Supporting Information

Mechanistic information on the nitrite-controlled reduction of aquacob(III)alamin by ascorbate at physiological pH

Justyna Polaczek, Łukasz Orzeł, Grażyna Stochel and Rudi van Eldik*

Figure S1. Spectral changes observed for the reaction of CblOH₂ (4.3 x 10^{-5} M) with NO₂⁻ (4.3 x 10^{-4} M) at pH = 7.2 (25 °C, 0.10 M Tris buffer). Spectra were recorded every 0.05 s. **Inset:** Initial spectrum of CblOH₂ (black line) and final spectrum of CblNO₂ (red line).

Figure S2. Typical kinetic trace recorded at 310 nm for the reaction between CblOH₂ and NO_2^- to form CblNO₂. Experimental data – black trace; first-order fit – red trace.

Figure S3. Plot of k_{obs} versus NO₂⁻ concentration for the reaction between CblOH₂ and NO₂⁻. Experimental conditions: 8.6 x 10⁻⁵ M CblOH₂, 8.6 x 10⁻⁴ - 8.6 x 10⁻³ M NaNO₂, pH = 7.2 (25 °C, 0.1 M Tris buffer).

Figure S4. Spectral changes observed for the reaction of CblNO₂ (4.3 x 10^{-5} M; obtained by mixing equimolar solutions of CblOH₂ and NO₂⁻) with HClO₄ (0.03 M) at 25 °C. Spectra were recorded every 0.375 s. **Inset:** Typical kinetic trace recorded at 310 nm under the same experimental conditions except for CblNO₂ concentration which is 8.6 x 10^{-5} M.

Figure S5. Plot of k_{obs} versus concentration of the acid for the reaction between CblNO₂ and HClO₄. Experimental conditions: 8.6 x 10⁻⁵ M CblOH₂, 8.6 x 10⁻⁵ M NO₂⁻⁷, 0.01 – 0.05 M H⁺, 25 °C.

Figure S6. UV-Vis spectra recorded for the formation of CblNO₂ as a function of nitrite concentration, concentration NaNO₂/CblOH₂ = 0.1 - 5.0, at pH = 7.2 and 25 °C.

Figure S7. Plot of $\ln(NO_2^{-})_{free}$ versus $\ln(R-R_{min})/(R_{max}-R)$ for the spectra in Figure S6 recorded in the concentration ratio of NaNO₂ and CblOH₂ ranging from 1.5 to 4.0.

Figure S8. Spectral changes observed for the reaction between CblNO₂ (7.6 x 10^{-5} M, obtained by mixing CblOH₂ and NO₂⁻, concentration ratio NO₂⁻/CblOH₂ = 40) and Asc (2.10 x 10^{-2} M) at pH = 7.2 (25 °C, 1.0 M Tris buffer, Ar atmosphere). Spectra were recorded every 2 min. Plot of absorbance at 532 nm versus time.