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REINTERPRETING POLYMER UNFOLDING EFFECT
INDUCED BY A SPATIALLY CORRELATED NOISE∗
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This paper provides additional insight into the effect of spontaneous un-
folding of the model polymeric chain driven by spatially correlated noise,
described in M. Majka, P.F. Góra, Phys. Rev. E86, 051122 (2012). We
examine the statistical data on the linearized chain substructures to find
that the global unfolding effect arises mainly from the cumulation of short,
2-segment-long fragments, scattered along the chain. This supports an al-
ternative view of spatially correlated noise as both the source of disturbance
and the conformation preserving factor.
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1. Introduction

Noise induced phenomena e.g. spontaneous ordering induced by white
noise [1] or the system synchronization induced by colored noise [2] are of
great concern for contemporary research. However, while the white noise and
Langevin dynamics are standard tools in complex system simulations [1] and
also the time-correlated noise combined with Generalized Langevin Equa-
tions becomes increasingly popular in applications [3], little research has
been devoted to the spatially correlated noise.

The spatially correlated noise is a disturbance which is random at large
length-scale, but ordered at the length-scale of correlation length λ. This
kind of disturbance forms a space pattern which can evolve over time in
a completely random or temporally correlated manner, tough preserving a
certain ordering below the length λ. Such noise is designed to resemble
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a collectively acting heat-bath affecting a sub-system of interest with pos-
sible application to soft matter simulations. Random, yet spatially corre-
lated phenomena are encountered especially in the research on glass-forming
[4–6], active particles swimming [7, 8] and sedimentation in crowded solu-
tions [9, 10].

Our main results regarding the influence of spatially correlated noise
on the model two dimensional polymeric chain has been already published
in [11] and [12]. The paper [11] is a primary reading which provides the most
complete introduction to the topic as well as full support for our findings,
and we shall relate to this article repeatedly in the present work. Thus, it is
preferable that the Reader will familiarize himself with [11] before proceed-
ing. Nevertheless, we should present here a brief summarization of the most
important notions from [11] to facilitate the reading.

We have examined a two dimensional polymer chain model based on
the bead-spring approach with the nearest neighbor, angular and excluded
volume interactions. The position of ith bead has been simulated according
to the equations of motion{

mẍi + γẋ+ ∂xiU = ξx (~ri, t) ,

mÿi + γẏ + ∂yiU = ξy (~ri, t) .
(1)

Herem is a bead mass, γ is a friction constant and U is total potential energy
(to be specified in Section 2). While we have kept inertial terms in (1) for
the sake of numerical accuracy, the constants were chosen so γ/m = 20,
which was enough to over-damp the system. ~ξ(~r, t) denotes the spatially
correlated Gaussian noise, whose correlation function reads

〈ξx (~ri, t2) ξx (~rj , t1)〉 = 〈ξy (~ri, t2) ξy (~rj , t1)〉 = σ
γ

m
e−
|~ri−~rj|

λ δ(t2 − t1) , (2)

〈ξx (~ri, t2) ξy (~rj , t1)〉 = 0 . (3)

Here, σ is temperature and λ is a correlation length.
We have found that the presence of spatial correlations in the noise

results in several measurable effects, which are: chain stiffening (discussed
comprehensively in [12]), the synchronization of beads motion, increased
time correlation of segments lengths and angles between segments, and the
spontaneous unfolding of the chain [11].

The effect of spontaneous unfolding is of special interest in this paper,
and we would like to discuss it now in a greater detail. In [11], we have
presented the distribution of angles between neighboring polymer segments
(defined by equation (10), Section 2) for a range of temperatures and corre-
lation lengths. For sufficiently high temperatures, these data proved to be
single peaked distributions, symmetric around their mean values. The peak
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in probability is associated with neighboring segments lying exactly in line,
yet these distributions are broad and, especially for the uncorrelated noise,
the raise in σ increases the variance of distribution. Having introduced spa-
tial correlations into noise, the distributions become remarkably narrower
and, for constant temperature, the longer correlation length is, the lower
is the variance. In the range of correlation lengths which we have tested
(approximately from 1 to 7 segment equilibrium lengths), this fall of vari-
ance seems to asymptotically approach certain minimal, yet non-zero, value.
Additionally, for constant and non-zero correlation length, the temperature
dependent growth of variance is significantly mitigated in comparison to the
uncorrelated case.

From the preceding description, one can conclude that neighboring seg-
ments tends to linearize, yet the distribution of angles gives no information
what structures prevail in the chain geometry to give rise to this effect, and,
especially, how long those linearized fragments are. We will elaborate on
this in Section 3. In Section 4, we will outline a new interpretation of the
unfolding effect, alternative to one given in [11]. However, first, we would
like to present our polymer model in Section 2.

2. Polymer chain model

Our polymer chain model consists of N interacting material points
(beads) for which we have applied the Langevin dynamics. The beads in-
teract via three kinds of potential that form a bead-spring model enriched
with angular and excluded volume interactions. The total potential energy
of the system reads

U = UR + Uψ + ULJ . (4)

UR is the nearest neighbor interaction, which resembles bonds, and it is
defined by

UR =

N−1∑
i=1

1
2k1 (|~ri+1 − ~ri| − d0)2 . (5)

Here, ~ri is a position of the ith bead and d0 is an equilibrium segment length.
The angular interaction Uψ is modeled with the second nearest neighbor
interaction, which is

Uψ =
N−2∑
i=1

1
2k2 (|~ri+2 − ~ri| − l0)2 . (6)

In this case, l0 defines the preferable distance between ith and i+2nd bead,
and to ensure a saw-like chain conformation, it should be satisfied that [11]

l0 < 2d0 . (7)
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Finally, we introduce the global Lennard–Jones interaction ULJ

ULJ =
N∑
i,j

ε

(
σ12LJ

|~ri − ~rj |12
−

σ6LJ
|~ri − ~rj |6

)
. (8)

This interaction brings in the effect of excluded volume thanks to its repul-
sive core (its diameter is proportional to σLJ) and provides the attraction
whenever the distant parts of chain close up. Parameters k1, k2 and ε are
scaling constants and their exact values used in simulations are gathered in
Table I.

TABLE I

The parameters of the system chosen for simulations. These parameters provided
the saw-like chain conformation, presence of repulsive core for each bead and the
over-damping of beads’ motion.

N k1 d0 k2 l0 ε σLJ γ m

128 7 7 2 11 1 3 20 1

For the detailed discussion of the minimal energy structures, a single
bead energy landscape and a chain geometry dynamics, please see [11], but
here we would like to outline only the most important facts. A single bead
moves in a potential well determined by the positions of its neighboring
beads. For parameters chosen according to Table I, this well has most often
a double minimum, so there are two possible positions of a bead relative to
the rest of the chain that minimize the bead’s energy. Both, the depth of each
minimum and their exact positions change as the local geometry evolves, yet
the double-well landscape is predominant and fairly invulnerable to changing
angles between segments. However, this double-well structure is extremely
sensitive to the increase in distance between the nearest neighbors of the
bead. Such stretching causes the two minima to merge rapidly into one,
which is positioned in line with the nearest neighbors. This is seen as a local
frustration of the chain, because the minimal energy structures never tend
to linearize.

In [11], the conformational dynamics of chain is examined primarily with
two parameters, namely the length of the segment

dj(t) = |~rj(t)− ~rj−1(t)| (9)

and the angle between neighboring segments, which has been obtained from
positions ~rj of the three following beads

ψj = ∠ (~rj−1, ~rj , ~rj+1) . (10)
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This angle is directed, varies from 0 to 360◦ and it is always measured
with respect to certain initial numeration of beads. It is also scaled, so
ψj = 180◦ indicates three beads being exactly in-line. We have found that for
parameters from Table I and low (3 < σ < 12) uncorrelated noise, the system
prefers the saw-like conformation, with dj ≈ d0. For such σ, the distribution
of angles ψj is symmetric, double peaked, with one peak approximately at
110◦ and the other at 250◦. This is consistent with the double-well picture,
described in the previous paragraph. With the rise in temperature above
σ = 13, the two peaks melt down and the third peak appears exactly at
ψj = 180◦. This process is gradually retarded with the rise in noise’s spatial
correlation length, e.g. for λ = 50 the single peaked distribution appears as
late as for σ > 25. From now on, the distribution of ψj evolves as described
in the introductory section, giving rise to the effect of unfolding.

In general, the prevalence of mono-peaked ψj distributions can be ex-
plained by the presence of repulsive Lennard–Jones cores. The rise in tem-
perature increases the mobility of beads, but such cores prevent beads from
closing up. Effectively, average distances between beads tend to grow and
many sites along the chain suffer frustration, which means that these sites
are govern by the single-minimum energy landscape. In other words, the
random disturbance can much easier stretch the system than squeeze it.
While such mechanism could be accepted for the uncorrelated noise, which
provides relative forcing at all length-scales, it is not clear why it should be
also valid for the spatially correlated noise, which introduces low relative
forcing below correlation length. Namely, the ability of noise to compress
or extend the system at the length-scale of λ is remarkably reduced, and, in
fact, in [11], it has been shown that spatial correlations mitigate the growth
in average distances. Therefore, for λ 6= 0 the chain should be less affected
by the noise, but ψj indicates the opposite. In order to explain this con-
tradiction, we would like to provide another data, regarding the length of
linearized fragments and their distribution along the chain.

3. Chain substructures

Having determined ψj angles in one particular moment, it is also possible
to count the lengths of linearized fragments of the chain. Two neighboring
segments are treated as linearized if the angle between them satisfies ψj ∈
[160◦, 200◦]. The length of a linearized fragment is defined as the number n
of following beads that sequentially fulfill the given criterion. Scanning along
the chain, a single segment is assigned to the longest linearized fragment it
belongs to. Repeating the scans for different moments leads to the statistics
of such fragments’ lengths. A single, non-linearized segment is taken as the
fragment with n = 1, so only fragments with n ≥ 2 are truly indicating
linearization.
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We have conducted simulations for σ ranging from 1 to 1000 and λ from
0 to 50. In the range 1 ≤ σ ≤ 20, with the temperature increment equal 1,
we have varied λ from 0 to 20 by 5 units. For 25 ≤ σ ≤ 250, the σ increment
was 25 and in the interval 300 ≤ σ ≤ 1000 the increment was equal 100. For
these two temperature ranges, the correlation length has been varied by 10
from 0 to 50. For each pair of σ and λ, we have performed 64 runs, from
which the statistics has been averaged out. During each run, which lasted
218 steps, we have measured statistics every 32 steps. There have been also
100×27 initial steps for system thermalization, during which there has been
no acquisition of data.

We have collected data regarding the abundance of n-segment-long lin-
earized fragments in the form of a histogram. The value Pn of the nth bin
estimates the probability that a single segment belongs to an n-segment-
long linearized fragment, with P1 occupied by non-linearized segments. For

Fig. 1. The comparison of histograms Pn for temperatures 25 ≤ σ ≤ 1000 and
correlation lengths 0 ≤ λ ≤ 50. Data from simulations (black dots) has been
fitted with exponential decay function (solid line). With increasing σ histograms
approach exponential distribution.
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selected temperatures, these data are presented in Fig. 1. Histograms have
been fitted with an exponential decay function

p(n) = A exp

(
−n− 1

κ

)
. (11)

This model proved to fit the data exceptionally well for λ = 0 and λ = 10
with σ > 75, but for lower temperatures fits became inaccurate. This is also
the problem for larger λ, for which fits seem to gradually improve with the
rise in σ, yet this process is spanned over even larger temperature interval
(see Fig. 1). The general trend of Pn is to exceed the values predicted with
p(n), thus the exponential decay model is a lower boundary approximation
at best. Nevertheless, Fig. 1 suggests that exponential distribution is correct
at least in the large temperature limit. The retardation of the temperature
dependent evolution has been also described in [11], regarding the angles
distributions, thus it is no surprise to encounter it in the current dataset.

Despite discussed limitations, the model (11) provides a reasonable ap-
proximation for n = 1, 2, 3-long fragments, which are the most abundant.
Parameter κ from equation (11) indicates overall trend in the linearization
effect, and its relative error has been lower that 5% for all fitted curves.
In Fig. 2, we have visualized κ with respect to the correlation length and
temperature. In general, the behavior of κ is complicated, yet for σ > 300,
it is evidently growing with the rise in λ from approximately 0.7 to 1.6.
This is clear indication that the participation of short, linearized structures
is λ dependent and increases with the growing correlation length.

Fig. 2. Decay constant κ (see equation (11)) as a function of temperature σ and
correlation length λ. For σ > 300, the κ is growing with λ, which reflects the
increasing linearization of the chain.
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We have also compared Pn for n = 2, 3, 4 in relation to λ and σ (Fig. 3).
Typically, for σ > 300 and λ ≥ 10, P2 exceeds 0.16, P3 is approximately
equal to 0.1 and P4 reaches 0.06, which means that 2 to 4 long fragments
are dominant structures and usually contain around 30% of segment popu-
lation. In general, from 15% to 45% of segments form linearized structures,
so fragments which are even longer than 4 are also present, yet significantly
less abundant (e.g. P6 is always smaller than 0.01) and they are not vital
for the unfolding effect. Additionally, knowing that two linear fragments are
separated by at least one non-linearized segment, we can suppose that the
linearized fragments are distributed along the chain more or less uniformly.
This means that the unfolding effect is a global process occurring parallel at
multiple sites and based mainly on the short linear substructures.

Fig. 3. Pn is a probability that a given chain segment belongs to an n-long linearized
segment. Above, a comparison between P2, P3 and P4 showing the abundance of
these structures and their dependence on temperature σ and correlation length λ.

4. Reinterpretation of chain unfolding

Now, we would like to propose a reinterpretation of the chain unfolding
process. As it has been stated in Section 2, local linearization indicates the
single minimum energy landscape and can be interpreted as a frustration.
The spatially correlated noise provides low relative forcing at the distances
below λ, and, indeed, it does not directly affect the low-level structure itself.
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However, the fragments of chain which are larger than λ can move in an
uncorrelated manner. As a result of this incoherent motion, there appear
frustrated sites, and they should occur randomly and uniformly along the
chain. The exact positions of these frustrated sites depend only on the
random realization of spatial noise pattern at certain time moment. Yet,
this pattern evolves rapidly, so a single site that has been once frustrated
can found itself in the middle of region which is not affected by the noise,
because of spatial correlations. In this case, the lack of relative forcing
hinders a local relaxation process, and so frustration is stabilized. In turn,
frustrated sites are accumulated along the chain, which is manifested as the
unfolding effect. Therefore, the interplay between frustrated sites production
and the shape preserving influence of spatially correlated noise could be a
main source of the unfolding effect. Such notion is in agreement with our
data, both those presented in [11] and those discussed in previous section.
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