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Successful establishment and range expansion of non-native species often

require rapid accommodation of novel environments. Here, we use common-

garden experiments to demonstrate parallel adaptive evolutionary response

to a cool climate in populations of wall lizards (Podarcis muralis) introduced

from southern Europe into England. Low soil temperatures in the introduced

range delay hatching, which generates directional selection for a shorter incu-

bation period. Non-native lizards from two separate lineages have responded

to this selection by retaining their embryos for longer before oviposition—

hence reducing the time needed to complete embryogenesis in the nest—and

by an increased developmental rate at low temperatures. This divergence mir-

rors local adaptation across latitudes and altitudes within widely distributed

species and suggests that evolutionary responses to climate can be very

rapid. When extrapolated to soil temperatures encountered in nests within

the introduced range, embryo retention and faster developmental rate result

in one to several weeks earlier emergence compared with the ancestral state.

We show that this difference translates into substantial survival benefits for

offspring. This should promote short- and long-term persistence of non-

native populations, and ultimately enable expansion into areas that would be

unattainable with incubation duration representative of the native range.

provided by Jagiellonian Univeristy R
1. Introduction
Non-native populations often encounter novel environments that impose strong

directional selection. They therefore provide useful systems to study the process

of adaptation [1–6]. However, evidence for adaptive divergence between native

and non-native populations is currently limited, in particular for vertebrates [1].

Furthermore, the selective agents responsible are typically inferred from the

pattern of phenotypic divergence, rather than being independently demon-

strated, which makes it difficult to rule out non-adaptive processes [7]. The

most convincing cases of adaptation in non-native species are therefore those

where the causes of selection can be identified and the responses mirror locally

adapted phenotypes within native ranges.

Recent studies of introduced insects and plants suggest that adaptive responses

can facilitate spread into environments that were previously too stressful [8–10]. As

climatic similarity is often the best predictor of establishment success for non-native

species [11–13], climate is likely to exercise strong selection on many non-native

populations. Such populations may therefore remain small and geographically iso-

lated until they evolve tolerance to the new climatic regime, following which rapid
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range expansion is made possible. Understanding the mechan-

isms by which populations respond and adapt to novel

climatic conditions is therefore crucial for predicting both the

persistence and expansion of non-native species.

The common wall lizard, Podarcis muralis, is native

to southern and western Europe but has been introduced

multiple times to Germany, England and North America

over the past 100 years [14–16]. These introduction sites rep-

resent different climatic conditions compared with the native

range [14]. For example, air temperatures during the main

activity season in populations in England are 5–108C lower

than their source regions in Tuscany and western France

(electronic supplementary material, figure S1). Although be-

havioural thermoregulation enables non-native lizards to

maintain annual activity patterns similar to those in their

native range, these climatic differences put soil temperatures

well below what females prefer for their nests (electronic

supplementary material, table S1). Such cool conditions

retard the rate of embryonic development [17], resulting in

delayed hatching and even failure to complete embryogenesis

before winter in cool summers [18]. Thus, we should predict

strong selection for shorter incubation duration in non-native

wall lizard populations, in particular at the cool temperatures

rarely encountered in the native range but that are frequent in

introduced populations in England.

Incubation duration can be reduced through several

different mechanisms. First, embryos may be more advanced

at oviposition. By capitalizing on the female’s ability to main-

tain body temperatures substantially higher than those of

nests, this reduces the overall time for completion of embry-

ogenesis [19]. Egg retention is evolutionarily labile in

lizards and has been shown to vary with climate within

and between species [20–24]. Second, embryos can evolve a

faster development rate. For example, in the Eastern fence

lizard (Sceloporus undulatus), embryos from populations in

cooler climates have a higher cardiac output and hence a

more efficient delivery of nutrients and oxygen, which pro-

motes faster embryogenesis [25]. Finally, embryos may

hatch at an earlier developmental stage or at a smaller size

and capitalize on residual yolk for completion of growth

after emergence [26,27].

Here, we designed a set of common-garden experiments

to test the hypothesis that non-native populations have

adapted to the cool climate in their non-native range. First,

we show that soil temperatures in the non-native range are

physiologically stressful and impose significant selection for

shorter incubation duration. Second, we test whether non-

native populations have responded to this selection and

establish the underlying mechanisms of adaptation. Finally,

we use developmental reaction norms to infer the impli-

cations of shifts in incubation duration for the timing of

hatching and recruitment under naturally fluctuating soil

temperatures in the non-native range. Our results demon-

strate prolonged embryo retention and faster embryonic

growth at low temperatures in introduced wall lizards and

suggest that these responses will have significant implications

for the long-term persistence of this species in England.
2. Material and methods
The common wall lizard is a small (approx. 50–70 mm snout-to-

vent length) diurnal lizard. It is native to southern and
western Europe, but has established non-native populations in

many places in Europe and in North America [14,15,28]. There

are around 30 extant populations in southern England, the

majority of which are highly geographically restricted with

limited ecological impact [15].

(a) Female thermal preference and soil temperature
We first established preference for nest sites under unrestric-

ted thermal conditions and in field enclosures. Unrestricted

conditions were established by creating a thermal gradient in a

large cage (1070 � 480 � 420 mm) of approximately 458C to

208C during the peak in the afternoon, falling to 158C at

night (electronic supplementary material, table S1). Five females

were used in this experiment. Females were inspected in

the morning and in the afternoon for signs of egg laying.

Once they had laid, we recovered their clutch and replaced it

with a thermal logger (Thermochron Ibutton, model number

DS1921G) that logged the temperature for five consecutive

days. A second dataset was generated from females housed in

outdoor enclosures where suitable nesting sites with naturally

variable thermal properties were available. Five female lizards

were placed into the enclosure and allowed to lay eggs. The

temperatures of nests were monitored using thermal loggers

for 35 days following oviposition. The temperatures of these

nest sites were compared to possible nest sites across the enclo-

sure. Further details on these experiments are provided in the

electronic supplementary material.

(b) Effects of hatching date on recruitment into
adulthood

In 2012, we released 288 hatchlings from females of both French

and Italian origin in a disused quarry close to the original non-

native populations on the Dorset coast (50.598 N, 22.018 E). All

eggs were incubated at a constant 248C. This temperature is at

the high end of the average expected temperature of nests in Eng-

land but at the low end of temperatures in the native range

(electronic supplementary material, table S1; [29,30]). Upon

hatching, offspring were weighed to the nearest 0.01 g and

their snout-to-vent length and total length were measured to

the nearest 0.5 mm with a ruler. They were toe clipped for indi-

vidual identification. Individuals were released in four batches,

the timing of which represented a compromise between limiting

the number of days offspring spent in captivity while maximiz-

ing the number of hatchlings released at a single field trip. The

releases occurred on 15 July (offspring hatching from 9 July

until 15 July), 24 July (16 July—24 July), 6 August (25 July—

6 August) and 21 August (6 August until 14 August).

Lizards were recaptured in their second year (i.e. first year as

adults) by repeated visits during the breeding season from late

March until late June (n ¼ 10). Upon recapture, individuals

were measured for snout-to-vent length and mass (as above)

before being temporarily marked with a marker pen before

release to avoid unnecessary recapture. Overall, we recorded 41

individuals from the 288 released hatchlings, representing a

recapture rate of 14% over the first two years of life. We used

the recapture data to test how the timing of hatching affects

recruitment into adulthood using models with a categorical vari-

able with three levels representing release batch, lineage (Italian

versus French), and their interaction as fixed effects, and

included days in the laboratory and mass at hatching as covari-

ates. Because the last release included only 27 offspring from

seven clutches, we pooled the last two release batches to avoid

having one level represented by very limited data. Furthermore,

because our sample size is modest, we could not meaningfully

take family effects into account (nine out of 65 families produced

two recruits, the rest one or none). We therefore treated all

offspring as independent for this analysis.
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(c) Establishing differences in incubation duration
between native and introduced populations

(i) Experiment at constant temperatures (208C versus 248C)
We caught 122 lizards by noosing at the early stages of gestation

in early spring 2013 at three locations in Tuscany (Greve in

Chianti (43.588 N, 11, 318 E), Prato (43.918 N, 11.108 E), Colle di

Val d’Elsa (43.428 N, 11.118 E)), four in western France (Dinan

(48.458 N, 22.078 E), Josselin (47.958 N, 22.548 E), Pontchateau

(47.438 N, 22.098 E), Pouzagues (46.788 N, 20.448 E)) and four in

southern UK (Italian origin: Ventnor Town (50.598 N, 21.218 E),

Ventnor Botanical Garden (50.588 N, 21.228 E); French origin:

Cheyne Weare (50.538 N, 22.438 E) and East Portland (50.548 N,

22.428 E)). The non-native populations represent at least two sep-

arate native sources for both the Italian and the French lineage that

correspond well to the sampling locations of native animals [15].

Females had visible mating scars, large follicles or carried recently

ovulated eggs (as determined by palpation), which ensured

that they were fertile but would complete the large majority of

gestation in the laboratory.

Females were housed individually in cages (590 � 390 �
415 mm) with sand as substrate, bricks as shelter, a water

bowl, and held at a light cycle of 12 L : 12 D. They were given

access to basking lights (60 W) for 8 h d21 and a UV light

(EXO-TERRA 10.0 UVB fluorescent tube) for 4 h d21 and they

were fed mealworms and crickets daily. Cages were inspected

in the morning and in the late afternoon for signs of oviposition

(which is easily assessed by visual inspection of females), such

that eggs were recovered within 12 h of oviposition. Once laid,

clutch size was assessed and the clutch and female were weighed

to the nearest 0.01 g. All data in this paper are from the first

clutch produced by females in that year (females can lay up to

three clutches per year). The median lay date for native females

was two weeks earlier than introduced females of both lineages

(introduced French females: 30 May, native French females:

13 May, introduced Italian females: 29 May, native Italian

females: 13 May).

For 65 clutches (each with more than four eggs), we selected

one egg for dissection to assign the embryo to a developmental

stage at oviposition according to the scheme for Lacertids [31].

For embryos that exhibited characters of two consecutive

stages, we assigned an intermediate stage (e.g. 26.5). All staging

was conducted by a single person ( J.W.) who was unfamiliar

with the coding system and hence embryos were scored blindly

with respect to origin (native versus introduced) and lineage

(French versus Italian). The remaining eggs were split into two

groups and put into small plastic containers filled two-thirds

with moist vermiculite (5 : 1 vermiculite : water volume ratio;

changed every 20th day) and sealed with clingfilm. Half the

clutch was incubated at constant 208C and the other at constant

248C in standard refrigerated incubators fitted with water baths

to maintain humidity. During incubation, we measured the

heart rate of all embryos within each of the 122 clutches as an

estimate of cardiac output and hence developmental rate [32].

Following previous work [25,32], heart rate was measured

using a digital egg monitor (Buddy, Avitronics, England) in a

room at constant temperature set to either 208C or 248C (match-

ing the incubation temperature of eggs). This was done twice

during incubation, at 35 and 65 days following oviposition in

the 248C treatment and at 20 and 40 days in the 208C treatment.

Eggs were inspected daily for signs of hatching (i.e. pipping)

and the hatching date refers to the day of emergence. At hatch-

ing, the offspring snout-to-vent lengths and total lengths were

measured to the nearest 0.5 mm with a ruler and mass was

recorded to the nearest 0.01 g.

Because of the limited sample size per population (between

five and 17 clutches), we pooled populations into the four

main categories (Native Italian, Native French, Non-native Italian
and Non-native French). We analysed differences in clutch size

and the embryonic stage at oviposition between lineages

(French versus Italian) and origin (native versus non-native).

Because of the very large differences in incubation duration

and heart rate in the 208C and 248C treatments (122.80+ 0.60

days versus 56.15+0.28 days, 47.45+0.34 beats min21 versus

76.23+0.51 beats min21), we analysed these variables separately

for the two temperature treatments (heart rate was averaged

across the two measurements for each clutch and temperature

[25,32]). By contrast, hatchling size variables overlapped between

incubation treatments and we therefore fitted a single model

with lineage, origin and temperature to the mean hatching

mass per clutch and treatment, including female identity as a

random effect. All linear models were fitted in R using the car

package to generate type III F-tests of fixed effects. When the

interaction(s) was non-significant, results for main effects are

presented from models excluding the interaction.

(ii) Experiment at shifting temperatures
To assess differences in incubation duration at temperatures too

low for completion of embryogenesis, we designed a second

experiment shifting eggs between temperatures. For this exper-

iment, we only used animals of Italian origin, collecting gravid

females in spring 2014 at three locations in Tuscany (Greve in

Chianti (43.588 N, 11, 318 E), Peccioli (43.558 N, 10.728 E), Colle

di Val’Elsa (43.428 N, 11.118 E)) and the same two focal non-

native Italian populations as in the above experiment (Ventnor

Town and Ventnor Botanical Garden). All animals were handled

and treated as above. Clutches were split into four categories:

(i) constant 288C (n ¼ 50), (ii) 158C for 14 days followed by con-

stant 288C (n ¼ 50), (iii) 188C for 14 days followed by constant

288C (n ¼ 45) and (iv) 288C for 14 days, followed by 188C for

14 days, and finally 288C until hatching (n ¼ 40). The last

treatment was included to address if there were any marked

differences for embryos exposed to cool temperature in early-

versus mid-development [33]. Eggs were inspected for hatching

around the same time daily (in the late afternoon) and hatchlings

were measured as described above.

We calculated for each clutch the differences in incubation

duration between eggs at constant 288C and eggs at the other

treatments, and used these estimates as our response variable.

A significant difference between native and non-native popu-

lations would be interpreted as faster (or slower) developmental

rate at cool temperatures. Such effects may be more or less

pronounced if embryos adjust their developmental rate to con-

ditions experienced early in gestation [19,34]. Eggs incubated at

188C for 14 days before being transferred to 288C took on average

half a day longer to hatch than eggs from the same clutch that were

exposed to the 14 days 188C treatment in mid-gestation (46.5

versus 45.9 days; paired t-test, t ¼ 2.99, p ¼ 0.01, d.f. ¼ 28).

However, because we were primarily interested in the overall

effect between native and non-native populations, we use the aver-

age of the two treatments in our analyses and for fitting thermal

reaction norms (see below), which maximizes sample sizes when

embryos in one of the 188C treatments failed to hatch.

To test for differences in preferred body temperature between

native and introduced gravid females, in 2014, we recorded the

body temperature of 72 individually housed, captive females

from both native Italian and non-native UK populations (same

sources as described above) eight times a day over a three-day

period using an infrared thermometer. This has been demon-

strated to be a reliable measure of internal body temperature in

small lizards [35]. Measurements began one hour after basking

lights came on and continued on the hour until basking lights

turned off. At night, temperatures dropped to 158C across all

cages. Thus, there was limited potential for females to alter gesta-

tional temperature via shelter site choice. We analysed differences

between native and introduced females using linear mixed models
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corresponding to offspring hatch date. Because the last release included

rspb

4
with body temperature as the response variable, origin (native

or introduced) as the predictor variable and individual ID and

observation day as random effects.
only 27 offspring from seven clutches, we pooled the last two release
batches.

release
batch hatch dates

proportion of
offspring recruited (%)

1 9 July to 15 July 16.50

2 16 July to 24 July 20.50

3 25 July to 21 Aug 7.60
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(d) Predicted hatching success in the UK
Temperature-dependent developmental rate at constant tempera-

tures can be used to predict incubation duration at fluctuating

temperatures [36–38]. To predict incubation duration of our

non-native wall lizard populations, we used our data on devel-

opmental rate at constant temperatures at 208C, 248C and 288C
and the estimated developmental rate from the experiment

switching eggs between 158C or 188C and 288C (all for the Italian

lineage; see the electronic supplementary material for further

details). Data on developmental rate at higher temperatures

were collected from the literature assuming that the developmen-

tal rate approaches a species-specific maximum at 358C, data for

which were provided by incubation experiments on a population

from northern Spain (belonging to the same lineage as our

French populations; [39,40]). Given that the difference between

lineages and origins is small already at 248C and that high temp-

eratures are rarely encountered in the UK (see above), this should

not bias our estimates. We fitted a four-parameter Weibull func-

tion and verified that it performed well for predicting incubation

duration using experimental incubation under a daily fluctuating

temperature regime similar to that of natural nests in England

(see the electronic supplementary material for details).

We used soil data for locations south of the 53rd parallel north

obtained from the British Meterological Office Integrated Data

Archive System, Land and Marine Surface Stations Data for the

period 2002–2013. We chose this period because of the availability

of recent and yearly data across a range of consistent locations

that are representative of annual variation, including relatively

warm (e.g. 2006) and cool (e.g. 2011) summers, and because it

covers the range of known wall lizard introductions in the UK.

For each of the sites, soil temperatures are recorded every hour.

We used the period from 15 May to 15 September in our analysis

as mid-May is representative of the timing of oviposition for non-

native lizards in the wild (the median lay date for females captured

in the middle or end of gestation and brought to our laboratory for

oviposition across years is 16 May; electronic supplementary

material, table S2) and hatching past mid-September is unlikely

because of the rapid decrease in daily soil temperature maximum

(soil temperatures exceed 208C—the minimum constant tempera-

ture for successful hatching in the laboratory—less than 0.3% of

the time following 15 September across all years and sites in

southern England). In addition, this four-month period is approxi-

mately equal to the predicted incubation duration for sites close to

extant non-native populations and is in line with observations of

newly hatched offspring in populations in England and at the north-

ern native range limit ([41]; T.U. and G.M.W. 2008–2013, personal

observation; T. Pashley 2000–2010, personal communication).

To generate expected hatching dates, we calculated the aver-

age proportion of time per day spent at different temperatures

over this period and used this and the developmental rate data

to generate predicted incubation durations for each location

and year (see the electronic supplementary material for details).
3. Results
(a) Female thermal preference and soil temperature
Typical nesting sites in the introduced range are substantially

cooler than is preferred by females for their nests under unrest-

ricted thermal conditions (electronic supplementary material,

table S1). We fitted thermal reaction norms for developmental

rate of native Italian lizards to soil temperatures at depths
representative of nesting sites in southern England (obtained

from the UK Meteorological Office). This predicted incubation

times well over three months even in relatively warm years,

and failure to complete embryogenesis before winter in

cooler years (electronic supplementary material, table S1 and

figure S2).

(b) Effects of hatching date on recruitment into
adulthood

There were strong effects of hatching date on juvenile

recruitment into adulthood. Even under benign incubation

temperatures that result in hatching in mid- to late summer, a

two- to three-week difference in hatching translated into sub-

stantially reduced recruitment into the breeding population

(logistic linear model: x2 ¼ 7.4, p ¼ 0.02; table 1). Combined,

these results suggest strong selection for earlier hatching in

non-native wall lizard populations.

(c) Divergence in incubation duration between native
and introduced populations

There was no difference in female snout-to-vent length between

origins (native versus non-native; F1,118 ¼ 0.01, p ¼ 0.92) or

lineages (French versus Italian; F1,118 ¼ 1.63, p ¼ 0.20). Females

from non-native populations produced larger clutches than

females from native populations, and Italian females produ-

ced larger clutches than French females (origin: F1,117 ¼ 8.73,

p ¼ 0.004; lineage: F1,117 ¼ 12.96, p , 0.001; snout-to-vent

length: F1,117 ¼ 63.4, p , 0.001). Eggs from French females

were heavier than eggs from Italian females and tended to be

smaller in non-native populations of both origins (origin:

F1,118 ¼ 5.37, p ¼ 0.022; lineage: F1,118 ¼ 3.31, p ¼ 0.072). A

total of 521 eggs were produced, of which 468 hatched. Embryo-

nic mortality did not differ between origins (x2 ¼ 0.35, p ¼ 0.55)

or lineages (x2 ¼ 0.02, p ¼ 0.90).

Incubation duration was strongly affected by incubation

temperature, and it was significantly shorter in non-native

populations of both Italian and French lineages at 208C but

not at 248C (table 2 and figure 1). Embryos of the Italian line-

age hatched sooner than embryos of the French lineage at

both temperatures (table 2 and figure 1). Egg mass did not

affect incubation duration at 208C, but larger eggs had shorter

incubation duration at 248C (table 2). The shifting incubation

temperature experiment confirmed shorter incubation dur-

ation for non-native animals at both 158C and 188C. Eggs

from non-native females of Italian origin exhibited a 12.7+
0.33 day delay in incubation duration when held at 158C
for 14 days (compared to eggs held at a constant 288C)
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Table 2. Output from linear models examining the effect of lineage and origin on the incubation duration of eggs kept at 208C or 248C. Statistically significant
p-values are in bold. Main effects reported from model excluding interaction.

2088888C 2488888C

factor d.f. F p d.f. F p

lineage 1,96 151.77 ,0.001 1,99 197.23 ,0.001

origin 1,96 47.41 ,0.001 1,99 3.07 0.08

egg mass 1,96 0.83 0.36 1,99 4.27 0.04

lineage � origin 1,95 1.68 0.19 1,98 0.74 0.39
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compared with a delay of 13.6+ 0.14 days for eggs from

native females (F1,36 ¼ 7.91, p ¼ 0.007). The same pattern

was observed at 188C (non-native populations ¼ 10.9+0.21

day delay; native populations ¼ 11.5+0.18 day delay;

F1,36 ¼ 4.14, p ¼ 0.049).

Embryos from non-native populations were significantly

more advanced at oviposition compared with embryos

from native populations, and this pattern was consistent for

both lineages (F1,55 ¼ 11.10, p ¼ 0.002; figure 2). Differences

in embryonic stage are unlikely to be explained by exposure

to higher temperature before oviposition as there was no

difference in gestational body temperature of non-native

and native females (tested in the Italian lineage only: x2 ¼

0.92, p ¼ 0.34). Heart rate showed a more complex pattern,

with a predicted higher heart rate in non-native populations

of the French lineage compared with their native popula-

tions, but no difference in embryos from the Italian lineage.

This lineage-by-origin interaction was significant at 208C
(F1,86 ¼ 7.64, p ¼ 0.007; figure 3) but failed to reach statistical

significance in the 248C treatment (F1,85 ¼ 3.71, p ¼ 0.057;

figure 3). Refitting models of incubation duration with

embryonic stage at oviposition as an additional predictor

confirmed that it significantly contributed to the shorter
developmental time at both 208C (F1,49 ¼ 14.23, p , 0.001)

and 248C (F1,52 ¼ 16.72, p , 0.001). This was not the case

for heart rate, which failed to significantly predict incubation

duration at either temperature in refitted models (F1,81 ¼ 1,38,

p ¼ 0.24 and F1,84 ¼ 1.89, p ¼ 0.17, respectively). In both

cases, the difference between non-native and native popu-

lations at 208C remained statistically significant ( p , 0.001).

Finally, Italian offspring were smaller than French offspring

(F1,105.71 ¼ 19.52, p ¼ 0.001) and both lineages had smaller

offspring at 208C compared with 248C (F1,65.96 ¼ 135.32, p ,

0.001), but offspring from non-native populations hatched

at a similar size to offspring from native populations

(F1,104.98 ¼ 1.56, p ¼ 0.21).
(d) Consequences for the timing of hatching
To estimate the consequences of these responses for the timing

of hatching, we modelled the predicted incubation duration of

non-native and native lizards (of Italian origin) based on natu-

rally fluctuating soil temperatures in sites representative of

nesting locations across 34 sites in southern England. Predicted

hatch dates for non-native eggs were one to three weeks earlier

compared with the ancestral state, which greatly increased
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the chances of completing embryogenesis before autumn

(figure 4).
4. Discussion
Our common-garden experiments demonstrate parallel

reduction in incubation duration of embryos in wall lizard

populations following independent introduction to cooler cli-

mate. This is consistent with adaptive evolutionary responses

to the relatively cool nest temperatures in the introduced

range, which necessitates sustained development at tempera-

tures well below 248C to complete embryogenesis (only 3%

of soil temperature recordings at soil depths representative of

nests in southern England are above 248C for the relevant

incubation period, i.e. from 15 May to 15 September). While

embryo retention and faster developmental rate have evolved

repeatedly in lizards in cool climates [21–24], our results

demonstrate that such adaptations can arise very rapidly.

Extant wall lizard populations in England were introduced

less than 100 years ago, with the target populations tracing

their origins back to between two and eight decades [15].

Thus, the results are consistent with recent evidence that geo-

graphical clines in introduced insects and plants can evolve

within tens of generations (e.g. [42,43]), and with studies of

vertebrates that have demonstrated adaptive divergence

across a similar number of generations [2,3,5,44–47].

The reduction in incubation duration in non-native wall

lizards appears to have multiple causes. Embryos in non-

native populations are more advanced at the time of egg

laying, which reduces the overall time to complete embryogen-

esis in the nest. We can rule out facultative egg retention as all
females were housed under identical conditions and there was

no difference in selected body temperature between native and

introduced females (in addition, previous work has failed to

experimentally demonstrate plasticity in egg retention in

P. muralis [30], but see [24] for evidence from the skink Bassiana
duperreyi). However, egg retention cannot fully account for the

reduction in incubation duration in non-native populations,

nor does it account for the difference between lineages, as

both lineage and origin explained significant amounts of

variation even when the differences in embryo stage were

controlled for statistically. Embryos from non-native popu-

lations must therefore also develop faster at and below 208C.

Interestingly, there was no, or limited, increase in development

rate at 248C and 288C. These responses thus demonstrate

adaptive evolution of the slope and curvature of thermal reac-

tion norms, which appears to be common for population

divergence in plasticity [48].

What are the mechanisms underlying faster developmen-

tal rate in non-native populations? Eggs were somewhat

smaller in non-native populations, but egg size cannot

explain differences in incubation time between non-native

and native populations (in fact, larger eggs hatched earlier

at 248C). Other maternal effects on yolk composition could

be involved and the relative contribution to changes in yolk

nutrients versus intrinsically upregulated metabolism in

embryos warrants further study. The increased heart rate of

embryos from non-native populations of the French lineage

suggests that a faster development may partly be owing to

increased cardiac output [32]. This mechanism has been

shown to account for faster developmental rate at high lati-

tudes in Sceloporus lizards [25]. However, heart rate itself

was a poor predictor of incubation duration across our popu-

lations and lineages, suggesting that the divergence between

non-native and native populations in the rate of development

is not well explained by such simple estimates of nutrient and

O2 delivery to developing tissues. The same applies to differ-

ences between lineages. Data from Spanish populations close

to the presumed ice age refugia for the French lineage have

even slower developmental rates at cool temperatures than

our native French populations [39], suggesting that there

may be a phylogenetic signal to developmental rate, which

persists in non-native populations.

By predicting incubation duration of non-native and native

lizards from soil temperatures across the introduced range, we

show that the combined effects of egg retention and faster

embryonic growth should lead to a one- to three-week earlier

emergence compared with the ancestral state. Even two-

weeks earlier hatching, which is a common prediction from

the data, can make the difference between successful hatching

and failing to hatch before the onset of autumn. Our recapture

data show that this also constitutes a substantial (e.g. twofold)

increase in survival after emergence (see also [30]). This

increased survival of early hatched offspring could be the

result of several non-mutually exclusive mechanisms, includ-

ing increased opportunity for growth and production of fat

bodies prior to hibernation ([49] see also [50]), positive effects

of high embryonic temperature on physiological and morpho-

logical traits [51,52] or greater ability to capitalize on seasonally

available food sources [53]. Earlier emergence and long-term

persistence of non-native populations could be further

enhanced if non-native lizards also initiated reproduction ear-

lier than their native counterparts. However, the extent to

which there may have been corresponding responses in
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female characters that promote egg laying early in spring in

non-native populations is currently unknown.

The shorter incubation duration should increase short-

and long-term persistence of non-native populations and

may enable expansion into areas that would be unattainable

with incubation durations representative of the native range.

A time delay between introduction and range expansion

appears to be a common pattern in biological invasions and

recent studies of non-native insects and plants have demon-

strated how adaptive divergence can facilitate spread into
environments that were previously too stressful [8,9]. Wall

lizards in England show limited natural dispersal [15] but

the ability to recruit from nests with less benign thermal pro-

files may contribute to their expansion in several locations.

Non-native populations with shorter incubation duration

may also serve as sources for new introductions and hence

make human-mediated range expansion more likely [54].

In summary, prolonged embryo retention and faster

embryonic growth at low temperatures in non-native wall

lizards suggest rapid adaptation following introduction to a

cool climate. We show that these responses have significant

effects on recruitment and hence are likely to contribute to

the survival and eventual range expansion of the species in

its introduced range.
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