(ln q2
s) and then integrating

∫ ln q2
b

ln q2
a
d(ln q2

s), one obtains

e−SMC(ŝ|q2
b ,q

2
a) = e−∆MC(x|q2

b ,q
2
a)DMC(ŝ|q2

b , x)

DMC(ŝ|q2
a, x)

. (3.30)

The above identity can be used many times in order to eliminate the ratios of the PDFs

in the BEV formula and transform without any approximation the BEV distributions of

eq. (3.28) into the FEV distributions of eq. (3.23).

19The result of the detailed proof is the same, of course.

– 18 –



J
H
E
P
1
0
(
2
0
1
5
)
0
5
2

3.4 NLO weight in parton shower and its algebraic validation

Having defined the framework in which the FEV and BEV distributions of LO PSMC

are identical, we may define a MC weight correcting the hard process in the (notoriously)

inefficient FEV LO PSMC, but having advantage of a straightforward connection to the

perturbative expansion, and apply it within LO PSMC implemented using the efficient

BEV algorithm. The NLO completeness of such a scheme can be proven analytically

within FEV without any troubles, due to the absence of the ‘obscure’ ratios of the PDFs

of BEV. The only extra cost is that in order to gain a perfect FEV↔BEV compatibility,

we had to introduce the special LO PDFs D(ŝ|Q2, x) with two factorization scales, at least

for the purpose of the discussion of the NLO completeness of the KrkNLO scheme, while in

practice we shall be able to obtain D from the standard MS PDFs

The differential cross section in which the hard process is NLO-corrected for the qq̄

channel in the KrkNLO method reads as follows:20

dσNLO
n
F
n
B

=

(
1 +∆V S +

n
F∑

i=1

W
[1]
qq̄ (α̃Fi , β̃

F
i ) +

n
B∑

j=1

W
[1]
qq̄ (α̃Bj , β̃

B
j )

)
dσLO

n
F
n
B
, (3.31)

where

W
[1]
qq̄ =

d5β̄qq̄

d5σLO
qq̄

=
d5σNLO

qq̄ − d5σLO
qq̄

d5σLO
qq̄

= W
(1)
qq̄ − 1, (3.32)

see eqs. (3.6) and (3.10). The structure of this weight, with the summation over the emitted

gluons, is a straightforward generalization of the weight used in many MC programs with

multiphoton exponentiated corrections, see for instance ref. [37].

As pointed out in ref. [20], in order to get the complete NLO corrections to the hard

process, it is enough to retain in the sum in eq. (3.31) only a single term, the one with the

maximum k2
T . Since our q2-variable is practically identical to k2

T we may retain only one

term for a gluon with the maximum q2
i
F

or q2
j
B

, from one of the two showers. In the case of

the BEV algorithm with competition, this gluon is just the one which was generated first.

Similarly, as we have detached the first emission from the T.O. exponential represen-

tation of the PDF in eq. (3.29), we now factorize off explicitly the gluon emissions with

the maximum q2
F

and q2
B

from the product of two PDFs in eq. (3.22):

DF
MC(ŝ, x̂F )DB

MC(ŝ, x̂B ) = e−SF (ŝ|s1F ,q
2
s)e−SB (ŝ|s1B ,q

2
s)DF

MC(ŝ|q2
s , x̂F )DB

MC(ŝ|q2
s , x̂B )

+

∫
q2
s<q

2
1F
<s1F

d3ρF1 (ŝ/z1F )e
−S

F
(ŝ|s1F ,q

2
1F

)
e
−S

B
(ŝ|s1B ,q

2
1F

) 1

z1F

DF

MC(ŝ|q2
1F
, x̂F /z1F )DB

MC(ŝ|q2
1F
, x̂B )

+

∫
q2
s<q

2
1B
<s1B

d3ρB1 (ŝ/z1B )e
−S

F
(ŝ|s1F ,q

2
1B

)
e
−S

B
(ŝ|s1B ,q

2
1B

)
DF

MC(ŝ|q2
1B
, x̂F )

1

z1B

DB

MC(ŝ|q2
1B
, x̂B/z1B ),

(3.33)

where s1F = ŝ/x̂F and s1B = ŝ/x̂B .

20We adopt a convention that
∑2
n=1 dn = 0.
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In order to improve readability, we are going to omit temporarily (until eq. (3.38))

the argument ŝ in the D
F,B
MC (ŝ| . . . ) and the SF ,B (ŝ| . . . ) functions. Moreover, the “kine-

matical coupling” of the two showers is will be restored, that is we are going to replace

in the following s1F , s1F → s = ŝ/(xF xB ). The above decomposition is easily exploited in

calculating the NLO cross section with the MC weight of eq. (3.31) truncated to a single

term W
[1]
qq̄ with the maximum q2:

σNLO[J ] =
∞∑

n
F
,n
B

=1

∫
dσNLO

n
F
n
B

=

∫
dxF dxBdΩ

dσ

dΩ
(sxF xB , θ̂)(1 +∆V S)e−SF (s,q2

s)e−SB (s,q2
s)

×DF

MC(q2
s , xF )DB

MC(q2
s , xB )JLO(xF , xB )

+

∫
dxF dxBdΩ

{ ∫
q2
s<q

2
1F
<s

d3ρF1 (sxF xB )(1 +∆V S +W
[1]
qq̄ (k1))

dσ

dΩ
(sxF xBz1F , θ̂)

× e−SF (s,q2
1F

)
e
−S

B
(s,q2

1F
)
DF

MC(q2
1F
, xF )DB

MC(q2
1F
, xB )JNLO(xF , xB , z1F , k

2
1T )

+

∫
q2
s<q

2
1B
<s

d3ρB1 (sxF xB )(1 +∆V S +W
[1]
qq̄ (k1))

dσ

dΩ
(sxF xBz1B , θ̂)

× e−SF (s,q2
1B

)
e
−S

B
(s,q2

1B
)
DF

MC(q2
1B
, xF )DB

MC(q2
1B
, xB )JNLO(xF , xB , z1B , k

2
1T )

}
,

(3.34)

where we have introduced xF and xB before the emission, as in a typical fixed-order NLO

calculation. They are related to x̂F and x̂B from eq. (3.33) in such a way that if the

emission happens on the leg F , then xF = x̂F /z1F and xB = x̂B . And symmetrically if

emission occurs on the leg B. The same expression we can get directly from distributions

of the BEV algorithm, as shown explicitly in appendix A.

For the purpose of the proof of compatibility of the above formula with the fixed-

order calculation (MCFM) for the entire class of the LO and NLO observables, we have

introduced in the above the jet functions, JLO(xF , xB ) and JNLO(xF , xB , z1, k
2
1T ), which

satisfy the following properties:

JNLO(xF , xB , z1, k
2
1T ) → JLO(xF , xB ) for k2

1T → 0, or z1 → 1, (3.35)

often referred to as an infra-red safety requirement. In the experimental practice, the

function JNLO represents the most general 2-dimensional histogramming in the transverse

momentum of the gluon (or the heavy boson) and the z1 variable, related to the rapidity

difference between the heavy boson and the emitted gluon (or the ratio of the effective

mass of the heavy boson and the heavy boson plus gluon system). The meaning of the

above limit k2
1T → 0 is that for the first bin in k2

1T , the one including the k2
1T = 0 point, we

are not allowed to do any binning in z1 (we have to sum up inclusively over all z1, similarly

as for JLO we sum up inclusively over all k2
1T ).

In order to recover the fixed-order NLO formula of MCFM, all terms O(α2
s) have to

be carefully eliminated. It is easy to do it for the ∼ d3ρ W
[1]
qq̄ parts, which are formally
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O(α1
s). We replace in them DF

MC(ŝ|q2
1F ,1B

, xF ) → DF

MC(ŝ|s, xF ) and also eliminate safely

the Sudakov exponents:21

σNLO[J ]=

∫
dxF dxBdΩ

{
e−SF (s,q2

s)e−SB (s,q2
s)DF

MC(q2
s , xF )DB

MC(q2
s , xB )

}
× (1 +∆V S)

dσ

dΩ
(s1, θ̂)JLO(xF , xB )

+

∫
dxF dxBdΩ

{ ∫
q2
s<q

2
1F
<s

d3ρF1 (s1)e
−S

F
(s,q2

1F
)
e
−S

B
(s,q2

1F
)
DF

MC(q2
1F
, xF )DB

MC(q2
1F
, xB )

+

∫
q2
s<q

2
1B
<s

d3ρB1 (s1)e
−S

F
(s,q2

1B
)
e
−S

B
(s,q2

1B
)
DF

MC(q2
1B
, xF )DB

MC(q2
1B
, xB )

}

× (1 +∆V S)
dσ

dΩ
(sxF xBz1, θ̂)JNLO(xF , xB , z1, k

2
1T )

+

∫
dxF dxBdΩ

∫
0<q2

1F
,q2

1B
<s

(
d3ρF1 (s1) + d3ρB1 (s1)

)
W

[1]
qq̄ (k1)

dσ

dΩ
(sxF xBz1, θ̂)

×DF

MC(s, xF )DB

MC(s, xB )JNLO(xF , xB , z1, k
2
1T ), (3.36)

where we were also allowed to replace z1F , z1B → z1, because in terms of the Sudakov

variables before the emission it is the same variable. We have also introduced s1 = sxF xB .

The remaining parts ∼ (1 +∆V S) are less trivial. In order to use again the identity of

eq. (3.33) for folding in three integrals within the {. . . } braces back into a simple product

of two PDFs, we have to do something with the z1-dependence in dσ/dΩ and the k2
1T -

dependence of the jet function JNLO in the second part. The solution is to add and

subtract a term proportional dσ
dΩ (s1, θ̂)JLO(xF , xB ) in the second part, regroup and use

again eq. (3.33):

σNLO[J ] =

∫
dxF dxBdΩ DF

MC(s, xF )DB

MC(s, xB )(1 +∆V S)
dσ

dΩ
(s1, θ̂)JLO(xF , xB )

+

∫
dxF dxBdΩ

{∫
d3ρF1 (s1)DF

MC(q2
1F
, xF )DB

MC(q2
1F
, xB )

+

∫
d3ρB1 (s1)DF

MC(q2
1B
, xF )DB

MC(q2
1B
, xB )

}
(3.37)

×
[
dσ

dΩ
(sxF xBz1, θ̂)JNLO(xF , xB , z1, k

2
1T )− dσ

dΩ
(s1, θ̂)JLO(xF , xB )

]
+

∫
dxF dxBdΩ

∫
d5ρLOqq̄ W

[1]
qq̄ (k1)DF

MC(s, xF )DB

MC(s, xB )JNLO(xF , xB , z1, k
2
1T ),

where we have profited from finiteness of the integrals, in order to omit (1 +∆V S) and the

Sudakov exponents wherever possible and to set the lower integration limits of q2 to zero.

21The collinear singularity in q2 → 0 is killed by W
[1]
qq̄ , so

∫
dq2/q2e−S(q2...) cannot give a ∼ 1/αs

contribution.
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The final clean-up of O(α2
s) terms involves the change q2

1F
→ s and q2

1B
→ s in the

PDFs in the second integral and recombining it with the third one:

σNLO[J ] =

∫
dxF dxBdΩ (1 +∆V S)

dσ

dΩ
(s1, θ̂)JLO(xF , xB )DF

MC(ŝ|s, xF )DB

MC(ŝ|s, xB )

+

∫
dxF dxBdΩ

∫ {
d5ρLO

qq̄

[
1 +W

[1]
qq̄ (k1)

]
JNLO(xF , xB , z1, k

2
1T )

− (d3ρF1 + d3ρB1 )
dσ

dΩ
(s1, θ̂)JLO(xF , xB )

}
DF

MC(ŝ|s, xF )DB

MC(ŝ|s, xB ). (3.38)

We may finally eliminate the MC weight of eq. (3.32) going back to the NLO distributions:

σNLO[J ] =

∫
dxF dxBdΩ (1 +∆V S)

dσ

dΩ
(s1, θ̂)JLO(xF , xB )DF

MC(ŝ, xF )DB
MC(ŝ, xB )

+

∫
dxF dxBdΩ

{
d5ρNLO

qq̄ JNLO(xF , xB , z1, k
2
1T )− d5ρLO

qq̄ JLO(xF , xB )
}

×DF
MC(ŝ, xF )DB

MC(ŝ, xB ),

(3.39)

where DF ,B
MC (ŝ, x) of eq. (3.25) was also recovered.

The above looks like an example of the fixed-order NLO calculation formula employing

the technique of soft-collinear counter-terms following the Catani-Seymour (CS) work [24],

with the explicit definition of an arbitrary NLO observable using the J-function. For the

sake of completeness, such a formula in the standard MS scheme using the CS method is

shown explicitly in eq. (B.7) in appendix B for the same qq̄ channel.

However, there are two important differences between the formulas in eq. (B.7) and in

the above eq. (3.39): missing the ∼ δ(k2
1T )Σ term and non-MS PDFs in eq. (3.39). The real

emission integral with subtraction, in spite of slightly different notation, is identical. These

differences are, of course, due to the differences between the MC and MS factorization

schemes, and are well understood, see the discussion in the following section 4 and in

appendix B. The important bonus of the comparison of eqs. (B.7) and (3.39) is that we

can establish the relation between the quark PDF used in the parton shower MC and the

corresponding PDF of the MS scheme, modulo NNLO, in a solid and unambiguous way:

fMC
q (Q2, x) = DMC(Q2, x) = DMC(Q2|Q2/x, x), (3.40)

where fMC
q is the quark PDF in the MC scheme defined in eq. (3.17).

In this way we have proven algebraically that the KrkNLO scheme is equivalent to the

fixed-order NLO calculation in the entire functional space of the NLO-class experimental

observables.22

3.5 Summarizing the KrkNLO method

In the following, we summarize and comment on the key elements of the KrkNLO method,

starting from the qq̄ channel only and then adding the qg channel.

22It seems that this kind of an explicit rigorous, albeit tedious, algebraic proof is not available for the

other methods of combining the NLO corrections with the LO parton shower.
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1. The first element is the reorganization of the NLO corrections, the same as ref. [19].

Starting from the standard MS calculation, a strictly collinear part of the NLO cor-

rections is removed thanks to the clever redefinition of the LO PDFs from the MS

scheme to the MC scheme, see eq. (3.17). In a nutshell, in the standard MS pro-

cedure, one subtracts from the diagrammatic real + virtual results a pure ∼ P (z)/ε

pole, while in the case of KrkNLO one subtracts the ΓMC(z, ε) function, which con-

tains extra non-pole terms. As discussed in ref. [19], see also eq. (B.11), this ΓMC

function is just the integral over the LO distribution of the single-gluon emission in

the parton shower MC,23 written in 4 + ε dimension, together with the Sudakov form

factor, obeying typical parton shower sum rules. This element of the KrkNLO pre-

scription remains the same as in ref. [19], provided the LO distribution is the same as

in the present study. This assumption is valid because the LO distribution of eq. (3.3)

is indeed the same in ref. [19] and in the Catani-Seymour inspired implementations

of the single-gluon emissions in Sherpa and Herwig++. What remains to be checked

is whether the upper phase-space limit, α + β ≤ 1, is not spoiled in a given PSMC

by the use of the backward evolution algorithm. We are going to come back to this

point shortly.

2. The second element of the KrkNLO prescription is the construction, implementation,

and algebraic validation of the multiplicative weight introducing the NLO corrections

in the multiparton environment of PSMC. The weight of eq. (3.6) is implemented

following eq. (3.31). The summation over gluons is necessary only for the angular

ordering, while for the q2-ordering or kT -ordering it is enough to keep just one term

for the gluon next to the hard process. Validity of above method can be proven

rigorously, see section 3.4, in the case when the initial-state PSMC is realized using

the forward Markovian evolution (FEV) algorithm, in the presence of any observable-

defining function J , see eq. (3.35). Such a FEV algorithm would be terribly inefficient

for the resonant Z-boson production, but it is mathematically perfectly well defined.

(In such a gedanken FEV scenario with the complete phase-space coverage, the output

PDF from the MC at the hard process scale will be automatically in the MC scheme,

following eq. (3.17), provided that the input PDF at low q2
s is in the MS scheme.24)

3. The above validation proof of the NLO weight has to be extended to the (efficient)

backward evolution (BEV) scenario of the typical PSMC, such as Sherpa or Her-

wig++. It was shown in section 3.3 that this is feasible, by means of formulating

the twin FEV and BEV algorithms, using the same PDFs, which produce exactly

the same multiparton exclusive distributions. What is highly non-trivial is that the

full phase-space coverage is not lost. The price for this was that we had to intro-

duce the auxiliary PDF D(ŝ|Q2, x) of eq. (3.24) with two competing factorization

scales, in addition to the single-scale PDF of eq. (3.23). Luckily, at the end this

23It is the so-called soft-collinear counter-term. Although it is defined with the help of PSMC for the DY

process, its definition is universal.
24In other words, such a FEV MC performs not only the LO DGLAP evolution but also the transition

from one to another factorization scheme.
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auxiliary PDF can be finally eliminated from the BEV algorithm. Its main role is

to provide theoretical control for the FEV→BEV transition, desired in view of the

previous point.

4. The elimination of the auxiliary parton distribution function D(ŝ|Q2, x) can be seen

best with the analysis presented in appendix A, where the transition FEV→BEV

is analyzed in a fine detail for n = 0, 1 emissions. In eq. (A.1) for n = 0, we see

that we may replace D(ŝ|s, x) → D(ŝ, x) using eq. (3.25). For n = 1 in eq. (A.6),

one may show that, modulo O(α2
s) terms, the ratio of D-functions can be replaced

with any kind of the LO PDFs and the exponents, exp(−∆), can be neglected. What

cannot be approximated there, it is the exact implementation of the evolution kernel,

keeping the correct phase-space limits due to the θ-functions. This is, however, not

the problem, because any standard BEV implementation with the veto algorithm does

that correctly.25 We conclude that, in the BEV scenario, all D-functions go away

and only the single-scale PDFs in the MC factorization scheme seen in eq. (A.1) are

left finally in the game.26

In the above analysis we have omitted qg channel. For the Z/γ∗-boson production

process however, is not difficult to include it following the same steps described above.27

In our implementation of the KrkNLO method in PSMC, whenever in the first step of the

BEV PS algorithm the transition from the quark (antiquark) to the gluon is generated,

we associate with such an event the weight computed according to eqs. (3.8) and (3.9).

This weight corresponds to observables averaged over the Z/γ∗-boson decay angles and is

sufficient for the current paper, as we are going to concentrate on the Z/γ∗-boson transverse

momentum and rapidity distributions. The discussion of the Z-decay leptonic observables,

as well as more details on the implementation of the qg channel, is reserved for a separate

publication.

4 Fixed-order NLO benchmarks

For the numerical evaluation of the cross sections28 at the LHC for the proton-proton

collision energy of
√
s = 8 TeV we have chosen the following set of Standard Model (SM)

input parameters:

MZ = 91.1876 GeV, ΓZ = 2.4952 GeV,

MW = 80.4030 GeV, ΓW = 2.1240 GeV, (4.1)

Gµ = 1.16637× 10−5 GeV−2, mt = 173.2 GeV,

αs(M
2
Z) = 0.13938690,

25More detailed analysis of this kind was done but is left beyond the scope of the present paper.
26One can show algebraically that the effective PDF generated by the above BEV at low q2

s will be in

the MS scheme — the BEV algorithm is not only undoing the LO evolution, but also the transition from

the MS to MC scheme.
27All ingredient distributions are well known in the literature.
28Unless stated otherwise in the text.
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MCFM Sherpa Herwig++

σtot [pb] 936.9± 0.1 937.2± 0.2 937.0± 0.6

Table 1. Values of the total cross section with statistical errors at the Born level for the Drell-Yan

process in the MS scheme.

and the Gµ-scheme [38] for the electroweak sector of the Standard Model. To compute the

hadronic cross section we also use the MSTW2008 LO set of parton distribution functions [39],

and take the renormalization and factorization scales to be µ2
R = µ2

F = M2
Z . The only

detector acceptance cuts are imposed on the invariant mass of the final-state lepton pair

(Z/γ?-boson):

50 GeV < Mll̄ < 150 GeV. (4.2)

In order to check that our settings are identical in all used programs, we began with

the comparisons at the Born level. The results presented in table. 1 show a very good

agreement (within statistical errors) between different programs.

4.1 PDFs in MC scheme

In section 3.2, we have introduced the MC factorization scheme and explained why this

scheme is better suited for matching the NLO results with the parton shower than the

standard MS scheme.

The MC factorization scheme comes with a new set of parton distribution functions

that can be obtained from the standard MS PDFs via the relations given in eqs. (3.17)

and (3.18). Note that the convolution terms in eq. (3.17) introduce the dependence on

the renormalization scale via the strong coupling multiplying the expressions for ∆C2q and

∆C2g in eqs. (3.13) and (3.16). In what follows, we shall always choose that scale to be

equal to the scale Q2 = µ2
F of the MS PDF.

For clarity of the discussion, before presenting the complete NLO corrections to the

Drell-Yan process, we shall be starting in what follows from results limited to the pure

qq̄ channel. This case corresponds to setting the gluon coefficient functions of eqs. (3.14)

and (3.15) to zero. That in turn implies that, for the two schemes to be consistent at

O(αs), the last term in the relation between the quark PDFs in the MS and MC schemes

from eq. (3.17) should be omitted.

The MC PDFs for light quarks and light antiquarks, obtained from the MSTW2008 LO

set [39] are shown in figure 7 through ratios to the MS PDFs. The curves correspond to

the choice of Q2 = 100 GeV. The same scale was used as the argument of αs. Each panel

shown in figure 7 contains two curves. The solid line anticipates including both the qq̄ and

qg channels, hence it was obtained exactly with the formula (3.17). On the other hand,

the dotted line corresponds to the case of the pure qq̄ channel, hence only the convolution

with ∆C2q was used, as explained earlier.

As seen in figure 7, the MC PDFs without the gluon, e.g. without the last term in

eq. (3.17), are very similar to the MS quarks at low and moderate x. The MC PDFs in

this region are only about 2% higher. At large x the ratio increases, reaching the value 2–3

near x = 1. Note that the MC PDFs are always higher than the standard MS quark PDFs,
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Figure 7. Ratios of MC PDFs to the standard MS PDFs at Q2 = 100 GeV. The two curves in

each plot correspond to the case with (red-solid line) and without (dotted-blue line) the convolution

with the gluon distribution in Eq. (3.17).

which results from the fact that the second term on the r.h.s. of eq. (3.17) is always positive.

Adding the gluon component to the MC quark makes a little difference at large x, whereas

the small and moderate x regions are affected significantly. We see that the convolution

with ∆C2g is negative and, at small x, it can reduce the MS quark PDFs even by 20%. We

have found a very similar picture for other quark flavors as well for other Q2 values.

Before moving to NLO, it is interesting to check how the LO result changes when

switching from the MS to MC PDFs. From the LO point of view, both PDFs are equivalent,

as the differences are formally of the O(αs
2) order and higher. We can see, however, some

numerical differences in the LO distributions between those cases. And, indeed, as shown

in figure 8, the differential distributions of the dilepton mass and the dilepton rapidity

differ at LO depending on whether the MS or the MC PDFs are used. In the case of the

MC PDFs without the gluon convolution, cf. eq. (3.17), the mass spectrum is ∼ 5% higher

than that with the MS PDFs over a broad range around the peak. On the other hand,

when we include the gluon convolution, the result with MC PDFs gets up to ∼ 20% below

that of MS. The dilepton rapidity distribution with the MC PDFs with (without) the gluon

is smaller (larger) by a similar amount for central rapidities and grows above 100% in the

forward and backward regions. This can be related to the large x behavior seen in figure 7

via the formula x1,2 =
mZ√
s

exp (±yZ) valid for 2→ 1 kinematics. Here, x1 and x2 are the

usual hadron’s energy fractions of the incoming partons, while yZ is the rapidity of the

produced Z-boson. The large rapidities in the forward or backward direction correspond

to one of the x’es being large and that is the region where the differences between the MS

PDFs and the MC PDFs are substantial.
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Figure 8. Distributions of the transverse momentum and rapidity from the LO calculation

from the MCFM program with the standard MS MSTW2008LO PDFS and with PDFs in the MC

factorization scale with and without including the gluon convolution in eq. (3.17).

4.2 MC and MS schemes at NLO

The cross section for the Drell-Yan process at NLO in the MS scheme can be schematically

written as

σMS
DY =

∑
i,j=q,q̄
i 6=j

fi(x1)⊗
[
δ(1− z) + αsC̃

MS
q

]
⊗ fj(x2) +

∑
i=q,q̄ ;j=g
i=g ;j=q,q̄

fi(x1)⊗αsC̃MS
g ⊗ fj(x2) , (4.3)

where fi(x1,2) are the standard MS parton distribution functions, whose scale dependence

is understood, and ⊗ denotes the convolution via integration over the z variable. The

first term in the square brackets is just the Born contribution, which is followed by the

NLO correction in the qq̄ channel. The second sum corresponds to the NLO contribution

from the qg channel. In both cases, the functions C̃MS
q,g have non-trivial z-dependence

(suppressed here for clarity of notation) and they are related to the coefficient functions

from eqs. (3.11) and (3.14) as C̃MS
q,g = 1

αs C
MS
2q,2g(z). Hence, the dependence on αs is explicit

in eq. (4.3) and all the following formulae of this section.

When going to the MC scheme, the MS coefficient functions in eq. (4.3) need to be

replaced by their MC scheme counterparts and the PDFs need to be transferred to the MC

scheme as well according to eq. (3.17). This leads to the formula

σMC
DY =

∑
i,j=q,q̄
i 6=j

(
fi(x1) + fi(x1)⊗ αs∆C̃q + fg(x1)⊗ αs∆C̃g

)
⊗
[
δ(1− z) + αsC̃

MC
q

]
⊗
(
fj(x2) + fj(x2)⊗ αs∆C̃q + fg(x2)⊗ αs∆C̃g

)
+
∑
i=q,q̄

(
fi(x1) + fi(x1)⊗ αs∆C̃q + fg(x1)⊗ αs∆C̃g

)
⊗ αsC̃MC

g ⊗ fg(x2)

+
∑
j=q,q̄

fg(x1)⊗ αsC̃MC
g ⊗

(
fj(x2) + fj(x2)⊗ αs∆C̃q + fg(x2)⊗ αs∆C̃g

)
, (4.4)
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LO

σ
(0)
DY [pb] qq̄ channel σ

(0)
DY [pb] both channels

MS 936.79± 0.30 MS 988.9± 0.30

MC 989.18± 0.32 MC 778.8± 0.20

in which: in which:

O(αs)

fqfq̄ 25.79± 0.04 fqfq̄ + fq̄fq 54.8± 0.4

fq̄fq 25.79± 0.02 fqfg + fq̄fg −271.4± 0.4

O
(
α2
s

)
0.64± 0.01 6.70± 0.20

Table 2. Values of the total cross section with statistical errors for the the Drell-Yan process at LO

in MS and MC factorization schemes. The results were obtained with MCFM 6.6 [32]. The O(αs)

admixture in the MC results is split into contributions proportional to various terms of eq. (4.4).

where, again C̃MC
q,g = 1

αs C
MC
2q,2g(z), with the MC coefficient functions defined in eqs. (3.12)

and (3.15), and similarly for ∆C̃q,g = 1
αs ∆C2q,2g(z), with the latter given in eqs. (3.13)

and (3.16).

By construction (cf. section 3.2), terms proportional to a given partonic luminosity,

fifj , are identical in both factorization schemes up to the order O(αs). The results in

eqs. (4.3) and (4.4) differ however at O
(
αs

2
)
, which is beyond NLO and therefore such a

difference is allowed.

In order to validate our transformation from the MS to the MC scheme, we have

performed an explicit check of the equivalence of the two schemes up to O(αs), as well

studied numerical importance of the higher order terms. The calculations were performed

using our standard setup defined at the beginning of section 4.

Let us start from comparing the cross sections at LO. This corresponds to setting the

coefficient functions C̃q,g = 0 in eqs. (4.3) and (4.4). As shown in the previous section, the

LO cross sections will differ between the two schemes because of the PDFs. To check the

extent to which this happens, we performed an explicit computation with MCFM [32] in

both factorization schemes for either the pure qq̄ channel or both channels.

Indeed, as demonstrated in table 2, the LO MS and MC cross sections are not identical,

both in the case of the pure qq̄ channel, where the LO result with MC PDFs is ∼5% higher,

and in the case where both channels are included, where the MC result is ∼20% lower. The

beyond-LO, O(αs) and O
(
αs

2
)
, terms are also given in the table. We see that most of the

difference comes from O(αs). The O
(
αs

2
)

terms are in fact very small, below 1% in both

cases. It is interesting to note that the difference between σ
(0)
DY in the two schemes, for the

case with both channels, comes primarily from the term proportional to αsfq ⊗∆Cg ⊗ fg,
hence it originates from the large gluon luminosity.
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NLO

σ
(1)
DY [pb] qq̄ channel σ

(1)
DY [pb] both channels

MS 336.36± 0.09 MS 157.9± 0.10

MC 352.96± 0.09 MC 305.8± 0.10

in which: in which:

O(αs)

fq∆C̃qfq̄ 25.79 ± 0.04 fq∆C̃qfq̄ + fq̄∆C̃fq 355.00± 0.29

fq̄∆C̃qfq 25.79± 0.02 fqC̃
MC
q fq̄ + fq̄C̃

MC
q fq −17.10± 0.14

fq,q̄C̃
MC
q fq̄,q 284.77± 0.08 fqC̃

MC
g fg + fq̄C̃

MC
g fg −180.10± 0.10

sum 336.35± 0.09 sum 157.80± 0.34

O
(
α2
s

)
+O

(
α3
s

)
MC 16.61± 0.02 MC 147.9± 0.20

Table 3. Values of the NLO contribution to the total cross section with statistical errors for the

the Drell-Yan process in the MS and MC factorization schemes. The results were obtained with

MCFM 6.6 [32] and its version adjusted to the MC scheme, MCFM∗. The O(αs) corrections in the

MC results is split into contributions proportional to various terms of eq. (4.4).

We turn now to a similar comparison at NLO. Table 3 gives the NLO-only results in the

two schemes for the cases of qq̄ and both channels. At NLO, we need to be careful what we

take for the coefficient functions. In the MS scheme, we just use the original MCFM 6.6 [32]

implementation. However, in order to carry out consistent NLO calculations in the MC

scheme, we had to change the coefficient functions from CMS
2q,2g(z) to CMC

2q,2g(z). We dubbed

this modified version of the program MCFM∗ and used it together with the MC PDFs to

compute our NLO predictions in that scheme.

We see that also the subleading corrections to the Drell-Yan process are not the same

in the MC and MS schemes (numbers in the two first lines of table 3). This is allowed

provided that all the difference comes from terms of the order αs
2 and beyond. As shown

in table 3, by extracting only the O(αs) terms of the MC result and summing them up, we

recover the MS cross section exactly. There, we also give subleading correction introduced

via the MC PDFs and we see that they contribute at most 5% to the NLO correction in the

MC scheme in the case of the pure qq̄ channel but can be quite sizable when both channels

are considered.

Finally, it would be interesting to fit the quark and gluon PDFs in the MC factorization

scheme directly to experimental data, in order to minimize higher-order effects. For that

we would need to define the gluon PDF in the MC factorization scheme using a process

in which the gluon PDF enters already at the LO level, e.g. the Higgs-boson production

process. This will be done in our future publication.
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Let us conclude that we have successfully validated the MC factorization scheme by

explicitly showing that all numerical differences w.r.t. the MS results are of the order of

αs
2 and αs

3. We emphasize that the validation of the new MC scheme presented in this

section provides a highly non-trivial check as various components, given schematically in

eq. (3.17), come from different parts of the calculation (PDFs, coefficient functions) and

the agreement up to αs is much more sophisticated than a purely algebraic relation.

5 Results for NLO with parton shower

Numerical implementation of KrkNLO is presently done mainly using the Sherpa PSMC

of ref. [11] version 2.0.029 with the dipole organization of the parton shower distributions

inspired by the Catani-Seymour work [24], see ref. [40]. However, the evolution variable

in ref. [40] is chosen to be the transverse momentum distribution, while in the actual

Sherpa 2.0.0 implementation it is the q2 ∼ α(α + β) variable of section 2, see ref. [41].

The dipole shower implemented in Herwig++, see ref. [23], is quite similar. Actually, the

choice of the evolution variable is not critical in the KrkNLO method, as long as the full

coverage of the phase space for the emission closest to the hard process is assured, and

the PSMC distribution is under the perfect control. In fact, for any choices of the dipole

PS evolution variable in Sherpa or Herwig++ the same distribution of the single-gluon

emission is obtained, provided that the contributions for the quark and antiquark emitters

are added. For the Sherpa MC program, we have checked numerically the completeness

of the coverage of the phase space of the first emission from the backward evolution by

examining the gluon distribution on the α, β plane.

In the following, the KrkNLO-matched results will be compared mostly with the results

of the MC@NLO technique, implemented on top of the same parton shower within Sherpa.30

Using the same parton shower in both cases ensures that all differences in the matched

results come purely from the differences in the methods themselves rather than details

of the shower implementation. Nevertheless, the difference between the dipole showers

currently implemented in Sherpa and Herwig++ turns out to be small. From the point

of view of our study, it amounts mainly to using the q variable in the former and kT
in the latter. These two evolution variables are, however, very close to each other in

practice. Hence, in our final discussion, we shall also compare the KrkNLO results with

those of POWHEG, as implemented in Herwig++31 using an automated setup based on the

Matchbox framework [42] with adaptive sampling [43].

In the numerical validation of the KrkNLO approach, we shall first compare it to

the fixed-order NLO calculation, as implemented in the MCFM program. Later on, the

comparison with the MC@NLO implementation of Sherpa will be discussed. In order to

minimize the influence of various higher-order effects on the difference between KrkNLO

and MCFM, we shall initially limit our numerical exercises to a simplified version, in which

29https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.0.html.
30Unfortunately, the POWHEG method is not available in Sherpa 2.0.0 framework.
31For our comparisons we used the version of POWHEG without restrictions of the phase space, which is

similar to the original POWHEG method described in ref. [3].
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only the qq̄ channel is kept. Another initial limitation, with the same aim in mind, will be

to profit from the option in Sherpa to stop the backward evolution in the parton shower

just after the first emission (starting from the hard process). This will help us to eliminate

the influence of the differences in the so-called recoil schemes [44], which start to play a

role from the second emission onwards. The running αs will be also introduced gradually.

Since we study the differences in the matching methods, we have switched off in Sherpa non-

perturbative effects including the intrinsic kT , multiparton interactions and hadronization.

However, we would like to stress that there is no problem with switching them on for the

KrkNLO method.

In all the following results for the KrkNLO method the PDFs in the MC factorization

scheme, discussed in section 4.1, will be used. The factorization scale will be set to µF =

MZ . As for the choice of the renormalization scale in the matched NLO + PS results,

we note that there is always some level of arbitrariness. In the pure fixed-order NLO

calculation, in the case of DY, one usually sets µR = µF = MZ . On the other hand, the

LO parton shower uses µ2
R = q2, with the latter being closely related to the evolution

variable of the shower. The parton shower is unitary, hence the choice of the argument

of αs(µ
2
R) does not influence the total cross section, it changes, however, shapes of some

distributions, e.g. of pT,Z . The differences between αs(q
2) and αs(M

2
Z) are formally of the

higher order, that is beyond NLO and, from that perspective, they are equivalent in the

context of NLO + PS matching. They can, however, be numerically relevant.

In what follows, for the KrkNLO method we adopt the following procedure. The

argument of αs in the virtual correction is always set to M2
Z . For the real correction, all

emissions except for the first one (in BEV) are set by the parton shower according to its

current q2 value. For the first emissions, we consider two choices: q2 and M2
Z , both in the

real correction and in the Sudakov form factor, to keep the shower unitary. The difference

between the results corresponding to these two choices will be indicative of the size of

beyond-NLO terms.

5.1 Initial results for qq̄ channel only

The first round of numerical tests of KrkNLO focuses on comparisons with MCFM and

MC@NLO for the qq̄ channel only and stopping the parton shower after the first emission.

The corresponding results for the total cross section are presented in table 4 and for the

transverse momentum and rapidity distributions in figure 9. As we can see, the total cross

section and the rapidity distributions from KrkNLO agree very well with those of MCFM

and MC@NLO. The difference between the KrkNLO results and the pure fixed-order ones is

below 1% and comes from the O
(
αs

2
)

contamination due to the MC PDFs, cf. eq. (4.4).

Also, the differences between the αs(q
2) and αs(M

2
Z) are at the per-mille level.

On the other hand, there are remarkable differences in the pT,Z distributions, espe-

cially at the lower end. They compensate in the total cross section between the first and

the following bins. However, the choice of the running or non-running αs is numerically

important for the pT distribution at small and moderate values. The perfect agreement of

MC@NLO and MCFM at higher pT is of course enforced by construction. This is not the

case in KrkNLO, where some part of higher-order effects, beyond NLO, is included (which

– 31 –



J
H
E
P
1
0
(
2
0
1
5
)
0
5
2

σqq̄tot [pb]

MCFM 1273.4± 0.1

MC@NLO 1273.4± 0.1

POWHEG 1272.1± 0.7

KrkNLO αs(q
2) 1282.6± 0.2

KrkNLO αs(M
2
Z) 1285.3± 0.2

Table 4. Values of the total cross section with statistical errors for the Drell-Yan process (the

qq̄ channel only) from the KrkNLO method compared to the fixed-order result of MCFM and the

results of MC@NLO and POWHEG.
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Figure 9. Comparisons of the transverse momentum and rapidity distributions from MCFM,

MC@NLO and two versions of KrkNLO, one with fixed αs(M
2
z ) (also in MCFM) and another one

with running αs depending on the transverse momentum squared. KrkNLO method is implemented

within Sherpa parton shower MC. The exercise is restricted to the qq̄ channel only and the parton

shower backward evolution is stopped after the first emission, the closest to the hard process.

is also the case in POWHEG). We see, however, that both MC@NLO and KrkNLO coincide

below ∼ 80 GeV in the case with αs(q
2).

In the results of figure 9 the parton shower was artificially stopped after the first

emission, in order to make the meaningful comparisons with MCFM and limit the effects of

the recoil due to subsequent emissions. In figure 10 we lift this limitation and the parton

shower goes to the very end, as in the normal operational mode of PSMC. As we see,

switching on to the full PS influences considerably the low pT part of the spectrum, in spite

of a negligible effect on the rapidity distribution (and hence, on the total cross section).

Again, KrkNLO with the running αs agrees very well with MC@NLO at low and mod-

erate pT , which results from the domination of the parton shower contribution in that
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Figure 10. Comparisons of the transverse momentum and rapidity distributions from MC@NLO

and two versions of KrkNLO for the qq̄ channel only as in figure 9, but the parton shower backward

evolution runs to the end as normally.

region. However, the two KrkNLO results stay above MC@NLO at higher pT , which we

again attribute to the admixture of some NNLO terms in the former. The difference be-

tween KrkNLO αs(q
2) and KrkNLO αs(M

2
Z) at high pT comes purely from the running of

the coupling.

5.2 All channels

In the second round of the numerical tests, all the initial-state parton combinations con-

tributing at NLO, that is the qq̄ and qg channels are included. The total cross sections

from KrkNLO, MCFM and MC@NLO are compared in table 5. As we can see, the differ-

ence between MCFM/MC@NLO and KrkNLO, which comes from the partial inclusion of the

higher-order effects in the latter, is about twice as big as in the qq̄ channel only. As discussed

in section 4.2, this is related to the large gluon luminosity which leads to sizable differences

between the MC and MS PDFs, and part of that difference shows up in the total cross sec-

tion. The results in table 5 are generally consistent with the differences staying below 5%.

In figure 11 we show the distributions of the transverse momentum and rapidity of

the Z-boson with the parton shower stopped after the first emission. The lower panel

contains the ratio with respect to MCFM. Similarly to the case of the pure qq̄ channel,

we see the expected agreement between MC@NLO and MCFM at large pT,Z . The KrkNLO

results with the fixed αs are not far from the MCFM ones in that region as well. On the

other hand, all the PS-matched results differ from those of MCFM at smaller pT , because

of the lack of the Sudakov resummation in MCFM, see below for more discussion on this

issue. Each curve behaves slightly differently but the variations are moderate. The rapidity

distributions shown in figure 11 (right) are close to each other for all calculations. The

∼ 5% difference between KrkNLO and MCFM is the same as for the total cross sections
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σqq̄+qgtot [pb]

MCFM 1086.5± 0.1

MC@NLO 1086.5± 0.1

POWHEG 1084.2± 0.6

KrkNLO αs(q
2) 1045.4± 0.1

KrkNLO αs(M
2
Z) 1039.0± 0.1

Table 5. Values of the total cross section with statistical errors for the Drell-Yan process, both

channels, from the KrkNLO method compared to the fixed-order result of MCFM and the results of

POWHEG and MC@NLO.
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Figure 11. Comparisons of the transverse momentum and rapidity distributions from MCFM,

MC@NLO and two versions of KrkNLO, now for both the qq̄ and qg channels, with αs set as in the

previous figures and the parton shower backward evolution stopped after the first emission as in

figure 9.

in table 5. In figure 11 we have also included the scale-uncertainty bands, which were

produced using MCFM by means of changing (independently) both the factorization and

the renormalization scales by the customary factors of 2 and 1/2. The differences between

MCFM and KrkNLO are enveloped by these bands.

Figure 12 shows the similar distributions but, this time, the parton shower is allowed

for an arbitrary number of emissions.

There, we also show the results from POWHEG, as implemented in Herwig++. Even

though the evolution variable is different (kT rather than q of eq. (2.7) in all the other

PS-matched results), POWHEG agrees quite well with the KrkNLO αs(q
2) version. This

shows that the choice of the evolution variable in PS between kT and q is not so important

for numerical results. The distributions of the transverse momentum and rapidity look
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Figure 12. Comparisons of the transverse momentum distribution from MC@NLO, POWHEG

and two versions of KrkNLO for both the qq̄ and qg channels as in figure 11, but the parton shower

backward evolution runs to the end as normally.

quite similar to the previous results for the pure qq̄ channel in figure 10. The transverse

momentum distribution from KrkNLO agrees with MC@NLO at high pT,Z (up to a constant

factor in the case with the fixed αs), while larger differences are seen in the low pT region.

The differences of the order of 10–20% seen at low pT between MCFM, MC@NLO,

POWHEG and KrkNLO in figures 10, 11 and 12 reflect mainly the parton-shower feature

of the soft-gluon resummation in the case of the matched results and the lack of it in the

case of the fixed-order NLO calculations. More precisely, parton shower (without intrinsic

kT ) has a gap below the minimum pT ending the backward evolution and a non-physical

spike ∼ δ(pT ). Normalization of the spike is governed by unitarization enforced by the

shower. Kinematics, histogramming, intrinsic kT , etc. are smearing the shape of this non-

physical structure. Different implementations of the argument of αs strongly influence this

structure near pT = 0 and may show up in the ratios of the pT distribution as large effects

there. In particular, our results with αs(M
2
Z) at low pT are very different from the results

with αs(q
2). The latter choice better represents resummation of subclasses of higher-order

QCD contributions, relevant at low pT , and it is therefore commonly adopted in PS MCs.

In figure 12 another curve is added for MC@NLO with αs(M
2
Z), demonstrating that the

same kind of spike and dip near pT = 0 is present in the corresponding ratios, even for the

MC@NLO alone. Hence we conclude that the numerical results from KrkNLO near pT = 0

are well understood and look as expected.

Even better agreement is found in the comparison of results from KrkNLO αs(q
2) and

POWHEG. Here, the two pT,Z distributions almost coincide in the whole range shown in
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figure 12 (left bottom panel). This is related to a similar, multiplicative, way of applying

the NLO correction to the parton shower in KrkNLO and POWHEG. In both cases, this

corresponds to the virtual part of the NLO correction being applied over the entire pT,Z
range. This is different in MC@NLO, where the virtual correction is spread by the shower

only up to the upper limit of shower’s evolution variable (starting scale for BEV shower).

That upper limit is typically set at the scale of a vector boson mass. Hence, in MC@NLO,

the pT,Z distribution in the region pT,Z > mZ is corrected only with the real part of

NLO, and therefore it recovers exactly the fixed order NLO result in this region. The

multiplicative nature of the KrkNLO and POWHEG methods leads to mixed real-virtual

corrections of the order αs
2 at high pT,Z . These corrections are however part of NNLO,

hence they go beyond the accuracy of NLO+PS result.

The rapidity distributions shown in figure 13 agree very well in the central region

between all the PS-matched results, up to the normalization differences, the same as in

table 5. Differences at forward and backward rapidities come from increasing differences

between PDFs in MC and MS schemes as x→ 1, cf. figure 7.

Finally, in figure 14 (left) we compare the KrkNLO results for the Z-boson transverse

momentum distribution, from both channels and with full PS, with the corresponding

result obtained from the fixed-order NNLO calculations implemented in the DYNNLO pro-

gram [46]. The NNLO distributions were obtained with the NNLO MSTW2008 PDFs and

using µF = µR = mZ , varied by the customary factors of 1/2 and 2 to estimate the uncer-

tainty from neglected higher orders. Similar comparisons between the NNLO results and

those of POWHEG and MC@NLO are shown in figure 14 (right). All the results are divided

by the NLO distribution from MCFM.

The calculations within the KrkNLO method were performed with two choices of the

argument of the strong coupling αs: q
2 and M2

Z , as was done earlier in the paper. These

results are shown in figure 14 (left) as a solid blue line and dashed green line, respectively.

In addition, in solid orange, we show the result of the KrkNLO matching in the case where

the argument of αs is set to the minimum of q2 and M2
Z . This is a physically motivated

choice as at high pT,Z our matched result should be driven by the fixed-order component,

whose natural scale is MZ .

As we see in figure 14 (left), both the KrkNLO and the NNLO results show the same

trends, quickly raising above the NLO result at low and moderate pT,Z and then staying

above it at high pT,Z (the curve for the case with αs(q
2) falls down due to the fact that the

strong coupling is running even at high pT,Z). The fact that our method gives the result

that is higher than the NLO one at high pT,Z is a consequence of the mixed real-virtual

O
(
αs

2
)

terms, which constitute part of the NNLO correction and arise because of the

multiplicative nature of the KrkNLO approach. Especially the αs(min(q2,m2
Z)) choice does

a good job, reproducing very closely the full NNLO distribution. Therefore this argument

of the strong coupling is likely to be adopted in the future phenomenological studies.

In figure 14 (right) we show similar comparisons with NNLO for MC@NLO and

POWHEG. The behavior at low pT,Z is close to that from KrkNLO. At high pT,Z , how-

ever, MC@NLO and POWHEG converge by construction to the NLO results, departing

from the NNLO predictions.
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Figure 13. Comparison of the rapidity distribution from MCFM, MC@NLO and two versions of

KrkNLO for qq̄ and qg channels as in figure 11, but parton shower backward evolution runs to the

end as normally.

Figure 14. The Z-boson transverse-momentum distributions from KrkNLO compared with the

fixed-order NNLO result from the DYNNLO program [46] (left). Similar comparisons for POWHEG

and MC@NLO are also shown (right). All distributions are divided by the NLO results from MCFM.
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6 Summary and outlook

We have discussed the KrkNLO method of matching the LO parton shower with the fixed-

order NLO QCD corrections. The method is based on two elements: the change of the

factorization scheme from MS to the MC scheme, and upgrading the hardest emission to

the full NLO accuracy by reweighting with a simple, positive weight. Details of the method

and, in particular, demonstration of its NLO accuracy have been elaborated on in section 3.

The change of the factorization scheme allows one to eliminate troublesome z-

dependent terms from the coefficient function and, effectively, it amounts to creating the

MC PDFs. In section 4, we have discussed how such PDFs can be obtained and how they

differ from the standard MS parton distributions. There, we have also validated the MC

factorization scheme by studying the Drell-Yan process at the fixed-order NLO level and

showing that the MS and MC scheme results are identical up to the order O(αs).

We have implemented the KrkNLO method on top of the Catani-Seymour type of the

parton shower in the Sherpa event generator for the case of the Z/γ?-boson production

process (hence, the initial-state parton shower). In section 5, we have presented the com-

parisons of the NLO-PS matched results obtained with our technique with the fixed-order

NLO results from MCFM and with other matched results, namely those of MC@NLO and

POWHEG. In particular, we have demonstrated that the KrkNLO results recover the fixed-

order NLO predictions (up to sub-percent differences for the qq̄ channel only and ∼ 5% for

all channels, coming from the beyond-NLO terms).

As for the comparisons of KrkNLO with MC@NLO and POWHEG at the level of dif-

ferential distributions, all three methods turn out to give essentially identical results for

the yZ spectrum. The pT,Z distributions look somewhat different for each method and

the exact features depend on the initial channels and the recoil schemes. In general, the

KrkNLO method provides similar predictions to the other two well-established approaches.

In particular, the results with both channels and the full parton shower stay very close to

those from the POWHEG method implemented in Herwig++. Residual differences come

from spurious O
(
αs

2
)

terms, which are different in each of the three matching methods.

Applying the KrkNLO method to the Higgs production process is now under devel-

opment and will be reported in the next paper. Applying the same KrkNLO method to

more processes is quite straightforward, in the sense that the modification of the PDFs

(to the MC scheme) and subtracting the hard process with the MC scheme counter-term

(instead of the MS counter-term) can be done in the usual way for any process, also with

more colored particles in the final state. The interesting question is rather whether this

method eliminates all the non-physical ∼ δ(pT ) singularities, which are incompatible with

the physical phase space of any PS MC? Following the study of ref. [15], we are confident

that for color-singlet heavy object production in the s and t channels this is true, although

a general formal proof would be welcome. For more colored particles in the final state,

this is still an open question. However, it is quite likely that the KrkNLO method reduces

significantly the number of such pathological terms, and therefore will facilitate matching

parton shower with any NLO and/or NNLO corrected hard processes. This is why, in our

opinion, it is definitely worth to pursue this new development path in matching techniques.
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The current methods of the type NNLO+PS [16–18, 45] represent a clear progress in

matching of the fixed-order NNLO QCD calculations with PS MCs, but still suffer from

various limitations; for instance, they are limited to a certain class of observables only.

We are definitely thinking about extending KrkNLO to NNLO+NLOPS, in which NLOPS

is a parton shower MC implementing the NLO evolution kernels in the fully exclusive

form, thus providing the full set of the soft-collinear counter-terms for the hard process.

Ref. [15] reviews several feasibility studies, which show that constructing such a NLOPS

is, in principle, plausible. In our opinion, any simplifications of the NLO+PS matching, as

in the KrkNLO method, will be instrumental and very useful towards more ambitious fully

exclusive NNLO+NLOPS projects.
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A First emission in backward evolution

In case of two LO parton showers in the BEV algorithm the cross section with exactly zero

gluons in both showers includes two non-emission ∆-functions

σLO
0 =

∫
dx̂F dx̂BdΩ

dσ

dΩ
(ŝ, θ̂) e−∆

F
MC(x̂

F
|s,q2

s)−∆BMC(x̂
B
|s,q2

s) DF

MC(ŝ|s, x̂F ) DB

MC(ŝ|s, x̂B ),

(A.1)

where ŝ = sx̂F x̂B . Using the identity of eq. (3.30) twice, the above transforms immedi-

ately into

σLO
0 =

∫
dxF dxBdΩ

dσ

dΩ
(ŝ, θ̂) e−SMC(ŝ|s,q2

s)−SMC(ŝ|s,q2
s)DF

MC(ŝ|q2
s , xF ), DB

MC(ŝ|q2
s , xB ), (A.2)

which coincides exactly with the n = 0 result in the forward evolution, starting from

q2
F

= q2
B

= q2
s . NB. In the case n = 0, we identify x̂F = xF and x̂B = xB .

In the following we shall simplify the notation omitting the ŝ argument in DMC(q2, x) =

DMC(ŝ|q2, x) and SMC(q2
2, q

2
1) = SMC(ŝ|q2

2, q
2
1), wherever it is unambiguous.
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The distributions from the BEV algorithm with at least one gluon (nF +nB = 1, 2, 3 . . .)

reads as follows:

σLO
1+ =

∫
dx̂F dx̂BdΩ

{∫ s

q2
s

dq2
1F

q2
1F

∫ 1

x̂F

dz1

z1
KMC(x̂F |z1, q

2
1F

)e
−∆FMC(x̂

F
|s,q2

1F
)−∆BMC(x̂

B
|s,q2

1F
)

+

∫ s

q2
s

dq2
1B

q2
1B

∫ 1

x̂B

dz1

z1
KMC(x̂B |z1, q

2
1B

)e
−∆BMC(x̂

B
|s,q2

1B
)−∆FMC(x̂

F
|s,q2

1B
)

}

×DF

MC(ŝ, x̂F ) DB

MC(ŝ, x̂B )
dσ

dΩ
(sx̂F x̂B , θ̂), (A.3)

where z1 integration limits are imposed by ŝ(1− z1)2/z1 > q2
1 in the K kernels.

The “unitarity” sum rule σLO
0 + σLO

1+ = σLO is of course automatic in the BEV al-

gorithm. Nevertheless, proving it provides an interesting cross-check. The differentiation

over the lower boundary in the q2 integral defining the ∆-function leads to:

∂

∂ ln q2
e−∆MC(x̂

F
|s,q2)−∆MC(x̂

B
|s,q2) =

=

∫
dz

z

[
KMC(x̂F |z, q

2) +KMC(x̂B |z, q
2)
]
e−∆MC(x̂

F
|s,q2)−∆MC(x̂

B
|s,q2).

(A.4)

After combining two integrals in eq. (A.3) we obtain

σLO
1+ =

∫
dx̂F dx̂BdΩ

ln s∫
ln q2

s

d ln(q2
1)

∂

∂ ln q2
1

[
e−∆

F
MC(x̂

F
|s,q2

1)−∆BMC(x̂
B
|s,q2

1)

]
(A.5)

× dσ

dΩ
(sx̂F x̂B , θ̂) DF

MC(s, x̂F ) DB

MC(s, x̂B )

=

∫
dx̂F dx̂BdΩ

[
1−e−∆FMC(x̂

F
|s,q2

s)−∆BMC(x̂
B
|s,q2

s)
] dσ
dΩ

(sx̂F x̂B , θ̂)D
F

MC(s, x̂F )DB

MC(s, x̂B ),

from which the sum rule σLO
0 + σLO

1+ = σLO results immediately.

Before we transform eq. (A.3) into the FEV picture, let us first expand K-kernels:32

σLO
1+ =

∫
dx̂F dx̂B dΩ

×

{ s∫
q2
s

dq2
1F

q2
1F

1∫
x
F

dz1

z1
θŝ(1−z1)2/z1>q2

1F
P(z1) e

−∆FMC(x̂
F
|s,q2

1F
)
e
−∆BMC(x̂

B
|s,q2

1F
)
DF

MC

(
q2

1F
,
x̂
F
z1

)
DF

MC(q2
1F
, x̂F )

+

s∫
q2
s

dq2
1B

q2
1B

1∫
x
B

dz1

z1
θŝ(1−z1)2/z1>q2

1B
P(z1) e

−∆FMC(x̂
F
|s,q2

1B
)
e
−∆BMC(x̂

B
|s,q2

1B
)
DB

MC

(
q2

1B
,
x̂
B
z1

)
DB

MC(q2
1B
, x̂F )

}

×DF

MC(s, x̂F ) DB

MC(s, x̂B )
dσ

dΩ
(sx̂F x̂B , θ̂). (A.6)

32We denote P(z) = CFαs
π

P̄ (z)
1−z .
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Now using again the identities

e
−∆FMC(x̂

F
|s,q2

1F
)
=e
−SFMC(s,q2

1F
)D

F

MC(q2
1F
, x̂F )

DF

MC(s, x̂F )
, e
−∆BMC(x̂

B
|s,q2

1F
)
=e
−SBMC(s,q2

1F
)D

B

MC(q2
1F
, x̂B )

DB

MC(s, x̂F )
,

we arrive at the following FEV representation

σLO
1+ =

∫
dx̂F dx̂B dΩ

dσ

dΩ
(sx̂F x̂B , θ̂) (A.7)

×

{ s∫
q2
s

dq2
1F

q2
1F

1∫
x
F

dz1

z1
θŝ(1−z1)2/z1>q2

1F
P(z1)e

−SFMC(s,q2
1F

)−SBMC(s,q2
1F

)
DF

MC

(
q2

1F
,
x̂F
z1

)
DB

MC(q2
1F
, x̂B )

+

s∫
q2
s

dq2
1B

q2
1B

1∫
x
B

dz1

z1
θŝ(1−z1)2/z1>q2

1B
P(z1)e

−SFMC(s,q2
1B

)−SBMC(s,q2
1B

)
DF

MC(q2
1B
, x̂F )DB

MC

(
q2

1B
,
x̂B
z1

)}
.

Finally, the longitudinal integrations are streamlined with the help of the substitutions

to the x-variables before the emission, xF /z1 → xF , x1B = xB or xB/z1 → xB , x1F = xB ,

respectively in each shower, and the convolution structure is made manifestly symmetric:

σLO
1+ =

∫
dx

∫
dxF dxB dΩ

×

{ s∫
q2
s

dq2
1F

q2
1F

1∫
x
F

dz1

z1
θŝ(1−z1)2/z1>q2

1F
P(z1)e

−SFMC(s,q2
1F

)−SBMC(s,q2
1F

)
D̄F

MC(q2
1F
, xF )D̄B

MC(q2
1F
, xB )

+

s∫
q2
s

dq2
1B

q2
1B

1∫
x
B

dz1

z1
θŝ(1−z1)2/z1>q2

1B
P(z1)e

−SFMC(s,q2
1B

)−SBMC(s,q2
1B

)
D̄F

MC(q2
1B
, xF )D̄B

MC(q2
1B
, xB )

}

× dσ

dΩ
(sxF xB , θ̂) δ(x− z1xF xB ) (A.8)

The above formula is for the FEV algorithm but for one gluon next to the hard process and

any number of trailing gluons down to q2
s . The same formula in eq. (3.33) was obtained by

means of factorizing such a gluon from the fully exclusive FEV formula of eq. (3.24).

B Exclusive NLO corrections in MS scheme

Following ref. [8], the bare NLO real + virtual unintegrated DY cross section for the in-

coming qq̄ with the effective mass of
√
s1, in d = 4 + 2ε dimensions, is quite simple:

σNLO
qq̄,B (s1, ε) =

∫
dΩ

∫
α+β≤1

dαdβ
{
δ(α)δ(β) W0(s1) + W2(s1, α, β)

}
,

W0(s1) =
(
1 + V (s1, ε)

)dσ0

dΩ
(s1, θ),

W2(s1, α, β) = H2(s1, α, β, ε)
dσ0

dΩ

(
zs1, θF

)
+H2(s1, β, α, ε)

dσ0

dΩ

(
zs1, θB

)
(B.1)
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V (s1, ε) =
2CFαs
π

(4π)−εΓ (1 + ε)

Γ (1 + 2ε)

(
s1

µ2

)ε(
− 1

2ε2
+

3

4

1

ε
− 2− π2

12

)
,

H2(s1, α, β, ε) =
2CFαs
π

(4π)−ε

Γ (1 + ε)

(
s1αβ

µ2

)ε (1− α)2 + εα2

2αβ
,

where z = 1−α−β and notation of section 3.1 is used. The integration over the azimuthal

angle is already done in order to improve readability. The integration decay lepton angles

and α and β keeping z = 1− α− β fixed, leads to a divergent (bare) result

σNLO
qq̄,B (s1, ε) =

∫ 1

0
dz σ0(s1z) [δ(1− z) + ρB(z, s1, ε)],

ρB(z, s1, ε) =
2αs
π
CF

(4π)−ε

Γ (1 + ε)

(
s1

µ2

)ε{(π2

6
− 2

)
δ(1− z)

− 1

ε

(
1 + z2

2(1− z)

)
+

+ (1 + z2)

(
ln(1− z)

1− z

)
+

}
.

(B.2)

The MS recipe tells us to subtract from the bare radiator function ρB its pole part

2Γ
[1]

MS
(ε) = PP ρB(z, s1, ε) =

2αs
π
CF

1

ε

(4π)−ε

Γ (1 + ε)

(
1 + z2

2(1− z)

)
+

. (B.3)

After including PDFs and integrating over s1 which leads to the replacement s1 → sxF xB ,

we obtain the finite hadron-level cross section

σNLO(s) =

∫
dxF dxBdz

{
δ(1− z)

+
[
(1− PP)ρB(z, sxF xB , ε)

]}
σ0(szxFxB )DMS

q (µ2, xF )DMS
q̄ (µ2, xB).

(B.4)

The contribution from the qq̄ channel to the inclusive coefficient function of the Drell-Yan

process is33 CMS
2q (z) = (1−PP)ρB(z, ε)

∣∣
µ2=zs1

of eq. (3.11). The above formula can be used

to define the PDFs and dig them out from experimental DY data. Alternatively, it can be

used to predict the DY cross section taking the PDFs obtained from other processes, e.g.

deep inelastic lepton-proton scattering (DIS).

The above formulation is suitable for the total cross section. In the case of any NLO-

class exclusive observable defined by the function J = JNLO(xF , xB , z, k
2
1T ) of eq. (3.35), the

above formulas are reorganized using the technique of the Catani-Seymour soft-collinear

counter-terms (SCC). In the present case SCC coincides (for ε = 0) with the single gluon

LO distribution of the parton shower MC:

Wct(s1, α, β, ε) =
2CFαs
π

(4π)−ε

Γ (1 + ε)

(
s1αβ

µ2

)ε 1 + z2 + ε(1− z)2

2αβ

dσ0

dΩ
(zs1, θ), (B.5)

33The assignment µ2 = zs1 induces the presence of the term ∼ ln(z)(1 + z2)/(1− z) in CMS
2q .
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where z = 1− α− β. The above SCC is subtracted and added:

σNLO(s)[J ] =

∫
dxF dxBD

MS
q (µ2, xF )DMS

q̄ (µ2, xB) (B.6)

×

{
(1−PP)

[ ∫
dΩ W0(s1) +

∫
α+β≤1

dαdβ

∫
dΩ Wct(s1, α, β, ε)

]
J(xF , xB , 1, 0)

+

∫
dΩ

∫
α+β≤1

dαdβ
[
W2(s1, α, β)J(xF , xB , z, k

2
1T )−Wct(s1, α, β)J(xF , xB , 1, 0)

]
ε=0

}
,

where s1 ≡ sxF xB . In the second real emission integral Wct eliminates completely the

soft/collinear singularities, so it can be evaluated in the ε→ 0 limit. The key point here is

that Wct is multiplied by JLO = J(xF , xB , 1, 0), hence the partial integration
∫
dαdβδ(z −

α− β) can be performed for the fixed z in order to isolate and subtract the 1/ε pole:

σNLO(s)[J ] =

∫
dxF dxBdΩ

∫
dz DMS

q (µ2, xF )DMS
q̄ (µ2, xB)

×
{(

1 +∆qq̄
V S

)
δ(1− z) + 2Σq(z)

}dσ0

dΩ
(zs1, θ)J(xF , xB , 1, 0)

+

∫
dxF dxBdΩ DMS

q (µ2, xF )DMS
q̄ (µ2, xB)

∫
α+β≤1

dαdβ ∆Wreal[J ] ,

(B.7)

with

2Σq(z) =
2CFαs
π

{
1 + z2

2(1− z)
ln

(1− z)2

z
+

1 + z2

2(1− z)
ln

ŝ

µ2
+

1− z
2

}
+

,

∆Wreal[J ] =
[
W2(s1, α, β)J(xF , xB , z, k

2
1T )−Wct(s1, α, β)J(xF , xB , 1, 0)

]
ε=0

,

(B.8)

where ∆qq̄
V S = 2CFαs

π

(
π2

3 −
5
8

)
is that of eq. (3.10), Σq(z)|ŝ=µ2 = ∆C2q, see eq. (3.13), and

ŝ = szxF xB as usual.

In the MC scheme the entire ∼ δ(k2
1T )Σ(z) part gets eliminated (modulo O(α2

s) terms)

thanks to the assignment ŝ = µ2 and redefinition of the PDFs

DMC
q,q̄ (µ2, x) =

∫
dzdx′δ(x− zx′)[δ(1− z) +Σq(z)]ŝ=µ2 DMS

q,q̄ (µ2, x′), (B.9)

see eq. (3.17). The only freedom34 is in the coefficient of δ(1− z). However, the convention∫
dzΣ(z) = 0 adopted in ref. [19] removes this freedom and fixes the content of ∆V S .

Inserting eq. (B.9) into eq. (B.7), we obtain the formula for the NLO cross section in

the MC scheme

σNLO
MC (s)[J ] =

∫
dxF dxBdΩ

∫
dz DMC

q (ŝ, xF )DMC
q̄ (ŝ, xB)

×
(
1 +∆qq̄

V S

)dσ0

dΩ
(s1, θ)J(xF , xB , 1, 0)

+

∫
dxF dxBdΩ

∫
α+β≤1

dαdβ ∆Wreal[J ] DMC
q (ŝ, xF )DMC

q̄ (ŝ, xB),

(B.10)

34The z 6= 0 part of Σ is unique — it has to be eliminate completely from the NLO distribution, because

the singular non-positive ∼ δ(k2
1T )Σ term cannot be included in the multiplicative MC weight.
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where we have replaced the MS PDFs by the MC PDFs also in the real part. The cross

sections in eqs. (B.10) and (B.7) are equal up to O(α2
s).

Finally, let us remark, following ref. [19], that formally the transition from the MS to

MC scheme can be done by means of subtracting from the bare NLO distribution the term

Γ
[1]
MC(ε) = Γ

[1]

MS
(ε) +Σq(z)|ŝ=µ2 , (B.11)

instead of the pure pole Γ
[1]

MS
(ε). It is appealing, that Γ

[1]
MC(ε) concides with the integrated

single-gluon emission distribution of PS MC extrapolated to d = 4 + 2ε dimensions. This

justifies the name of the MC factorization scheme.
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