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We show that for 1 + 1 dimensional Causal Dynamical Triangulations (CDT) coupled to 4 massive scalar 
fields one can construct an effective transfer matrix if the masses squared are larger than or equal to 0.05. 
The properties of this transfer matrix can explain why CDT coupled to matter can behave completely 
different from “pure” CDT. We identify the important critical exponent in the effective action, which may 
determine the universality class of the model.
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1. Introduction

Causal Dynamical Triangulations (CDT) in 1 + 1 dimensions can 
be considered a toy model for more advanced models of quan-
tum gravity. The simplest version of the model, pure fluctuating 
geometry without matter, can be solved analytically1 [2]. The ran-
dom geometries present in the CDT path integral are constructed 
by gluing together flat simplices (triangles) in such a way that 
one has a global time foliation. The topology of space at a given 
time is assumed to be S1. This topology is preserved in the time 
evolution. In all our considerations time is Wick rotated and the 
triangles used are assumed to be equilateral with edge lengths a. 
We label time with integer numbers t . The geometry of a spa-
tial slice at time t is completely characterized by its length, i.e. in 
the CDT model by n(t) – the number of edges forming the spa-
tial S1. In the path integral representation of the time evolution, 
spatial states at integer times t and t + 1 are connected in all pos-
sible ways consistent with the foliation. In the case of CDT without 
matter fields the time evolution is generated by a transfer matrix 
〈nt |M|nt+1〉 = exp(−L(nt , nt+1)) with correctly normalized spatial 
states |n〉.2 The explicit expression for L(n, m) can be interpreted 
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1 There are a number of generalizations, also only dealing with fluctuating ge-

ometries, which can be solved analytically [1].
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as a term of the effective action, since in obtaining it we sum over 
all geometrical realizations joining the two states.

One may view the same geometry using a dual trivalent lat-
tice, where vertices are located in the centers of triangles and 
links being dual to the edges in the original lattice. Each vertex 
has exactly three neighbors, two at the same time t (which can 
be considered as a half-integer time with respect to the original 
triangulation) and one at time t ± 1. As before the links at the 
same time value form a closed spatial geometry S1, the quantities 
nt and nt+1 represent numbers of links pointing up or down from 
the line at t + 1/2. The dual formulation is completely equivalent 
to the original one and we will use it in this article.

The Hilbert–Einstein action for a triangulation T , S(T ), pro-
vides the weight exp(−S(T )) to be assigned to the triangulation 
in the path integral. In 1 +1 dimensions there is no curvature term 
(it is a topological invariant), and we are left with the cosmological 
term, which on the lattice takes to form

S(T ) =
∑

i

λni = λN, ni ≡ n(ti), (1)

where N is the total number of triangles (dual vertices) of the tri-
angulation T . λ is the dimensionless bare cosmological constant. 
The weight contains a factor

e− λ
2 (n+m) = gn+m, g ≡ e− λ

2 , (2)

in each transfer matrix element 〈n|M|m〉. This factor compensates 
the entropy factor, always present in the models of quantum ge-
ometry, where the number of different triangulations between n
and m typically (for large n and m) grows as exp(λc N) with some 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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critical λc . The quantum amplitude (the partition function) can 
now be written as

Z =
∑
T

exp(−S(T )) = exp

(
−

∑
t

L(nt,nt+1)

)
(3)

In [3–5] we studied the effect of coupling d massive scalar 
fields to the 1 + 1 dimensional CDT model. We assumed the fields 
to be located at the vertices of the dual lattice and introduced the 
partition function

Z =
∑
T

∫ ∏
i,μ

dφ
μ
i exp

(−λNT − Smatter(φ
μ
i )

)
(4)

with the Gaussian matter action

Smatter =
∑
li j,μ

(φ
μ
i − φ

μ
j )2 + m2

∑
i,μ

(
φ

μ
i

)2
, (5)

where li j denote the links in the dual lattice and μ = 1, . . . , d.
It is clear that the integral over the fields (4) is well defined 

for m2 > 0. In order to see the role of the mass parameter in the 
action Smatter , we redefine the field variables by ψμ

i = mφ
μ
i , and 

the matter action changes to

Smatter = 1

m2

∑
li j ,μ

(ψ
μ
i − ψ

μ
j )2 +

∑
i,μ

(
ψ

μ
i

)2
(6)

From (6) it follows that the mass controls the range of field inter-
actions: in the large mass limit m2 → ∞, the couplings between 
neighboring vertices can be neglected, and as a consequence, the 
contribution of matter can be eliminated (d = 0, pure gravity), 
while in the small mass limit m2 → 0 (the massless case), the 
range of interaction becomes long. It is also clear that there may 
no longer exist a transfer matrix depending only on the geometric 
variables nt at time slice t and its neighboring time slices t ± 1. In-
tegrating out the matter degrees of freedom might introduce long 
range interactions between various time slices, an effect which one 
would expect to increase with decreasing the mass. Indeed, the ef-
fect of small or zero mass matter fields on the 1 + 1 dimensional 
global geometry is dramatic when d > 1 as reported in [3] (and 
also seen in earlier studies using other kind of matter fields [6]). 
One observed the appearance of a “semi-classical” de Sitter-like 
blob with Hausdorff dimension dH = 3, much like what has been 
observed in higher dimensional CDT [7] (see [8] for a review). Sur-
prisingly, even for this system there seems to exist an effective local 
action which couples only neighboring time slices and which de-
scribes the “semi-classical” blob and the fluctuations around it.

Inspired by these results we will try to clarify to which extent 
we for d > 0 can talk about an effective transfer matrix depending 
only on the geometric variables nt , and try to understand which 
characteristic features of the transfer matrix change when a semi-
classical blob is created for d > 1.

More precisely we will study 1 + 1 dimensional CDT with d = 4
and m2 = 0.05. This mass is so small that a blob is formed and 
still so large that an effective transfer matrix depending only on nt

can relatively easily be extracted (for smaller masses this becomes 
increasingly difficult). We will compare our results to that of 1 + 1
dimensional CDT without matter fields where no blob is formed.

The form of the transfer matrix for pure 1 + 1 dimensional CDT 
will be an indication of the form to be expected for the other cases. 
It is [2,8]

〈n|M|m〉 =
(

n + m

n

)√
4nm

(n + m)2
gn+m = e−L(n,m). (7)
We are interested in the asymptotic limit, when n, m are large but 
(n − m) stays finite. We obtain

L(n,m) = C − (n + m) log(2g) + 1

2

(n − m)2

n + m
+ V (n + m) (8)

where the potential

V (n + m) = 1

2
log(n + m) + 1

4(n + m)
+ O (

1

(n + m)3
) (9)

In (8) we see a term −(n + m) log(2g) = −(n + m) log(g/gc), a lin-
ear term related to the entropy of states. A similar entropy term 
will always be present and we will fine tune the value of g to 
be as close to gc as possible in numerical analysis aimed at the 
determination of the transfer matrix elements. The next term is 
a “kinetic” term, coupling the spatial volumes at slices t and t + 1. 
This term is “local” and we also expect such a term to be present 
in the effective transfer matrix. Finally we have a “potential”, di-
agonal term V (n + m). The leading large volume term in V is 
a logarithmic term. The rest of the terms decrease for large spa-
tial volume. One can show that if we observe a blob with dH = 3
one cannot have terms of the type (n + m)α with 0 < α < 1 in V . 
As a consequence the value of the parameter in front of the poten-
tial log(n + m) is important for the global behavior of the model, 
as we will explicitly show later. The small-volume corrections may 
be important for a detailed behavior of the system at small vol-
umes. We will not be concerned with the detailed analytic form 
of these corrections for CDT coupled to matter, but will determine 
them numerically by Monte Carlo simulations. More precisely we 
parameterize the transfer matrix

〈n|Mth|m〉 = exp(−Leff (n,m)) (10)

as

Leff (n,m) = C − (n + m) log(g/gc) + μ log(n + m)

+ 1

�

(n − m)2

(n + m)
, (11)

for (n + m) > K for some K , while for (n + m) ≤ K the transfer 
matrix is simply determined from the computer simulations. In an 
overlap region we match the assumed, parameterized transfer ma-
trix to the numerically determined one and in this way we deter-
mine the coefficients μ and �, which will depend on the number 
of Gaussian fields, d, and the value of the mass squared, m2. Once 
the constants in Leff are determined we can use the transfer ma-
trix (10) for arbitrary large n + m > K .

If a transfer matrix 〈n|M|m〉 exists also for systems with matter 
coupled to the geometry then the partition function for a system 
with periodic boundary conditions in the time variable with period 
T is given by

Z(g, T ) =
∑
{ni}

〈n1|M|n2〉〈n2|M|n3〉 · · · 〈nT |M|n1〉 = trMT ,

ni ≡ n(ti) (12)

This function is defined for g < gc and the limit g → gc corre-
sponds to taking a large volume limit. Essentially, Z(g, T ) is the 
partition function we will use when checking that the transfer ma-
trix model produces the same spatial volume distributions as the 
full model defined by (4).

The rest of this article is organized as follows. In the next sec-
tion we discuss the numerical methods used to obtain the estimate 
for gc and to determine the elements of the transfer matrix. To 
see if the transfer matrix determined this way reproduces the ob-
served distributions of spatial volumes we perform Monte Carlo 
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volume experiments, using the determined transfer matrix for sys-
tems with a fixed volume N and periodicity T , comparable to that 
used in the paper [3]. In section 3 we analyze the eigenvalue spec-
trum of the transfer matrix for g → gc for pure CDT and for CDT 
with 4 scalar massive field with mass m2 = 0.05. We recall the ex-
act dependence of the spectrum for pure gravity and compare it 
with the d = 4 case. We summarize the results in Section 4.

2. Determination of the transfer matrix

As described above we assume that after integrating out the 
matter fields in (4) that the quantum geometry can be described 
by an effective transfer matrix M with matrix elements 〈n|M|m〉. 
The matrix elements are (semi-)positive and the matrix is sym-
metric. The last property follows from the invariance of the model 
under the change of time arrow. We will try to determine the ef-
fective transfer matrix from Monte Carlo simulations. We use the 
numerical set-up described in [3–5]. For a periodic system with 
the period T the probability to observe a sequence of spatial vol-
umes {n1, n2, . . .nT } is

P T (n1,n2, . . .nT ) = 〈n1|M|n2〉〈n2|M|n3〉 · · · 〈nT |M|n1〉
trMT

(13)

This quantity is invariant under cyclic permutations and reversion 
of order n1, n2, . . . , nT → nT , . . . , n2, n1. The probability to observe 
a particular combination of spatial volumes can be measured by 
Monte Carlo simulations. Using such measured probabilities for 
a sequence of periods T we can determine 〈n|M|m〉 up to a mul-
tiplicative constant. We compare two measured probabilities

P T ,1(n,m) = 〈n|M|m〉〈m|MT |n〉
trMT +1

(14)

where we determine the probability to observe volumes n and m
in two neighboring slices for a system with the period T + 1 and

P2T ,T (n,m) = 〈n|MT |m〉〈m|MT |n〉
trM2T

(15)

where we determine the probability to observe volumes n and m
in two slices separated by T steps for a system with the period 
2T . We determine the transfer matrix elements from

〈n|M|m〉 = C
P T ,1(n,m)√
P2T ,T (n,m)

(16)

where C is the multiplicative factor mentioned above. Notice that 
the lhs of (16) is independent of T .

The transfer matrix depends on the parameter g and we expect 
the behavior 〈n|M|m〉 ∝ (g/gc)

n+m . We are interested in the be-
havior for g → gc , where the average volume diverges (the contin-
uum limit). To avoid the problem of infinite volume we introduce 
in the simulations a modified action

S(T ) → S(T ) + ε

T∑
t=1

(nt − n0)
2. (17)

This modification forces the spatial volume at each slice to fluctu-
ate around n0. The new action leads to a modified transfer matrix 
but one can easily recover the original transfer matrix, as will be 
explained below. The modification of the action serves two pur-
poses. Firstly, it allows us to determine the critical coupling gc . 
The average volume distribution in the slices, for T and n0 suffi-
ciently large, should have a maximum at 〈n〉 = n0. For finite T we 
observe different distributions for different choices of n0, but for 
g = gc the maximum should be stable. Typical distributions are 
shown in Fig. 1 for a system with four massive scalar fields with 
a mass m2 = 0.05 and g = gc . This method can be used to deter-
Fig. 1. Averaged volume distribution in a slice for a system with d = 4 and m2 =
0.05. We take n0 = 100, 200 and check the location of a maximum using T = 8 and 
T = 14.

Table 1
Estimated values of gc . The estimates come from volume distributions with n0 =
0, 50, 100, 150, 200 and T = 20.

m2 gc estimates The best estimate gc

0.00 0.2988–0.3000 0.2991
0.05 0.3205–0.3212 0.3210
0.10 0.33375–0.3338 0.33378
0.15 0.34412–0.34417 0.34415
0.20 0.35284–0.35285 0.35285
5.00 0.48322–0.048342 0.48341
Pure gravity 0.4999–0.50 0.50

mine the critical parameter gc even in cases, where the transfer 
matrix may not be a good approximation. In Table 1 we list the 
estimates for a range of mass parameters m2 and, for comparison, 
for pure gravity. In the following we use g = gc .

Secondly, the modification (17) makes the spatial volume fluc-
tuations much more controllable in the Monte Carlo simulations. It 
changes the probability distributions to

P̃ T (n1,n2, . . . ,nT ) = 〈n1|M̃|n2〉〈n2|M̃|n3〉 · · · 〈nT |M̃|n1〉
trM̃T

, (18)

where the relation between M and M̃ is given by

〈n|M|m〉 = C ′e
1
2 ε(n−n0)2〈n|M̃|m〉e 1

2 ε(m−n0)2
, (19)

again up to an arbitrary factor C ′ . This relation permits us to de-
termine the matrix elements 〈n|M|m〉. The method will work for 
n, m restricted to a window around n0, where volume fluctuations 
are small. The size of the window depends on the parameter ε
and typically outside this window the fluctuations become large. 
In practice we measure the matrix elements for a sequence of n0
and connect the results by requiring the best overlap.

The transfer matrix, (10)–(11), depends on the two parame-
ters μ and �. We determine μ by measuring the diagonal part of 
the transfer matrix (i.e. 〈n|M|n〉), where the kinetic term vanishes. 
We use T = 8. For T > 5 the results seem insensitive to the peri-
odic boundary conditions imposed in the time direction. As before 
we combine the measurements for various overlapping windows 
around different values of n0. The results of best fits are shown 
in Fig. 2 for pure gravity (as a test of the method) and for d = 4, 
m2 = 0.05.

We determine � by measuring the transfer matrix for n + m
fixed (such that only the kinetic term changes). For sufficiently 
large c we have

〈n|M|c − n〉 = N (c)exp

[
− (2n − c)2

�c

]
, (20)

where the terms in the effective action which only depend on c are 
included in the normalization. This is illustrated in Fig. 3, and we 
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Fig. 2. The logarithm of the diagonal of the transfer matrix at g = gc for pure gravity (left) and for d = 4, m2 = 0.05 (right). The plots show a combination of results obtained 
with n0 = 0, 50, 100, 150. The black line represents a fit to the asymptotic power behavior of the diagonal part, with the coefficient determined in the range limit by the blue 
dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The transfer matrix 〈n|M|c − n〉 for various c’s: pure gravity (left) and d = 4, m2 = 0.05 (right).

Fig. 4. Linear behavior of k(c) ≈ �c for pure gravity (left) and d = 4, m2 = 0.05 (right).

Table 2
Estimated values of the parameters μ and � as explained in the text.

m2 0.05 0.10 0.15 0.20 5.0 Pure gravity

μ 0.64628 0.59365 0.55432 0.53233 0.503512 0.505763
� 2.5 ± 0.05 2.2 ± 0.1 2.17 ± 0.15 2.15 ± 0.1 2 ± 0.1 2 ± 0.05
observe that the width of the Gaussian grows with c. This growth 
is with a very high accuracy linear, as is illustrated in Fig. 4. The 
fitted values of the parameters μ and � are listed in Table 2.

As a check of the quality of the transfer matrix determined this 
way we performed a Monte Carlo simulation where the probability 
assigned to a geometry with spatial volumes {n1, n2, . . . , nT } is

P (n1,n2, . . . ,nT ) ∝ 〈n1|Meff |n2〉〈n2|Meff |n3〉 · · · 〈nT |Meff |n1〉
× e−ε(

∑
t nt−N)2

. (21)

The “effective” transfer matrix entries 〈n1|Meff |n2〉 used in (21)
are

〈n|Meff m〉 =
{ 〈n|Mexp|m〉, m + n ≤ K

〈n|Mth|m〉, m + n > K .
(22)
The small volume part is obtained numerically and the large vol-
ume part is given by (10) and (11) with μ and � determined as 
described above. K is chosen in the range 50–100. The extra factor 
in (21) is added to enforce the total volume to fluctuate around 
a given value N . The resulting distribution can be compared to 
the one obtained using the full partition function (4). We use here 
the same method to analyze spatial volume profiles as that pre-
sented in [3–5]: each configuration is shifted in such a way that 
the “center of mass” of the spatial volume distribution is placed 
at time t = T /2. In this way we produce an artificial maximum 
also for pure gravity where there is no blob, but the properties of 
this distribution is quite different from the “real” blob distribution, 
as explained in [3–5] and as seen from Fig. 5. The agreement is 
very good. For the case d = 4, m2 = 0.05 the small volume part 
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Fig. 5. Comparison of n(t)/N using the effective transfer matrix and full CDT: pure gravity (left) and d = 4, m2 = 0.05 (right). We use N = 16 000, T = 200 for both cases.

Fig. 6. Left: Eigenvalues for pure gravity at g = gc with cut-off nmax = 200,400,600,800. Right: λ2/λ1 as a function of nmax .
of the transfer matrix is important in order to get a quantitative 
agreement of the volume profile in the tail of the distribution (the 
agreement becomes less good at a quantitative level if K < 50 in 
(22)). The existence or non-existence of the blob is however en-
tirely linked to the value of μ in the effective action (11): simply 
using this effective action (with g = gc) and adding a small vol-
ume term 1/(n +m) like in (9) in order to stabilize the logarithmic 
term for n + m = 0 one obtains by Monte Carlo simulations a tran-
sition from a non-blob phase to a blob phase simply by changing 
μ. μ is like a critical exponent: it is well known that μ = 1/2 ap-
pears as an entropy in CDT [2], and this is seen explicitly from (8)
for large n:

〈n|M|n〉 ∼ (2n)−1/2(g/gc)
2n(1 + O (1/n)). (23)

Changing the details of the triangulations used in CDT, changing 
the scale of n etc., will change gc but not the exponent μ. Simi-
larly, when we couple CDT to the matter fields we have

〈n|M|n〉 ∼ (2n)−μ(g/gc)
2n(1 + O (1/n)), (24)

where μ will invariant under changes of triangulation details, but 
will depend on d and m. Our numerical results suggest that there 
is a critical value μc such that for μ > μc the geometry change 
universality class from that of pure CDT (with Hausdorff dimension 
dH = 2) to that the “blob” geometry (which has dH = 3).

3. Eigenvalue spectrum of the transfer matrix

The analytic solution of 1 + 1 dimensional CDT [2] permits us 
to determine the eigenvalue spectrum of the exact transfer matrix 
as a function of g . Using the parametrization

g = 1

2 cosh(β)
, gc = 1

2
(25)

and solving the eigenvalue equation we find (see also [9] for the 
eigenvalue spectrum for a more general model)

λn = e−(2n+2)β, n = 1,2, . . . (26)
Fig. 7. Eigenvalues for d = 4 m2 = 0.05 and cut-off nmax = 200, 300, 400, 600. The 
first four eigenvalues are essentially independent of nmax .

The effective transfer matrix determined above for d = 4 was only 
obtained up to a normalization so we can only determine the ra-
tio of eigenvalues for this “empirical” transfer matrix. For the pure 
CDT model we have λn/λ1 = exp(−2nβ). Thus the ratio goes to 
zero exponentially with n for g < gc . For g = gc the spectrum be-
comes degenerate. In a numerical analysis we will never be able to 
achieve this limit, since our numerical transfer matrix is necessar-
ily finite and the dependence on nmax for g = gc for pure gravity 
is illustrated in Fig. 6. We can see that at the critical point the 
convergence of the ratios to one is slow as function of nmax .

We repeat the same analysis for the case d = 4, m2 = 0.05. The 
dependence of the eigenvalue spectrum at the critical point for 
various cut-off values nmax is shown in Fig. 7. We see that even 
at the critical point the first few eigenvalues become cut-off inde-
pendent. This can be attributed to a faster fall-off of the transfer 
matrix elements for large volumes.

The eigenvalue spectrum is markedly different from the pure 
CDT case since there is a gap between the first and the second 
eigenvalues even at g = gc , a gap which does not vanish for large 
nmax . On the other hand the rest of the eigenvalues behave like 
the pure CDT eigenvalues in the sense that they coincide for grow-
ing nmax . The separation of the largest eigenvalue from the rest is 
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Fig. 8. The distribution of spatial volume in the “stalk” for d = 4 and m2 = 0.05 and 
the square of the first eigenvector of the transfer matrix.

a reflection of the existence of a stalk. In fact let us denote the 
first eigenvector (with the largest eigenvalue) ν1(n). Fig. 8 shows 
that for small n we have ν1(n)2 = P (n), where P (n) is the proba-
bility distribution for spatial volumes in the stalk (which is almost 
independent of T and N).

4. Conclusions

In CDT there exists a transfer matrix. This transfer matrix de-
pends on the geometry of the spatial slices. In 1 +1 dimensions the 
geometry of the spatial slice is fully characterized by its length (as-
suming the topology is that of S1). Once we couple the geometry 
to matter the transfer matrix still exists, but it will also depend on 
the matter degrees of freedom. Integrating out the matter degrees 
of freedom might introduce non-local interactions and invalidate 
any simple transfer matrix description in terms of geometry only. 
However, it turned out that for massive free Gaussian fields cou-
pled to geometries, and for the mass not too small there is such an 
effective transfer matrix which describes very well the fluctuating 
geometry of the full model.

We determined the effective transfer matrix in 1 + 1 dimen-
sional CDT coupled to 4 massive scalar fields with m2 ≥ 0.05. 0.05 
was the smallest value of m2 where we could reliably determine an 
effective transfer matrix. We found that the most important term 
in the effective transfer matrix was an “entropic” factor 1/(n +m)μ . 
μ is like a critical exponent, much like the entropy or susceptibility 
exponent γ in non-critical string theory or the theory of dynamical 
triangulations. In the case of non-critical string theory γ depends 
on the matter coupled to the 2D geometry and there is a phase 
transition between two completely different classes of geometries 
at γ = 0. For γ > 0 the two-dimensional geometry degenerates 
into so-called branched polymers. We have a somewhat similar 
scenario here: μ depends on d and m2 and there exists a μc such 
that for μ > μc the geometry undergoes a phase transition and de-
velops a “blob” with Hausdorff dimension dH = 3. The appearance 
of the blob had a profound impact on the effective transfer ma-
trix. A gap developed between the two largest eigenvalues of the 
effective transfer matrix and the eigenvector corresponding to the 
largest eigenvalue was essentially equal to the square root of the 
probability distribution of spatial volumes of the stalk associated 
with the blob. We conjecture that a similar effective description 
of the blob–non-blob dynamics will be present for higher dimen-
sional CDT where it has been shown that there also is an effective 
transfer matrix which describes distribution and fluctuation of the 
spatial volume of the time slices [10].
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