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1 Introduction

Three of the four fundamental interactions of nature have been successfully quantised, the

notable exception being gravity. The central difficulty in formulating a theory of quantum

gravity is that the computational techniques applied so successfully to the other forces do

not give consistent results when applied to quantum general relativity. The origin of this

incongruity stems from the fact that gravity is distinguished from the other fundamental

interactions of nature by its dimensionful coupling constant GN . In d-dimensional space-

time Newton’s gravitational coupling has a mass dimension of [GN ] = 2− d, meaning that

in the case of 4-dimensional spacetime higher-order loop corrections generate a divergent

number of counterterms of ever increasing dimension. One can clearly see this from the

perturbative quantum field theoretic treatment of gravity in d-dimensional space, showing

that momentum p scales with loop order L as∫
pA−[GN ]Ldp, (1.1)

where A is a process dependent quantity that is independent of L [1]. Equation (1.1) is

clearly divergent for [GN ] < 0, because the integral will grow without bound as the loop-

order L increases in the perturbative expansion [1]. Interestingly, eq. (1.1) is divergence

free for d ≤ 2, meaning that gravity as a perturbative quantum field theory can be renor-

malizable by power counting if the dimension of spacetime is equal to, or smaller than,

two. This raises the exciting possibility that spacetime could act as its own ultraviolet

regulator via the mechanism of dynamical dimensional reduction, possibly yielding a finite

and predictive theory of quantum gravity.

Remarkably, a number of seemingly independent approaches to quantum gravity have

reported that the dimension of spacetime exhibits a scale dependence. Causal dynamical
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triangulations (CDT) [2], exact renormalization group methods [3], Hořava-Lifshitz grav-

ity [4], loop quantum gravity [5], and string theory [6, 7] all provide evidence that the

dimension of spacetime appears to reduce from approximately four on macroscopic scales

to approximately two on microscopic scales. Individually these results do not constitute

substantial evidence in support of dimensional reduction; collectively, however, they form

a compelling argument that demands further attention.

One of the original formulations of lattice gravity is Euclidean dynamical triangulations

(EDT) [8, 9], which defines a spacetime of locally flat n-simplices of fixed edge length, where

a n-simplex is the n-dimensional analogue of a triangle. However, the original EDT model

quickly ran into significant problems. The parameter space of couplings contained just two

phases, neither of which resembled 4-dimensional semi-classical general relativity, and the

two phases were separated by a first order critical point, making it unlikely that one could

take a continuum limit [10, 11]. In response to these problems a causality condition was

added, giving rise to the method of causal dynamical triangulations (CDT) [12].

In close analogy to the sum over all possible paths in Feynman’s path integral ap-

proach to quantum mechanics, CDT is an attempt to construct a nonperturbative theory

of quantum gravity via a sum over different spacetime geometries. In CDT, such space-

time geometries are defined by locally flat n-dimensional simplices that are glued together

along their (n− 2)-dimensional faces, forming a n-dimensional simplicial manifold. A key

ingredient of CDT is the introduction of a causality condition, in which one distinguishes

between space-like and time-like links on the lattice. In this way one can define a folia-

tion of the lattice into space-like hypersurfaces, each with the same fixed topology. Only

geometries that can be foliated in this way are included in the ensemble of triangulations

that define the path integral measure.

The introduction of the causality condition in the CDT approach to quantum gravity

has produced a number of promising results, in contrast to the original EDT version. A

four-dimensional de Sitter like phase was shown to emerge within the parameter space of

CDT [13], and the likely identification of a second-order phase transition line suggests the

exciting possibility that the theory may have a well defined continuum limit [14]. Another

key result is that within the de Sitter-like phase of CDT the dimension appears to be scale

dependent, dynamically reducing from approximately four on large scales to approximately

two on small scales [2]. Since a scale dependent dimension may have important implications

for the renormalizability of quantum gravity it forms the central focus of this work.

At first glance one might think that performing a weighted sum over geometries

constructed by gluing together n-dimensional building blocks will always result in a n-

dimensional geometry, however, this is not necessarily the case. For dynamical triangula-

tions the dynamics is contained in the connectivity of the n-simplices, where the geometry

is updated by a set of local update moves [15]. These local update moves can result in the

deletion or insertion of vertices within simplices, and so it is possible to obtain a geometric

structure that has self-similar properties at different scales; meaning the geometry can be

a fractal. A fractal geometry admits non-integer dimensions, so recovering n-dimensional

space from n-dimensional building blocks is a non-trivial test of the theory; a test that CDT

has passed by demonstrating that a four-dimensional geometry emerges on large scales [2].
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The CDT approach to quantum gravity allows the fractal dimension of the ensemble of tri-

angulations to be computed numerically, typically this is done by computing the Hausdorff

dimension and the spectral dimension.

The Hausdorff dimension [16] generalises the concept of dimension to non-integer val-

ues, and can be defined by considering how the volume of a sphere with topological dimen-

sion DT scales with radius r in the limit r → 0,

DH = lim
r→0

ln (V (r))

ln (r)
. (1.2)

The spectral dimension, on the other hand, is related to the probability of return

Pr (σ) for a random walk over the ensemble of triangulations after σ diffusion steps. One

can derive the spectral dimension (following refs. [2, 17]) starting from the d-dimensional

diffusion equation,

∂

∂σ
Kg (ζ0, ζ, σ)− gµν 5µ 5νKg (ζ0, ζ, σ) = 0, (1.3)

where Kg is known as the heat kernel describing the probability density of diffusion from

ζ0 to ζ in a fictitious diffusion time σ. 5 is the covariant derivative of the metric gµν .

The diffusion process is taken over a d-dimensional closed Riemannian manifold M with a

smooth metric gµν (ζ).

In the case of infinitely flat Euclidean space, eq. (1.3) has the simple solution,

Kg (ζ0, ζ, σ) =
exp

(
−d2

g (ζ, ζ0) /4σ
)

(4πσ)d/2
, (1.4)

where d2g (ζ, ζ0) is the geodesic distance between ζ and ζ0.

The quantity that is measured in the numerical simulations is the probability Pr (σ)

that the diffusion process will return to a randomly chosen origin after σ diffusion steps

over the spacetime volume V =
∫
ddζ
√

det (g (ζ)),

Pr (σ) =
1

V

∫
ddζ
√

det (g (ζ))Kg (ζ, ζ, σ) . (1.5)

The probability of return to the origin in asymptotically flat space is given by,

Pr (σ) =
1

σd/2
, (1.6)

and so we can extract the spectral dimension DS by taking the logarithmic derivative with

respect to the diffusion time, giving

DS = −2
dlog〈Pr (σ)〉

dlogσ
. (1.7)

Equation (1.7) is strictly only valid for an infinitely flat Euclidean space. However, one

can still use this definition of the spectral dimension to compute the fractal dimension of a

curved, or finite volume, by factoring in the appropriate corrections for large diffusion times

σ. Specifically, the probability that the random walk will return to the origin approaches
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unity as the ratio of the volume and the diffusion time approaches zero, i.e. when the

diffusion time is much greater than the volume. The mathematical explanation for this is

that the zero mode of the Laplacian −4g, which determines the behaviour of Pr (σ) via

its eigenvalues λn, will dominate the diffusion in this region, causing Pr (σ) → 1/N4 for

σ � N
2/DS
4 [2]. One can therefore factor in the appropriate finite volume corrections by

omitting values of DS (σ) for which σ � N
2/DS
4 .1 The spectral dimension allows one to

probe the geometry of spacetime over varying distance scales. The Hausdorff and spectral

dimensions coincide with the standard measure of the dimension, the topological dimension,

when the manifold is non-fractal.

2 Asymptotic safety

As first suggested by Weinberg [1], the concept of the renormalizability of gravity might

be generalised to include the nonperturbative regime via the asymptotic safety scenario.

In this scenario gravity would be nonperturbatively renormalizable if a finite number of

relevant couplings end on an ultraviolet fixed point (UVFP). In a lattice theory of gravity,

such as CDT, an UVFP would appear as a second order critical point, the approach to

which would define a continuum limit.

However, there exists an argument due to Banks [18] (see also Shomer [19]) against the

possibility of asymptotic safety. The argument compares the density of states at high ener-

gies expected for a theory of gravity to that of a conformal field theory. Since a renormaliz-

able quantum field theory is a perturbation of a conformal field theory by relevant operators,

a renormalizable field theory must have the same high energy asymptotic density of states

as a conformal field theory. It follows from dimensional analysis, and the extensive scaling of

the quantities considered, and the fact that a finite temperature conformal field theory has

no dimensionful scales other than the temperature, that the entropy S and energy E scale as

S ∼ (RT )d−1 , E ∼ Rd−1T d (2.1)

where R is the radius of the spatial volume under consideration and T is the temperature.

It follows that the entropy of a renormalizable theory must scale as2

S ∼ E
d−1
d . (2.2)

For gravity, however, one expects that the high energy spectrum will be dominated by

black holes.3 The d-dimensional Schwarzschild solution in asymptotically flat spacetime

has a black hole with event horizon of radius rd−3 ∼ GNM , where M is the mass of the

black hole.4 The Bekenstein-Hawking area law tells us that S ∼ rd−2, so that

S ∼ E
d−2
d−3 . (2.3)

1The curvature of the space on which the diffusion process occurs should also be corrected for due to

the fact that it will change the probability that the diffusion process will return to the origin [2]. Curvature

corrections are not estimated in this work.
2See ref. [20] for a critique of the reasoning that leads to this scaling.
3Although this assumption has been questioned by Percacci and Vacca [21], among others.
4Asymptotically safe black holes are actually Schwarzschild-de Sitter black holes whose entropy is given

by the Cardy-Verlinde formula, which may itself resolve the apparent contradiction between black hole

entropy and asymptotic safety [22].

– 4 –



J
H
E
P
0
3
(
2
0
1
5
)
1
5
1

Figure 1. A schematic representation of the phase diagram of 4-dimensional CDT. We observe

three main phases: a branched polymer-type phase (phase A), a crumpled phase (phase B) and the

physically interesting de Sitter phase (phase C). The thicker transition lines represent previously

measured phase transition points and the thinner lines an interpolation. Superimposed on the phase

diagram are the 4 locations within phase C at which the spectral dimension is determined in this

work, as indicated by the black squares. The arrows indicate the apparent direction of decreasing

relative lattice spacing.

This scaling disagrees with that of eq. (2.2). Assuming the argument leading to eq. (2.3)

is valid then one is led to conclude that gravity cannot be formulated as a renormalizable

quantum field theory. This is a potentially serious obstacle for asymptotic safety, a possible

resolution of which is provided in the following section.

3 Measurements of the spectral dimension in CDT

The canonical point in the physical de Sitter phase of CDT, namely (κ0 = 2.2,∆ = 0.6),

has previously been shown to exhibit a scale dependent spectral dimension, yielding

DS (σ →∞) = 4.02 ± 0.10, and DS (σ → 0) = 1.80 ± 0.25. With a fit to the functional

form

DS (σ) = a− b

c+ σ
, (3.1)

giving a = 4.02, b = 119 and c = 54 [2]. As the authors of ref. [2] correctly claim the short

distance spectral dimension is thus consistent with the integer 2. However, the fact that this

measurement is for just a single point in the parameter space, coupled with the relatively
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(κ0,∆) N4,1 〈N4,1 +N3,2〉
(2.2, 0.6) 160,000 367,000

(3.6, 0.6) 160,000 267,000

(4.4, 0.6) 160,000 207,000

(4.4, 2.0) 300,000 384,000

Table 1. A table comparing the number of N4,1 simplices with the average total number of

simplices 〈N4,1 +N3,2〉 for each point studied in the parameter space.

large statistical error makes definitive conclusions difficult. Since this result has potentially

important consequences for the renormalizability of gravity, we revisit this calculation,

attempting a more comprehensive study of the spectral dimension in phase C of CDT.

We calculate the spectral dimension as a function of diffusion time for three different

κ0 values along the ∆ = 0.6 line, in addition to a fourth point κ0 = 4.4,∆ = 2.0, within

the physical phase of CDT, as indicated by the black squares in figure 1. For three of these

points, namely (κ0 = 2.2, 4.4,∆ = 0.6) and (κ0 = 4.4,∆ = 2.0), we have also calculated

DS (σ) for multiple lattice volumes. This multi-volume study and related discussion can

be found in the subsection on systematic errors (section 3.2).

In the calculation of the spectral dimension presented in this work we take the starting

point of our diffusion to be in the time slice containing the maximal number of N4,1 sim-

plices, as is done in e.g. ref. [2]. In this way we can be sure that we are investigating the

bulk properties of the geometry with each diffusion. The diffusion process is followed out

to a maximum of 500 diffusion steps. Simulations were performed with a time extension

of t = 80. The attempted Monte Carlo moves that update the geometry were performed

in units of 106, with each unit defining a sweep. The number of sweeps required to reach

a thermalized configuration grows approximately linearly with N4,1, and is typically of

the order ∼ 108 sweeps for the largest ensembles [2]. We implement an effective linear

four-volume fixing constraint

δS = ε|N4,1 −N target
4,1 |, (3.2)

with ε = 0.05 during thermalization and ε = 0.02 afterwards. We choose to fix N4,1 as

opposed to the total four-volume N4,1 + N3,2 for technical convenience. We have checked

that for a given number of N4,1 simplices we also obtain a sharply peaked number of N3,2

simplices, and hence a well-defined average total four-volume 〈N4,1 + N3,2〉 at each point

sampled in phase C of the parameter space (see table 1).

The main results of this work are presented in figure 2 and table 2. We find that the

long distance spectral dimension is consistent with the semiclassical dimensionality of 4,

and that the spectral dimension smoothly decreases to a value consistent with 3/2 on short

distance scales and for sufficiently fine lattice spacings.

Both correlated and uncorrelated fits to the data give similar results, as demonstrated

by the fits to the (2.2, 0.6) 160K data in figure 2. However, using the full covariance matrix

in the estimation of χ2 we obtain a relatively large χ2/d.o.f = 1.92. In the absence of any
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Figure 2. The spectral dimension DS as a function of the diffusion time σ for four different

points in the de Sitter phase of CDT. The DS (σ) curves corresponding to points along the ∆ = 0.6

line are calculated using 160,000 N4,1 simplices. DS (σ) for κ0 = 4.4,∆ = 2.0 is calculated using

300,000 N4,1 simplices. The light blue error bands come from uncorrelated fits to the data using the

functional form of eq. (3.1) and using the fit range σ ∈ [50, 494] for the point κ0 = 2.2,∆ = 0.6 and

σ ∈ [60, 492] for the other three points. We extrapolate to σ = 0 and σ →∞ using the fit function

of eq. (3.1). The uncorrelated fit shows only the central value for comparison. Errors presented here

are statistical only. Errors in table 2 include the total statistical and systematic error estimate.

(κ0,∆) N4,1 DS(∞) DS(0) s.d. of DS(0) from 2 arel

(2.2, 0.6) 160,000 4.05± 0.17 1.970± 0.266 0.1 1.00

(3.6, 0.6) 160,000 4.31± 0.32 1.576± 0.093 4.5 0.57

(4.4, 0.6) 160,000 4.12± 0.16 1.534± 0.058 8.0 0.11

(4.4, 2.0) 300,000 4.14± 0.12 1.540± 0.060 7.7 0.10

Table 2. A table of the long DS(σ → ∞) and short distance spectral dimension DS(σ → 0) for

several different (κ2,∆) values. DS(σ → ∞) and DS(σ → 0) are determined from a fit-function

of the form a − b
c+σ as first proposed in ref. [2]. The fifth column gives the number of standard

deviations (s.d.) of the values of DS(σ → 0) from the integer 2. The rescaling factor arel is

determined by the method of best overlap of the rescaled spectral dimension curves.
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better theoretical guidance as to the correct functional form of the spectral dimension we

use an uncorrelated version of the fit function of eq. (3.1) as our fit ansatz, and attempt

to more accurately estimate systematic errors by varying the fit functions and the fit

range. We obtain the central values of DS (∞) and DS (0) quoted in table 2 by using the

uncorrelated fit function of eq. (3.1) over the data range σ ∈ [50, 490] in steps of 4 for the

point (2.2, 0.6) and σ ∈ [60, 490] in steps of 4 for the other three points. The errors quoted

in table 2 are determined by varying the fit function and the fit range as discussed above

and adding the statistical error in quadrature.

We now return to the holographic argument against the asymptotic safety scenario pre-

sented in the introduction. We wish to highlight the fact that eqs. (2.2) and (2.3) agree if,

and only if, the spacetime dimension d is equal to 3/2;5 which is precisely the value we find

for the small distance spectral dimension of CDT.6 The idea that the value of the short dis-

tance spectral dimension might resolve the tension between asymptotic safety and hologra-

phy was first proposed in the context of Euclidean dynamical triangulations [24]. However,

a detailed study of the particular region of parameter space considered the best candidate

for a semiclassical phase revealed an effective dimension inconsistent with four dimensional

semiclassical spacetime on macroscopic scales [25, 26]. A central motivation of the present

work was then to measure the small distance spectral dimension using the causal version of

dynamical triangulations (CDT); a formulation known to have a semiclassical phase [27].

3.1 Searching for a continuum limit in CDT

In a lattice formulation of an asymptotically safe field theory, the fixed point would appear

as a second-order critical point, the approach to which would define a continuum limit.

The divergent correlation length characteristic of a second-order phase transition would

allow one to take the lattice spacing to zero while keeping observable quantities fixed in

physical units. Hence, developing a method to determine the lattice spacing may prove

useful when investigating renormalization group flow within the physical de Sitter phase of

CDT, and in particular in the search for a fixed point at which a→ 0. Here we outline one

such method that could be used to determine the relative lattice spacing via a comparison

of the running spectral dimension at different values of the bare parameters.

Moving along the black line in the direction of the arrows in figure 1 the spectral

dimension curves flatten out, as shown in figure 2. The implication being that as one

increases κ0 and ∆ the lattice spacing a decreases (similar results were reported in ref. [28]),

since it takes a greater number of diffusion steps before the same dimension is obtained.

One can then rescale the diffusion time σ by a factor arel for each curve until they overlap,

as shown in figure 3. Equation (1.3) seems to suggest the rescaling factor arel should be

proportional to the square of the lattice spacing a, which should be taken into account when

5This counter-argument relies on the plausible assumption that the relevant dimension in the holographic

scaling argument is also the spectral dimension as suggested by e.g. ref. [23].
6In ref. [20] the authors argue that the scaling relation of eq. (2.3) is incorrect for the class of black hole

considered, due to the fact that R depends on the energy E of the black hole, whereas to obtain eq. (2.3)

R must be treated as a constant. This leads to a modified version of eq. (2.3) of the form S
Rd−1 ∼

(
E

Rd−1

)ν
,

with νcft = d−1
d

for a conformal field theory, and νBH = 1
2

for a semiclassical black hole. The authors of

ref. [20] then point out that νBH = νCFT when d = 2 [20]. This result appears to have some tension with

the values we obtain for DS (0) in this work, at least for some of the points we sampled in phase C of CDT.
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Figure 3. Rescaled spectral dimension fits according to the functional form DS = a − b
c+σ/arel

,

with arel chosen such that the curves give the best overlap.

determining the cut-off scale in physical units. The fit curves are used in the comparison

rather than the actual data because it is easier to determine the rescaling factor arel for

which the best overlap occurs. The curves are normalized such that the scale factor arel
is set to unity for the κ0 = 2.2,∆ = 0.6 curve.7 The factor arel that each curve must be

rescaled by to obtain agreement with the other curves will then be related to the change

in lattice spacing. The rescaling factor arel, as well as the long and short distance spectral

dimension, are displayed in table 2 for each (κ0,∆) value. Interestingly, going from the

point (κ0 = 2.2,∆ = 0.6) to (κ0 = 3.6,∆ = 0.6) we find qualitatively similar behaviour to

that observed in ref. [27] between the same two points in parameter space, although the

exact quantitative agreement strongly depends on the arguments used. If we assume that

the change in the rescaling parameter arel between different points in the parameter space is

proportional to the change in the square of the lattice spacing a, as suggested by eq. (1.3),

and by using the values of the absolute lattice spacing reported in ref. [27], we are led to the

conclusion that simulations for the bare parameters κ0 = 4.4,∆ = 0.6 and κ0 = 4.4,∆ = 2.0

have a lattice spacing already in the sub-Planckian regime.

3.2 Systematic errors

Approximating continuous spacetime with a discrete and finite lattice inevitably introduces

systematic errors, the main sources being finite-size effects and discretization errors.

Due to finite computational power it is only ever possible to simulate with finite lattice

volumes, however, one can quantify finite-size effects by calculating an observable for several

7This is obviously a matter of preference and one is free to make any of the (κ0,∆) points the canonical

value against which the others are compared.
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different lattice volumes and extrapolating to the infinite volume limit. Thus, one can

estimate the lattice volume required such that finite-size effects become negligible. Figures 4

and 5 show the spectral dimension as a function of diffusion time for different lattice volumes

at three different points in the parameter space. For the point κ0 = 2.2,∆ = 0.6 there

exists a statistically significant difference between the spectral dimension curves for the

80K and 160K ensembles for large diffusion times. As mentioned in the introduction this

is because when σ becomes much greater than N
2/DS
4 finite-size effects begin to dominate,

eventually driving DS to zero. Finite-size effects can be seen to play a significant role for

the 80K ensemble at κ0 = 2.2,∆ = 0.6 for σ greater than approximately 350, as evidenced

by DS (σ) reaching a maximum and then beginning to decrease. However, this is not true

of the 120K and 160K ensembles as the condition σ � N
2/DS
4 is not met for these larger

lattice volumes within the σ range presented. Furthermore, as we move to points in the

parameter space corresponding to finner lattice spacings, i.e. κ0 > 2.2 with fixed ∆ = 0.6,

the value of DS is smaller for an equivalent σ value, and thus the condition σ � N
2/DS
4 is

only met for much larger σ values.

For the point κ0 = 4.4,∆ = 2.0 the much finner lattice spacing results in a much smaller

absolute lattice volume, and so one should be careful to simulate with a large enough volume

so as to not underestimate the large distance spectral dimension, as suggested in figure 5.

Figure 5 indicates that the value ofDS (∞) increases quite rapidly when comparing the rela-

tively smaller lattice volumes of 160K, 240K and 270K at this point, but that when compar-

ing the larger 270K and 300K ensembles the DS (σ) curves appear to stop growing, becom-

ing statistically comparable. Figures 4 and 5 suggest that finite-size effects are mostly under

control for the largest lattice volumes at each point, as presented in figure 2 and table 2.

Errors associated with using a discrete lattice to approximate continuum physics, dis-

cretization errors, can be estimated by using an effective field theory and extrapolating

down to the continuum. One estimates discretization errors by performing numerical sim-

ulations at successively smaller values of the lattice cut-off a, i.e. taking the limit a → 0.

Hence, discretization errors become increasingly insignificant as one decreases the lattice

spacing. Large discretization errors are typically associated with the small scale spectral di-

mension. For a small number of diffusion steps the behaviour of DS (σ) can be significantly

different when considering an even or odd number of diffusion steps. These odd-even oscilla-

tions become negligible for σ ∼ 50 for the coarsest lattice, namely κ0 = 2.2,∆ = 0.6, and for

σ ∼ 60 for the finer lattices κ0 = 3.6, 4.4,∆ = 0.6 and κ0 = 4.4,∆ = 2.0 as demonstrated in

figure 6. To reduce discretization errors we omit values ofDS for which σ ≤ 50 for the coarse

lattice, and σ ≤ 60 for the finner lattices, from the fit to the functional form of eq. (3.1).

We obtain a more complete estimation of the systematic error associated with our spec-

tral dimension measurements by varying the range of σ values over which the fit function

of eq. (3.1) is applied. Furthermore, due to the absence of any solid theoretical motivation

for using the functional form of eq. (3.1) in the fit to our data we also estimate a contri-

bution to the systematic error associated with using the alternative asymptotic functional

forms DS (σ) = a − b exp (−cσ) and DS (σ) = a − (b/ (c+ σ))d, where a, b, c and d are

unconstrained fit parameters, the values of which are given in tables 3 and 4.
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Figure 4. A multi-volume study of the spectral dimension at two different points in the parameter

space of CDT. Finite-size effects for the κ0 = 2.2 and κ0 = 4.4 at ∆ = 0.6 ensembles appear to be

under control for the larger 160K lattices.

0 100 200 300 400 500
Σ1.0

1.5

2.0

2.5

3.0
DS

Κ0=4.4, D=2.0, N4,1=300k

Κ0=4.4, D=2.0, N4,1=270k

Κ0=4.4, D=2.0, N4,1=240k

Κ0=4.4, D=2.0, N4,1=160k

Figure 5. A multi-volume study of the spectral dimension at the point κ0 = 4.4,∆ = 2.0. Since this

point in the parameter space corresponds to a very small lattice spacing in Planck units one must use

a much larger lattice volume of 270K or 300K so as to not underestimate the large distance spectral

dimension due to the much smaller absolute lattice volume for a given number of N4,1 simplices.
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Figure 6. Odd-even oscillations in the small scale spectral dimension for four different values of

the parameters κ0 and ∆. Note the oscillations have a larger amplitude and σ extension for values

of the bare parameters that correspond to finner lattices. In the calculation of DS (σ) we omit

σ < 50 values for the coarsest lattice, namely κ0 = 2.2,∆ = 0.6, and omit σ < 60 values for the

finner lattices κ0 = 3.6, 4.4,∆ = 0.6 and κ0 = 4.4,∆ = 2.0.

Fit-function (2.2, 0.6) (3.6, 0.6)

a b c d a b c d

a− b exp (−cσ) 3.74 1.73 0.013 - 3.74 2.14 0.0078 -

a− (b/ (c+ σ))d 4.20 108.17 21.69 0.62 4.01 479.57 339.14 2.43

Table 3. The fit parameters a, b, c and d for the two alternative fit functions used in estimating

the systematic error for the bare parameters (2.2, 0.6) and (3.6, 0.6) with N4,1 = 160, 000.

Fit-function (4.4, 0.6) (4.4, 2.0)

a b c d a b c d

a− b exp (−cσ) 3.83 2.18 0.0016 - 4.12 2.46 0.0013 -

a− (b/ (c+ σ))d 3.99 1213.56 586.11 1.24 4.00 1337.74 648.10 1.25

Table 4. The fit parameters a, b, c and d for the two alternative fit functions used in estimating

the systematic error for the bare parameters (4.4, 0.6) with N4,1 = 160, 000 simplices, and for the

bare parameters (4.4, 2.0) with N4,1 = 300, 000.
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Figure 7. The spectral dimension in phase A of CDT, calculated at the point κ0 = 8.0,∆ = 0.6

using 160,000 N4,1 simplices.

3.2.1 Investigating systematic errors in phase A

Using two-dimensional toy models the spectral dimension in the branched polymer phase

of Euclidean quantum gravity has been determined from purely analytic considerations [29,

30] to be 4/3. Although such a result is yet to be established in the full four-dimensional

theory the geometric properties in phase A of four-dimensional CDT are largely expected

to be analogous to the branched polymer phase of EDT. In this work we numerically

determine the spectral dimension in phase A of CDT and find a value consistent with the

constant 4/3 over the σ range studied σ ∈ [60, 492], as can be seen in figure 7. This result

suggests that the geometry in phase A of CDT at least shares some universal properties

with branched polymer systems. If we assume that the analytical value of 4/3 found in

two-dimensional models [29, 30] is also valid in the full four-dimensional theory then it

would be possible to get a sense of how small we can reliably take σ by comparing our

numerical results for the spectral dimension in phase A with the constant value 4/3. Such a

comparison also suggests discretization effects are small for σ > 60 for this lattice volume.

3.3 Statistical errors

If one calculates an observable using a lattice that is not thermalized one will obtain an

erroneous result. It is therefore important to check all lattices are thermalized before

one begins taking measurements. Once thermalization has been achieved, increasing the

number of configurations used in the calculation of the observable will just result in the

mean approaching the correct value with an increasingly small statistical error.

For each point in the parameter space we check that the ensemble is thermalized using

two methods. Firstly, we begin with a thermalized smaller volume and allow it to evolve
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towards a larger target volume. During thermalization, the width of the distribution of N4,1

simplices increases very slowly, eventually reaching a plateau. This is the same method of

defining thermalization as defined in ref. [15]. Secondly, after the ensemble has reached a

configuration that satisfies the above condition we then plot the observable to be measured

as a function of Monte Carlo time and check that there is statistical agreement between

the first and second half of the data set over which we perform the measurement.

Here we apply a best fit to the spectral dimension data using the functional form of

eq. (3.1) and extract values for DS (σ →∞) and DS (σ → 0), plotting them as a function of

Monte Carlo time. We conclude that a particular ensemble of triangulations is thermalized

over a specific σ range if there exists no statistically significant difference between the first

and second half of the data range, after passing the first thermalization test. As an example,

figures 8a and 8b show the values of DS (∞) and DS (0) for the point κ0 = 4.4,∆ = 0.6 as a

function of Monte Carlo time using N4,1 = 160, 000 simplices. For a configuration number

greater than ∼ 20, 000 there is no statistical difference in the mean values of DS (0) and

DS (∞) when comparing the first and second half of the data set, and we thus conclude this

ensemble is thermalized for such a configuration range. All results presented in this work

are calculated using thermalized lattices as detailed above. Statistical errors are estimated

using a single-elimination jackknife procedure. The total error estimate of our spectral

dimension measurements are determined by adding the total systematic and statistical

errors in quadrature, and are presented in table 2.

4 Discussion and conclusions

The aim of this work is to make a more detailed study of dimensional reduction previously

found in the CDT approach to quantum gravity, in which a dimensional reduction from

4.02±0.1 on large distance scales, to 1.80±0.25 on small distance scales is reported [2]. The

small distance spectral dimension is of particular interest, as a more precise determination

of this result could have important implications for the renormalizability of gravity. In this

work we give a more detailed study of the running spectral dimension by calculating its

value at several different values of the bare parameters and for multiple lattice volumes.

Our results are summarised in table 2. From these results we conclude that the small

distance spectral dimension in the de Sitter phase of CDT is more consistent with 3/2

than with the integer 2, as previously thought [2]. This is the principal result of this work.

We wish to point out that this value of the dimension is precisely the value for which

eqs. (2.2) and (2.3) agree, and thus it may resolve the tension between asymptotic safety

and holography, as originally proposed in ref. [24].

Our studies indicate that as one increases κ0 and ∆ within the physical phase of CDT

the spectral dimension curves flatten out. The implication being that as one moves along

such trajectories in the parameter space the lattice spacing a decreases, because for larger

values of the bare couplings it takes a greater number of diffusion steps before the same

dimension is obtained. One can then rescale the diffusion time by a factor that is related to

the relative lattice spacing for each curve until the variance is minimised, i.e. until the curves

give “the best overlap”. This method for determining the relative lattice spacing may prove
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Figure 8. DS (∞) and DS (0) as a function of Monte Carlo time for the bare parameters κ0 = 4.4

and ∆ = 0.6. The data range we believe to be thermalized is divided into two data sets that are

compared with each other for statistical agreement to within 2 standard deviations. The fit function

and fit range used to obtain these results are the same as those used in figure 2, namely eq. (3.1)

and σ ∈ [60, 492], respectively.

useful when studying the renormalization group flow in CDT (e.g. ref. [28]), and aid in the

search for a putative second order critical point at which one may take a continuum limit.

The most rapid decrease in the rescaling factor arel appears to result from maximising

κ0 within phase C of the CDT phase diagram (see figure 1), and thus tuning κ0 to its

critical value at the first-order transition dividing phase C and phase A. There also seems

to be a significantly weaker dependence of arel on ∆, with arel appearing to decrease slightly

as ∆ increases. Tuning κ0 to the C-A transition and then studying the effect of varying ∆

on arel would be a natural next step.

The novel value of the short distance spectral dimension of CDT obtained in this work,

DS (0) ∼ 3/2, differs from the value of DS (0) ∼ 2 inferred by previous measurements of

the spectral dimension of CDT [2]. We find a tension of ∼ 8 standard deviations with

the integer value 2 for our finest lattices. Furthermore, the fact that the measurements of

DS (σ) presented in this work exhibit a monotonic decrease to a value that is consistent

with 3/2, and that DS (0) shows no sign of changing even for points in the parameter space

that appear to be probing the sub-Planckian regime, suggests that our results, at least at

present, have some tension with renormalization group predictions that DS (0) = 2. In

light of such suggestive comparisons it may be worth revisiting the renormalization group

arguments leading to the result DS (σ → 0) = 2.
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Determining the absolute lattice spacing by measuring fluctuations about de Sitter

space, as presented in ref. [27], for all values of the bare couplings investigated in this

work would allow one to more thoroughly assess the reliability of using the rescaling of the

spectral dimension in determining the change in lattice spacing. Furthermore, determining

the absolute lattice spacing via the method presented in ref. [27] for points corresponding

to our finest lattices would indicate whether measurements at these values of the bare cou-

plings really are probing the sub-Planckian regime, and possibly give a definitive answer as

to whether DS (0) remains consistent with 3/2 as one probes the manifold on yet smaller

distance scales, or whether it begins to increase to DS (0) = 2 as expected from renormal-

ization group predictions [31, 32]. Due to the current absence of such further investigations

a definitive comparison between renormalization group and CDT predictions of the short

distance spectral dimension is currently incomplete. However, this work is in progress.
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