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The DNA barcoding technique developed for species identification has recently been adapted for ecological
studies (e.g. host plant identification). Comprehensive barcode databases, covering most species inhabiting
areas, habitats or communities of interest are essential for reliable and efficient identification of plants. Here
we present a three-barcode (plastid rbcL and matK genes and the ¢rnL intron) database for xerothermic plant
species from central Europe. About 85% of the xerothermic plant species (126 out of c¢. 150) known to be
associated with xerothermic habitats were collected and barcoded. The database contains barcodes for 117 (rbcL
and ¢rnL) and 96 (matK) species. Interspecific nucleotide distances were in the ranges 0-17.9% (0-3.2% within
genera) for rbcL, 0-44.4% (0-3.1%) for trnL and 0-52.5% (0-10.9%) for matK. Blast-searching of each sequence
in the database against the entire database showed that species-level identification is possible for 89.6% (rbcL),
98.4% (trnL) and 96.4% (matK) of examined plant species. The utility of the presented database for identifi-
cation of host plants was demonstrated using two insect species associated with xerothermic habitats: the
oligophagous leaf-beetle Cheilotoma musciformis (for which two host plants in Fabaceae were identified) and the
polyphagous weevil Polydrusus inustus (which was found to feed on 14 host plants, mostly Rosaceae, Asteraceae
and Fabaceae). The developed database will be useful in various applications, including biodiversity, phyloge-
ography, conservation and ecology. © 2015 The Linnean Society of London, Botanical Journal of the Linnean
Society, 2015, 177, 576-592.

ADDITIONAL KEYWORDS: calcareous grasslands — Coleoptera — dry grasslands — matK — plastid DNA —
rbcL — trnL.

INTRODUCTION

Xerothermic (calcareous) grasslands are one of the
most diverse habitats in the temperate zone and are
considered to be extrazonal analogues of continental
Eurasiatic steppes (Niemel4d & Baur, 1998; Poschlod &
WallisDeVries, 2002; Ewald, 2003; Dengler et al.,
2014). This plant formation is highly threatened in
Europe (Janisova et al., 2011). It is limited by current
climatic conditions that favour forests and restrict dry
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grasslands to local steep, dry and warm slopes on
calcareous soils in central and western Europe. Xero-
thermic grasslands in central Europe sustain highly
diverse plant communities, mainly belonging to the
Festuco—Brometea association (Matuszkiewicz, 2005;
Schubert, Hillbig & Klotz, 2001; Chytry, 2007; Illyés
et al., 2007; Dubravkova et al., 2010). Approximately
150 plant species can be found in this type of vegeta-
tion north of the Carpathians. This association is
protected by the European Habitats Directive 92/43/
EEC, which classifies Festuco-Brometea grasslands,
occurring mainly on calcareous substrates, under
Habitat number 6210. Most xerothermic species are
restricted to Festuco—Brometea grasslands; only a few
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can inhabit other types of habitats (such as sandy
turfs). Xerothermic grasslands sustain populations of
many rare and relic species with endemic taxa: Galium
cracoviense Ehrend (only in the Krakéw—Czestochowa
Uplands), Erysimum pieninicum (Zapal.) Pawl. (only
in Pieniny Mountains), Carlina onopordifolia Besser
ex DC. (only in the Polish and Ukrainian Uplands) and
several other species annexed in the Habitat Directive
of the European Union.

Xerothermic grasslands have been highly frag-
mented and degraded due to man-made land transfor-
mations, which reduced their area as a result of
afforestation and agricultural development (Partel,
Mandla & Zobel, 1999; Dutoit et al., 2003; Poschlod
et al., 2005; Johansson et al., 2008). This kind of plant
formation is often vulnerable to plant succession (it
can become overgrown by herbs, bushes and trees) and
in many areas was sustained by traditional land use,
mainly extensive grazing by roaming flocks of sheep
in spring and autumn combined with summer hay-
making (Michalik & Zarzycki, 1995; WallisDeVries,
Poschlod & Willems, 2002). Xerothermic grasslands
are also characterized by a rich entomofauna, particu-
larly diverse assemblages of Orthoptera, butterflies
(Lepidoptera) and beetles (Coleoptera) (Liana, 1987;
Mazur, 2001; Rakosy & Varga, 2006; Mazur & Kubisz,
2013). Ecological studies on xerothermic plants and
their insect assemblages require the development of
techniques that allow for reliable and rapid species
identification (both plants and insects). The DNA
barcoding approach should facilitate not only identifi-
cation of particular plant and insect species, but also
understanding of ecological interactions and associa-
tions between host plants and insects feeding on these
plants. Such knowledge would also be of practical
importance for conservation of particular species and
whole assemblages and for management planning for
xerothermic grasslands.

DNA barcoding was developed primarily as an aux-
iliary technique for species identification. It was first
used in animals and was based on a mitochondrial
gene, cytochrome oxidase unit I (COI; Hebert,
Ratnasingham & deWaard, 2003). Later, this tech-
nique was also adapted for studies on fungi with the
final choice of the internal transcribed spacers (ITS) of
nuclear ribosomal DNA (Seifert, 2009). When consid-
ering plants, a long-term debate ensued about the
barcode of choice: several DNA markers were proposed
for land plants, either individually or in combinations
(Chase et al., 2007; Kress & Erickson, 2007; Fazekas
et al., 2008; Hollingsworth et al., 2009). Finally, a
two-locus barcode was proposed and widely accepted
consisting of the plastid genes ribulose-bisphosphate
carboxylase (rbcL) and maturase K (matK) (CBOL
Plant Working Group, 2009). Additionally, the ¢trnH-
psbA intergenic spacer region of plastid DNA was

proposed as a plant barcode (Shaw et al., 2005;
Fazekas, Steeves & Newmaster, 2010; Pang, Luo &
Sun, 2012). However, this raised concerns due to its
extensive length variation (Chase et al., 2007; Kress &
Erickson, 2007), the presence of intraspecific microin-
versions associated with palindromes (Whitlock, Hale
& Groff, 2010; Jeanson, Labat & Little, 2011)
and sequencing problems related to mononucleotide
repeats (Fazekas etal., 2008; Devey, Chase &
Clarkson, 2009; but see Fazekas et al., 2010). In some
situations, however, these standard plant barcodes
cannot be used. For example, the identification of host
plant species from animal gut contents is a difficult
task due to DNA degradation (e.g. Wallinger et al.,
2013). Moreover, primers for matK rarely cover a wide
spectrum of plant taxonomic units and therefore have
limited utility for host plant identification from poly-
phagous animal guts, as several primer pairs should be
used to increase the probability of amplification for all
or most host plants present in samples. As an alterna-
tive, a plastid intron, located in the tRNALeu UAA
gene (trnL; Taberlet et al., 1991), has successfully been
used for diet analyses (Valentini et al., 2009; Taberlet
et al., 2007). This intron has some limitations similar
to those of trnH-psbA (e.g. length variation) and there-
fore its utility for plant species identification could
be questionable. Nevertheless, it proved to be the
barcode of choice for host plant barcoding in insects,
particularly beetles (Jurado-Rivera etal., 2009;
Pinzén-Navarro et al., 2010; Kubisz et al., 2012; Kitson
et al.,2013). The trnL intron has also been successfully
used for identification of below-ground plant richness
(from roots) (Hiiesalu et al., 2012).

Recently, the DNA barcoding approach has been
used for other types of ecological studies, particularly
for identification of plant species and evaluation of
species richness from selected areas, habitats and/or
plant communities. These studies focused on tropical
biodiversity hotspots such as forests of South and
Central America and South Asia (Kembel & Hubbell,
2006; Dick & Kress, 2009; Gonzalez et al., 2009; Kress
et al., 2009, 2010; Pei et al., 2011). So far, there have
been several examples of studies using plant barcodes
for ecological studies in other areas and plant com-
munities, e.g. boreal forests in Canada (Fazekas et al.,
2008). However, there are hardly any analogous
studies concerning plant species identification and
evaluation of species richness for open land habitats
such as grasslands, with the exception of a single
study on the mountain dry grasslands of Italy (De
Mattia et al., 2012). One may ask why one would
develop barcodes if plants can be identified on the
basis of traditional morphological examination.
Indeed, there is no need for barcoding in many botani-
cal studies (e.g. in standard vegetation inventories),
but barcode databases could potentially be useful if
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species identification is difficult (e.g. for cryptic
species, fragments of plants without diagnostic char-
acters) or for ecological studies with large numbers of
taxa and dealing with interactions among various
plants and herbivorous animals.

In the present study, we evaluated the performance
of different DNA barcode markers (matK, rbcL and
trnL) for identification of xerothermic plant species
and evaluation of species richness using xerothermic
grasslands from Poland as an example. Xerothermic
grasslands in Poland were selected as the subject of
this research as this plant association has been inten-
sively studied by botanists and habitat specialists
from the end of the 19th century (Preuss, 1912;
Kozlowska, 1931; Ceynowa, 1968; Medwecka-Kornas
& Kornas, 1977). In Poland, all major types of dry
grasslands known from central Europe can be found
and most central European plant species associated
with this vegetation are also present there (Zajac &
Zajac, 2001; Mirek et al., 2002; Matuszkiewicz, 2005).
Moreover, Polish dry grasslands are located in two
areas which differ with respect to the history of for-
mation and persistence of xerothermic grasslands.
Southern Poland was glaciated only once (Sanian
glaciation, c¢. 730 000-430 000 years ago), whereas
northern Poland was glaciated several times during
the Pleistocene (including the Vistulian glaciation,
which ended 10 000-12 000 or 17 000-18 000 years
ago in the Kujawy basin) (Marks, 2002; Lindner et al.,
2006; Wysota, Molewski & Sokolowski, 2009). Moreo-
ver, southern Poland was, and partially still is, con-
nected with the Pontic and Pannonic steppe areas,
whereas northern Poland could have been settled by
xerothermic species in the Holocene and only via
some specific routes (such as along the Vistula River
valley). Lastly, xerothermic grasslands in Poland are
highly threatened as they are extrazonal, highly frag-
mented and sensitive to human land transformations.
This plant association shelters also diverse commu-
nities of invertebrates, including numerous species of
Coleoptera. As the diet of some of xerothermic beetles
has been intensively studied based on field observa-
tions or feeding experiments (e.g. Szymczakowski,
1960; Warchatowski, 1991; Mazur, 2001), they can be
used as excellent objects to test performance of plant
barcodes for host plant identification. Among xero-
thermic beetles, well known regarding their feeding
preferences are, the oligophagous leaf-beetle Cheilo-
toma musciformis and the polyphagous weevil Poly-
drusus inustus.

Evaluation of the performance of barcodes for iden-
tification of xerothermic plant species and evaluation
of species richness was performed in four steps: (1)
amplification efficiency; (2) sequencing success; (3)
accuracy of plant species identification; and (4) appli-
cation for host plant identification. The main goal of

this study was to develop a database of xerothermic
plant barcodes for further ecological and conservation
studies. Additionally, the database was used for
evaluation of the utility of these barcodes for identi-
fication of insect host plants on the basis of gut
content. To this end we examined two beetles: C. mus-
ciformis and P. inustus

MATERIAL AND METHODS
SAMPLING AREA

The study was performed on xerothermic (calcareous)
grasslands of the Festuco-Brometea association
located in two areas. The majority of plants were
collected in the Polish Uplands located in southern
Poland (between the cities of Krakéw and Kielce;
coordinates of the centre of this area 50.374°N,
20.407°E). The remaining plants, especially species
absent or difficult to find or rare in southern Poland,
were collected in northern Poland in the Kujawy Basin
(between the cities of Torun and Bydgoszcz; coordi-
nates of the centre of this area 52.942°N, 18.572°E).
Xerothermic communities in the first sampling area
consisted mainly of xerothermic grasslands on steep
slopes of chalk and gypsum hills. In the second area,
mainly xerothermic grasslands on steep scarps along
river valleys on clay soils were sampled.

PLANT SAMPLING

Prior to field surveys, a list of all plant species native
to Poland and associated exclusively or mainly with
xerothermic grasslands (Zajac & Zajac, 2001; Mirek
et al., 2002; Matuszkiewicz, 2005) was compiled. After
floristic reconnaissance, we also added species com-
monly found in xeric grasslands, but strongly associ-
ated with other syntaxonomic groups (mostly species
associated with Molinio-Arrhenatheretea meadows
and Rhamno—Prunetea shrubland). The final list com-
prised 152 plant species. Field survey was executed in
two seasons in 2011 and 2012 (from April to August).
Xerothermic plant species and other species character-
istic for open dry habitats were collected. Voucher
specimens (dried) were collected and are deposited in
the Jagiellonian University Herbarium (collector: W.
Heise) (voucher specimen numbers presented in
Table 1). For the purposes of molecular analyses
several green leaves from a single individual of each
species were collected and preserved in plastic bags
with silica gel. All samples were stored in a refrigerator
at 4 °C until DNA isolation. Plant species were iden-
tified in the field. Parts of specimens important for
taxonomic identification were collected and preserved.

BEETLE SAMPLING

To evaluate the utility of plant barcodes for host plant
identification from insect gut two species were
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selected: the leaf-beetle C. musciformis (Chrysomeli-
dae) and the weevil P. inustus (Curculionidae). Both
species are characteristic of dry grasslands and scrub-
lands of central and eastern Europe (Warchatowski,
1971; Borowiec, 1984; Mazur, 1994; Korotyaev &
Meleshko, 1995; Korotyaev, 1996; Mazur & Kubisz,
2013). The population genetics of both these species
have recently been studied in detail (see Kajtoch,
LachowskaCierlik & Mazur, 2009; Kajtoch, Korotyaev
& LachowskaCierlik, 2012; Kajtoch et al., 2013).
Beetles were collected using sweep-nets from herb,
shrub and bush layers on xerothermic turfs in 2011
and 2012 (May—June). To avoid over-representation of
specimens feeding on the same plants (collected in the
same place and the same time), 24 specimens of
P. inustus were randomly selected, each from a differ-
ent xerothermic patch. Similarly, single individuals of
C. musciformis were randomly selected from distinct
xerothermic patches; only ten specimens were used in
analyses, as this species is highly threatened in
Poland (Scibior, 2004; Kajtoch et al., 2013). Beetles
were only collected in good weather conditions to
avoid collection of starving specimens (as efficiency of
plant DNA isolation and amplification from such indi-
viduals is decreased; Kajtoch & Mazur, in press) and
preserved immediately in ethanol (96%) in the field to
reduce DNA degradation. Samples were kept frozen
until DNA isolation.

LABORATORY PROCEDURE

Plant tissues (leaves) were frozen in liquid nitrogen
prior to DNA isolation. Frozen samples were
crushed (homogenized, pulverized) in an agate
mortar, and DNA was isolated using the Nucle-
ospine Plant Tissue Kit (Macherey-Nagel). Beetles
were digested with proteinase K, and DNA was iso-
lated using the Nucleospine Tissue Kit and protocol
for animal tissue isolation. The DNA concentration
and purity of all isolates were assessed using Nano-
drop, and the quality of DNA isolates from beetles
was checked by amplification of the COI mitochon-
drial gene using standard barcode primers (Folmer
etal., 1994). Next, DNA isolates were used for
amplification of three plastid barcodes, matK, rbcL
and trnL, using the following primers: matK472F
and matK1248R for matK (Yu, Xue & Zhou, 2011),
1F and 724R for rbcL (Fay, Swensen & Chase,
1997), and A49325 and B49863 for ¢rnL (Taberlet
et al., 1991). We did not use primers developed to
amplify short barcodes [minibarcodes; e.g. Hofreiter
et al. (2000) for rbeL; Taberlet et al. (2007) for trnL]
as these short markers do not have sufficient dis-
criminatory power and rarely allow for plant species
identification (see also Little, 2014). Amplicons of
the ¢rnL intron were of variable length (c. 350-640

bp), whereas amplicons of the plastid genes showed
a smaller range of length variation: rbcL, 650—-680
bp; matK, 690-720 bp. The PCRs of samples that
did not amplify any fragment were repeated using
less stringent conditions: reduction of up to 5 °C in
the annealing temperature and a higher concentra-
tion of MgCl,. For species for which this procedure
failed to amplify any barcode, the PCRs were
repeated on other DNA isolates. The same primers
were used for amplification of plant DNA from plant
tissues (leaves) and from insect guts. All PCR prod-
ucts were visualized on agarose gels. PCR products
from plant leaves and C. musciformis samples were
then purified using an ExoProStar kit (GE Chemi-
cals). Purified DNA products were then Sanger
sequenced using forward primers and a BigDye Ter-
minator v.3.1. Cycle Sequencing Kit (Applied Biosys-
tems) and run on an ABI 3100 Automated Capillary
DNA Sequencer. In cases of unreadable sequences,
the sequencing procedure was repeated with reverse
primers. For P. inustus, another procedure of host
plant identification was used: only rbcL and ¢rnL
barcodes were amplified separately for each indi-
vidual (to avoid problems and errors caused by
unequal concentration of plant DNA in isolates from
weevil bodies). This procedure was followed because
the matK database of xerothermic plants was too
incomplete for reliable species assignment (see
Results). All amplicons (small volumes of both rbcL
and ¢rnL) were first checked on agarose gel and
then pooled approximately equimolarly (all PCRs of
rbeL. separately from PCRs of ¢rnL) and purified
using a Nucleospine DNA Extraction Kit. The
sequencing library was prepared using a NexteraXT
library preparation kit (Illumina). The library
was sequenced as a part of a MiSeq paired-end
2x 150-bp run.

DATA ANALYSIS

Sanger sequences were checked visually using
BioEdit v.7.0.5.2 (Hall, 1999). Only sequences of
good-quality fragments, longer than 400 bp (¢7nL) or
650 bp (rbcL and matK), were used for further
analysis. Sequences of all three plant barcodes used
in this study and obtained directly from plant
tissues were stored as FASTA files. All sequences of
the particular barcode were aligned using MAFFT
v.7 (Katoh & Standley, 2013). Because the generated
database of xerothermic plants does not cover all
species known from the study area (see Results), the
NCBI GenBank database was additionally searched
for rbeL, trnL and matK sequences of xerothermic
plant species missing in the xerothermic database
(see Table 1).

Although the CBOL Plant Working Group has ini-
tiated a plant DNA barcoding database based on rbcL

© 2015 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of
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and matK (see http:/www.boldsystems.org), it cur-
rently contains an insufficient number of records,
especially for taxa from poorly known environments
and areas such as xerothermic grasslands of central
Europe and therefore this database was not sufficient
for the purposes of this study. Moreover, this database
contains only rbcL and matK sequences; therefore,
the trnL barcode cannot be used for species identifi-
cation using BOLD. For these reasons, instead of
using BOLD we decided to use the resources available
in NCBI GenBank. MEGABLAST (Basic Local Align-
ment Search Tool, Altschul et al., 1990) was used to
search for most similar sequences of three barcodes
(independently) in the NCBI GenBank sequence
library. Results of identification were provided as a
list of best hits of the nearest matches (maximum
identity) according to BOLD-IDS guidelines (http:/
www.boldsystems.org/views/idrequest_plants.php).
Due to the limitation of NCBI GenBank resources, it
was not possible in some cases to identify plant
species that were barcoded (as many xerothermic
plants were absent in NCBI GenBank before this
study); therefore, other species (usually of the same
genus) were retrieved and reported as the nearest
matches. This was done only for quick verification of
barcode amplification and sequencing efficiency and
accuracy. The performance of each barcode was evalu-
ated by use of a local Blast search in BioEdit v.7.2.2
(Hall, 1999) of the developed barcode database
against this database to find how many plant species
could not be discriminated. Only hits with 100% iden-
tity and > 95% sequence coverage were retrieved. In
the local Blast search we used 128 sequences for trnL
and rbcL barcodes and 107 sequences for the matK
barcode (including plant species for which sequences
were downloaded from NCBI GenBank). Moreover,
according to the guidelines provided by CBOL (http:/
www.barcoding.si.edu/protocols.html), the evaluation
of comparative levels of variation and discrimination
for the three markers were undertaken using MEGA
5.10 (Tamura et al., 2011) to generate Kimura two-
parameter (K2P) distance matrices for each locus.
These distances were calculated for the whole sets of
barcodes (for all species) and also separately for plant
genera that were represented by more than one
species in the developed barcode databases.

Next, we performed the identification of Sanger
sequences (of three barcodes) obtained from C. mus-
ciformis guts via comparison with prepared databases
of xerothermic plant barcodes. Again, the MEGAB-
LAST search tool was used (‘align two or more
sequences’ option). FASTA alignments of each plant
barcode were used as references for searching nearest
matches for sequences obtained from C. musciformis.
Only sequences of a query coverage larger than 95%,
Expect (E) value = 0 and a maximum identity at least

99% were retrieved. These thresholds were set some-
what arbitrarily to maximize stringency of identifica-
tion of host plant species. Query coverage of at least
95% was required so that entire reads would show
high similarity to the query species, excluding, for
example, chimaeric sequences that may have been
generated during PCR. An identity of at least 99%
was chosen to allow for sequencing errors and
intraspecific genetic variation.

Finally, Illumina sequences obtained from the
P inustus mixed sample were used for host plant
species identification. In this particular paired-end
Illumina run, the quality of the second reads was
much lower; only the first read from each pair was
used in Blast analyses, but both reads were used for
mapping (see below). Identification of plants was
performed by the comparison of the sequencing
reads with sequences in our database of plant bar-
codes. We used two complementary methods. The
first method was based on MEGABLAST searches.
For each read of at least 120 bp (ungapped), a
MEGABLAST search with cutoff E value of 1x107%
was performed. Only reads with at least 98% iden-
tity to at least one plant species in the database
were retained. This threshold was used as 98%
identity was used in other studies that performed
host plant identification with use of plant barcodes
and next-generation sequencing technologies (e.g.
Soininen et al., 2009; Valentini et al., 2009;
Hajibabaei et al., 2011). A read was considered to
have a unique hit if only a single hit was reported
or when the bitscore of the second-best hit was not
better than 0.95x the bitscore of the best hit. Plant
species were identified only on the basis of these
reads. When this condition was not met, then all
hits (species) with bitscores > 0.95x the bitscore of
the best hit were considered as matching the read
equally well. This group of reads, together with
reads that could be assigned to particular plant
species (previous category), was used jointly for esti-
mation of host plant frequencies at the plant family
level.

The second method employed mapping read pairs to
the references from the plant database. Mapping was
performed with Bowtie2 (Langmead et al., 2009).
End-to-end alignment with the minimum insert size
of 100 bp was used, and only reads pairs mapping
concordantly (using the default Bowtie2 definition of
concordance) were reported. Only the best alignment
was reported for each read, and reads with mapping
quality < 10 (which corresponds to a P < 0.9 that the
read mapped uniquely) were excluded. The number of
read pairs mapped to each reference was calculated
with SAMtools (Li et al., 2009).

For both methods, we reported only those plant
species with at least 1.0% of assigned reads.

© 2015 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of
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RESULTS
TAXONOMIC OVERVIEW OF XEROTHERMIC PLANTS

The majority of studied plant species belonged to
Dicotyledoneae. The rest belonged to Monocotyledo-
neae and represented 29 orders, 33 families and 79
genera (including nine genera for which PCR failed to
amplify any barcode). The most species-rich families of
xerothermic plants from Poland are Fabaceae (21
species), Asteraceae (14 species), Rosaceae (11 species),
Apiaceae (eight species), Caryophyllaceae (seven
species), Scrophulariaceae (six species) and Poaceae
(six species) (Table 1, Supplementary Table S1).

BARCODING OF XEROTHERMIC PLANTS

In total, 126 plant species characteristic for xerother-
mic grasslands or associated generally with dry and
warm habitats were collected and used for DNA isola-
tion and amplification (83% of 152 xerothermic species
known from Poland; Tables 1, S1). For 92.1% of the
collected species rbcL and trnL barcodes produced PCR
bands; almost all of them were successfully sequenced
(both 94%). On the other hand, 90.6% of the plant
species were successfully amplified for mat¢K, but only
80.0% of them could be successfully sequenced
(Table 2). All sequences of plant barcodes generated in
this study are available as Files S1-3 (in FASTA
format) or on request from the corresponding author.
The quality-trimmed fragments (excluding short
initial and final fragments that could not be deter-
mined for all species and several sequences for which
only short fragments were generated) have been sub-
mitted to the NCBI GenBank database (https:/
www.ncbi.nlm.nih.gov/NCBI = GenBank/; accession
numbers in Table 1).

Nineteen taxa generated low-quality or unread-
able matK sequences due to the presence of internal
short tandem repeats of single nucleotides, which
most probably led to polymerase errors (replication
slippage).

IDENTIFICATION ACCURACY

The accuracy of plant identification (based on
MEGABLAST search of the NCBI GenBank data-

base) varied for each of the three examined barcodes
(Table 2). The trnL intron allowed for correct species
identification in 32.5% of cases, genus identification
in 55.5% of cases and family identification in 12.0% of
cases. These assignments for rbcL were 26.5, 64.1 and
9.4% and for matK 45.8, 50.0 and 4.2%. In total, 66
out of 117 species showed correct plant identification
in at least one barcode (38 in ¢trnL, 33 in rbeL and 45
in matK) (Table 2).

Evaluation of the efficiency of the generated bar-
codes in identification of plant species showed that
with use of the ¢trnL intron only one pair of species
(Peucedanum oreoselinum Moench and P cervaria
Cusson ex Lapeyr.) could not be distinguished (1.6% of
all examined species). The matK gene showed slightly
lower power to distinguish species: two pairs of species
(3.7%) could not be distinguished in regard to this
barcode [Peucedanum oreoselinum and P. cervaria;
Silene vulgaris (Moench) Garcke and S. nutans L.].
The rbeL gene had the lowest power as it failed to
distinguish seven pairs of species (10.9%) [Melilotus
albus Medik. and M. officinalis (L.) Lam.; Medicago
falcata L. and M. varia Martyn; Peucedanum oreoseli-
num and P cervaria; Centaurea scabiosa L. and
C. stoebe L.; Carlina acaulis L. and C. onopordifolia
Besser ex DC.; Thymus pannonicus All. and T. pule-
gioides L.; Elymus hispidus (Opiz) Melderis and
E. repens(L.) Gould].

K2P distances calculated for sequences of each
barcode were in the range 0-17.9% for rbcL, 0-44.4%
for trnL and 0-52.5% for matK. The distributions of
K2P distances among all pairs of species are pre-
sented in Figure 1. K2P distances calculated for plant
species belonging to the same genera showed that for
several pairs of species these distances are equal to
zero (11 pairs for ¢rnL, six for rbcL and four for matK)
(Table S2).

HOST PLANTS OF BEETLE SPECIES

Cheilotoma musciformis

Amplification was successful for all barcodes in all
analysed specimens of C. musciformis; each amplicon
produced a single sequence (ten sequences were
generated for each barcode). All barcodes enabled

Table 2. Basic results of plant barcode amplification, sequencing and identification

Identification success

Amplification Sequencing
Barcode success success Species Genus Family
trnL 117 (92.1%) 110 (94.0%) 38 65 14
rbcL 117 (92.1%) 110 (94.0%) 31 75 11
matK 115 (90.6%) 92 (80.0%) 44 48 4

© 2015 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of
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Figure 1. The distribution of Kimura two-parameter distances among studied plant species in three barcodes used in the
study: ¢rnL intron and rbeL and matK genes. The x-axis (n) shows pairwise distances between species sorted in ascending

order.

unambiguous identification of the host species (100%
query coverage, E-value = 0 and identity = 100% for
all MEGABLAST searches). Eight out of ten individu-
als were found to feed on Onobrychis viciifolia Scop.
and the remaining two were found to feed on Oxytro-
pis pilosa DC. (both Fabaceae) (Fig. 2).

Polydrusus inustus

In total, 18 795 read pairs mapped to the reference
barcode sequences; of these, 9293 mapped uniquely
(6030 pairs mapped to rbcL and 3263 to trnL) and
thus could be used for plant identification to the
species level. Only first reads from each pair were

useful for blast searches (due to the low quality of
second reads of Illumina sequencing, see details
above); 6307 reads of at least 120 produced blast hits
(3381 rbcL and 2926 trnL).

Illumina sequencing of plant barcodes amplified
from the P inustus weevil gut revealed that the
majority of host plants (with highest relative share in
both barcodes) were assigned to three members of
Rosaceae: Prunus spinosa L., Crataegus monogyna
Jacq. and Rosa canina L. (Table S3). Additionally, a
substantial (but much lower) share was found for
Fragaria viridis Weston (Rosaceae), Sarothamnus
scoparius L. (Fabaceae), Artemisia campestris L. and

© 2015 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of
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Polydrusus inustus

trnL

others
22.3%

Asteraceae others
27.3% S

Fabaceae
27.5% Fabaceae
13.9%

Rosaceae

22.8%

Cheilotoma
musciformis

rbcL matK trnL

rbcL

Asteraceae Fabaceae
33.4% 100.0%
Oxytropis pilosa

20.0%

Onobrychis

vicifolia 80.0%
Rosaceae

23.6%

Figure 2. Relative share of most common plant families in the diet of Polydrusus inustus polyphagous weevil (results of
Illumina sequencing for rbcL and ¢trnL barcodes and blast search against the reference database) and host plant species
composition of Cheilotoma musciformis oligophagous leaf-beetle (results of Sanger sequencing of rbcL, matK and ¢rnL
barcodes). Only plant families with relative share of >5% are presented. Numbers of Illumina reads are presented in

square brackets.

Inula ensifolia L. (both Asteraceae) and Campanula
glomerata L. (Campanulaceae) (Fig.2). Fourteen
plant species were identified as host plants for this
weevil using the blast algorithm and eight using the
mapping method. A larger number of species identi-
fied by the blast algorithm was observed for rbcL. In
total, rbcL allowed for the identification of 11 species
and ¢rnL for the identification of seven species. Some
species were identified based only on ¢nL (one
species) or rbcL (five) (Table S3). In general,
P inustus was found to be a feeder of mostly
Rosaceae, Asteraceae and Fabaceae (Fig. 2).

DISCUSSION
XEROTHERMIC PLANT BARCODES

Here we present one of the first multi-marker plant
barcode databases from Europe prepared by extensive
sampling of a selected type of vegetation. This data-
base will be likely to facilitate and improve future
ecological studies. It is worth emphasizing that this is
one of few databases that includes not only two stand-
ard plant barcodes (rbcL and matK genes), but also the
trnL intron, which proved to be more useful for iden-
tification of host plants from animal DNA sources (e.g.
guts or faeces) (Jurado-Rivera et al., 2009; Valentini
et al., 2009; Pinzén-Navarro et al., 2010; Taberlet
et al., 2007; Kubisz et al., 2012; Kitson et al., 2013).
This database covers c. 80% of plant species associ-
ated with xerothermic grasslands in Poland and
central Europe. It should be further noted that only

for two barcodes (rbcL and trnL) were most plant
species successfully sequenced. High amplification and
sequencing success in the case of rbcL and trnl and
problems with amplification and sequencing of matK
are consistent with previous reports about the utility
and characterization of these barcodes (Kress et al.,
2009; Hollingsworth et al., 2009). Indeed, the matK
gene could be the preferred barcode due to its rela-
tively high structural conservation and simultane-
ously high discrimination power (it allows for correct
species identification for 46% of studied plants).
However, universal primers developed by Yu et al.
(2011) failed to amplify a significant fraction of xero-
thermic plant species. Moreover, mononucleotide
tandem repeats in this barcode are present in some
species, which due to possible polymerase replication
errors (replication slippage) makes sequencing difficult
and more costly due to the necessity of sequencing from
both directions. Even this procedure failed in some
species, as mononucleotide repeats are present in more
than one part of this gene. It should be possible to use
a set of matK primers for particular plant families
known from xerothermic grasslands and use them for
preparing a complete barcode database. However, this
procedure would be much more expensive and time
consuming, and therefore not useful for host plant
barcoding of polyphagous species of unknown diet.
Moreover, it would be extremely hard to use such sets
of primers for ecological studies (e.g. diet analyses) as
it would require the use of many pairs of primers for all
samples. On the other hand, the rbcL gene is the least
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variable among all examined barcodes, and it has low
discriminatory power (especially members of the same
genus). Moreover, the low polymorphism of this
barcode does not often allow for species or even genus
identification when using short fragments (mini-
barcodes), which is often necessary with degraded
templates (e.g. from animal faeces or museum plant
collections). According to Little (2014), the best set of
primers for rbcL minibarcodes allow for discrimination
of only 38% of species. Based on obtained data and
considering previous studies on various plants and
animal diets (Jurado-Rivera et al., 2009; Valentini
et al., 2009; Pinzon-Navarro et al., 2010; Taberlet
et al., 2007; Kubisz et al., 2012; Kitson et al., 2013), the
trnL intron should be the barcode of choice for ecologi-
cal studies, especially for applications requiring high
amplification and sequencing success, coverage of dis-
tantly related plant species and high discriminatory
power. In this study we demonstrated that ¢rnL
allowed for amplification and sequencing of > 90% of
xerothermic plants and that is it a highly informative
barcode as only one pair of species could not be
distinguished in the blast search. Moreover, this
barcode enables identification of 70% of host plants
based on short reads. However, this barcode also has
some drawbacks partially shared with the trnH-psbA
intergenic spacer region (Shaw et al., 2005; Fazekas
et al.,2010; Panget al., 2012). Both barcodes have high
length variation due to the presence of large indels
(Chase et al., 2007; Kress & Erickson, 2007), but trnL
has probably fewer long mononucleotide repeats,
which are common in trnH-psbA (Fazekas et al., 2008;
Devey et al., 2009; but see Fazekas et al., 2010;
Whitlock et al., 2010; Jeanson et al., 2011). Both these
non-coding plastid fragments were used successfully
for identification of beetle host plants (for ¢rnL:
Jurado-Rivera et al., 2009; Pinzén-Navarro et al.,
2010; Kubisz et al., 2012; Garcia-Robledo et al., 2013;
for trnH-psbA). The choice between ¢rnL and trnH-
psbA barcodes should also depend on availability of
reference databases, as NCBI GenBank includes >
170 000 sequences of trnL and c¢. 70 000 of ¢rnH-psbA
sequences (April 2014). However, the most important
criterion for barcode selection should be its efficiency of
amplification for plants present in the studied sample
(area, habitat, community, etc.) and in this study we
demonstrated that trnL has the greatest discrimina-
tion power for xerothermic plant species from Poland.
However, it is also important to emphasize that our
analyses do not include assessment of intraspecific
variation; if intraspecific variation is high, discrimina-
tion of some other, closely related taxa may be prob-
lematic. Generally, the approach of using two or three
barcodes simultaneously provides better resolution
and discriminatory power for plant species identifica-
tion, especially if some of the barcodes failed to amplify

or produced unreadable or low-quality sequences.
These advantages should overcome the slightly higher
cost and additional time needed to develop and use a
multi-barcode database. A multi-barcode approach
should also decrease the probability of false positive
species identifications, as the simultaneous use of two
or more barcodes allows for self-testing of identifica-
tion reliability and detection of errors caused by
problems with polymerase replication, sequencing or
identification algorithms. The barcode database devel-
oped for xerothermic plants in the current study
allowed for discrimination of nearly all plant species
with the use of two or three barcodes, as only one pair
of species (Peucedanum oreoselinum and P. cervaria)
could not be distinguished with the use of all three
barcodes. Lower sequence divergence between these
two congeners could be explained by recent speciation,
incomplete lineage sorting or hybridization, which
are common phenomena among plants. It should be
emphasized that the multi-barcode approach would
not allow for detecting and eliminating errors caused
by species misidentification during collection or con-
tamination.

EVALUATION OF THE UTILITY OF THE DATABASE FOR
ECOLOGICAL STUDIES

To verify how a barcode database of xerothermic plants
works for identification of host plants of phytophagous
animals, the experiment was implemented using two
beetle species: a polyphagous weevil and an oligopha-
gous leaf-beetle. These two species were chosen
because their feeding preferences are relatively well
known (but only on the basis of field observations).
The first of the investigated beetles (Cheilotoma
musciformis) was observed to feed in Poland on Ono-
brychis Mill. (Szymczakowski, 1960; Warchalowski,
1991) and on Rumex L. and Anthyllis vulneraria L. in
the southern regions of Europe (Gruev & Tomov, 1984;
Warchatowski, 1991). Recent studies also confirm that
in Slovakia it can feed on Lotus L. and Dorycnium Mill.
(Kajtoch et al., 2013). The three-barcode database of
xerothermic plants confirmed that this species in
Poland mostly feeds on O. viciifolia, but some individu-
als also utilize another species of Fabaceae: Oxytropis
pilosa, which is new host plant for this beetle. It is
possible that this species is generally associated with
Fabaceae, but the low number of individuals used in
this study (due to the rarity and threatened status of
the species) prevented identifying more host plants.
Our results clearly show that the second species
(Polydrusus inustus) is indeed polyphagous. It is
known to feed on Rosaceae and on Medicago sativa L.,
Cirsium arvense (L.) Scop. and Melilotus alba Medik.
(Mazur, 2001). Plant barcodes confirmed its associa-
tion with Rosaceae and Fabaceae, but none of the
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investigated individuals fed on Cirsium or Melilotus.
Moreover, plant barcodes added new species as host
plants: two Asteraceae (Artemisia campestris, Inula
ensifolia), one Fabaceae (Sarothamnus scoparius) and
one Campanulaceae (Campanula glomerata).

Generally, all plant barcodes were shown to be
useful in host plant species identification for oligopha-
gous beetles and also for monophagous species such
as the leaf-beetle Crioceris quatuordecimpunctata
(associated only with Asparagus L.; Kubisz et al.,
2012). However, in cases of polyphagous species, rbcL
and matK genes failed if the studied individual fed on
more than one plant species due to similar length of
PCR products. A similar pattern was observed for
another polyphagous weevil, Centricnemus leuco-
grammus (Kajtoch 2014; Kajtoch & Mazur, in press).
This sequence length uniformity did not allow for gel
extraction of distinct amplicons and their direct
Sanger sequencing unless single strand conformation
polymorphism (SSCP) was implemented (Kishimoto-
Yamada et al., 2013); even then, it is not possible to
identify host plants for all samples. This problem
could be circumvented by a cloning step, but it is too
costly and time-consuming to use this technique on
larger numbers of samples. On the other hand, the
trnL intron, which showed a wide range of sequence
length, often enables the identification of two or three
host plants for a particular individual, but this
approach does not allow for the identification of all
host plants without the cloning step. Recently, this
problem was overcome by the use of high-throughput
sequencing technologies to study host plants of poly-
phagous beetles at the population level (e.g. the xero-
thermic weevil Centricnemus leucogrammus; Kajtoch
2014). Results obtained here for P inustus confirm
the utility of plant barcodes combined with high-
throughput platforms such as Illumina.

FUTURE APPLICATIONS

A wide coverage of xerothermic species from central
Europe and the availability of three barcodes (rbcL,
matK and ¢rnL) should be helpful in various ecological
studies on xerothermic associations and assemblages.
This database could be used in various ways. It should
allow for more efficient and rapid evaluation of plant
species richness in xerothermic patches of central
Europe. Moreover, this database could help in verifi-
cation assignment of plant tissues from museum col-
lections to particular species. It could be also used for
identification of rare, threatened and protected plants
illegally collected, traded and/or cultivated. All these
activities pose a serious threat for xerothermic plants
in central Europe. Plant barcodes, especially the
highly polymorphic ¢rnL intron, could be used simul-
taneously with microsatellite and/or amplified frag-

ment length polymorphism (AFLP) markers to identify
evolutionary lineages within species. This could be
important for many conservation programmes (includ-
ing translocation of individuals, reintroduction of
threatened populations and restitution of extinct popu-
lations). This database is already being used for
studies on evolutionary and ecological interactions
among xerothermic plants and beetles (in prepara-
tion). Lastly, the developed plant barcode database can
also be used for diet analyses of other flagship or rare
and threatened dry-grasslands herbivore species from
central Europe, such as skippers (Spialia sertorius),
blues (Pseudophilotes baton) and fritillary (Melitaea
cinxia) butterflies, ground squirrels (Spermophilus
citellus and S. suslicus) and hamsters (Cricetus crice-
tus). Similar plant barcode databases should be assem-
bled and characterized, and their utility verified for
other types of habitats and areas in Europe to develop
comprehensive genetic information that allows for
reliable plant species identification for systematic,
ecological and conservation purposes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Files S1-3. Databases of three barcodes — chloroplast DNA sequences: trnL intron (1), rbeL gene (2) and matK
gene (3), developed for xerothermic plants from Poland, including species added from the GenBank resources

(available as FASTA files).

Table S1. Xerothermic plant species from Poland analysed in this study with results of three plant barcodes
search in GenBank (GB) using MEGABLAST. QC, query coverage; E, E-value; Id, identity.
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Table S2. Kimura-2-parameter (K2P) distances calculated for plant genera with at least two species present in
DNA barcode database. N, number of species available for a particular barcode (¢rnL, rbeL, matK). In brackets
are species for which K2P distances equal 0.0.

Table S3. Composition of host plants assigned for P. inustus weevil with use of Illumina sequencing and two
methods of species identification: mapping and blast search against the reference database of xerothermic plant
species from Poland. Only species with relative share of at least 1.0% are presented.
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