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We present a detailed analysis of the Kitaev�Heisenberg model on a single hexagon. The energy spectra and
spin�spin correlations obtained using exact diagonalisation indicate quantum phase transitions between antiferro-
magnetic and anisotropic spin correlations when the Kitaev interactions increase. In cluster mean-�eld approach
frustrated nearest neighbor exchange stabilizes the stripe phase in between the Néel phase and frustrated one which
evolves towards the Kitaev spin liquid.

DOI: 10.12693/APhysPolA.127.318

PACS: 75.10.Jm, 75.25.Dk, 75.30.Et

1. Introduction

Possible realizations of quantum spin liquids is one of
the most intriguing questions in modern theory of frus-
trated spin systems [1�3]. One of the prominent examples
of spin liquid was introduced by Kitaev [4]. As a unique
feature of this exactly solvable model spin�spin correla-
tions are �nite only on nearest neighbor (NN) bonds [5].
Recently a lot of attention is devoted to frustrated spin
models on the honeycomb lattice, either to J1�J2 Heisen-
berg interactions [6, 7], or to Kitaev�Heisenberg (KH)
model [8�12]. The latter is motivated by A2IrO3 iridates
(A = Na, Li) which is a candidate to host Kitaev model
physics. For a realistic description of these compounds,
and in particular of the observed zigzag phase [13], also
next nearest neighbor (NNN) and third nearest neigh-
bor (3NN) Heisenberg antiferromagnetic (AF) interac-
tions frustrating the Néel state are necessary [6, 10] �
these terms are also justi�ed by rather itinerant character
of the electrons in A2IrO3 [14]. Several experiments sug-
gest that the NNN (J2) and 3NN (J3) coupling constants
have similar values, i.e., J2 ≈ J1/2, J3 ≈ J2 [10].
The purpose of this paper is to investigate the evolu-

tion of spin�spin correlations on a single hexagon when
interactions change from AF Heisenberg to highly frus-
trated ferromagnetic (FM) Kitaev ones. This evolution
is modi�ed when a cluster mean-�eld (MF) approach is
applied, similar to the one used before for the J1-J2-J3
model [6] and the Kugel�Khomskii model [15].

2. Model

The KH Hamiltonian has the form [10]:

H ≡ −2Jα
∑

〈ij〉‖γ

Sγi S
γ
j + J(1− α)

{∑
〈ij〉

Si · Sj

+J2
∑
〈〈ij〉〉

Si · Sj + J3
∑

〈〈〈ij〉〉〉

Si · Sj
}
. (1)
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In the �rst Kitaev term, bond-dependent Ising-like in-
teractions are selected by γ ∈ {x, y, z} depending on
the bond direction. The parameter α interpolates be-
tween the Heisenberg (α = 0) and the Kitaev (α = 1)
interactions. We set the energy unit J = 1, and we
take equal NNN (J2) and 3NN (J3) interactions, i.e.,
J2 = J3 = J1/2 and J1 ≡ (1 − α)J . Following the ab
initio calculations [14], we select the AF NN Heisenberg
terms and FM Kitaev ones. Note that already at small
α > 0 spin interactions are anisotropic, and classically
Néel or resonating valence bond (RVB) phase is destroyed
at α = 1/3 when some NN interactions switch from AF
to FM. Here we investigate the more challenging quan-
tum case.
We performed exact diagonalisation (at T = 0) and

investigated the energy spectra and spin correlations be-
tween NN, NNN, and 3NN spins at sites {i, j}:

S(i, j) = 〈Si · Sj〉 =
1

d

d∑
k=1

〈Φk|Si · Sj |Φk〉, (2)

where {|Φk〉} are individual degenerate states in the
ground state manifold, and k = 1, . . . , d. In addition,
we investigate below partial spin correlations which re-
�ect the anisotropic character of spin interactions,

Sγ(i, j) = 〈Sγi S
γ
j 〉 =

1

d

d∑
k=1

〈Φk|Sγi S
γ
j |Φk〉. (3)

For a free hexagon, no order may occur and 〈Szi 〉 ≡ 0.
In the quest of quantum phase transitions (QPTs) sev-

eral trails have been revealed. First clue appears to be
change of the ground state of the Hamiltonian operator
which de�nes the QPT. Second track signalling directly
the transition is the variation of spin�spin correlations �
either the change of sign, or discontinuities which are �n-
gerprints of QPTs. Finally, extremal values of the ground
state energy E0 might also indicate a transition [9].

3. Results and discussion

Spin�spin correlations change in a discontinuous way
at some values of α which indicate QPTs. Here we
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show only the correlations for NN and for 3NN which
are su�cient to conclude about the QPTs when α in-
creases, see Fig. 1. First, for α ∈ [0, 0.355) (phase I),

Fig. 1. Spin�spin correlations as obtained for KH
model (1) at increasing α, with −2JSz1Sz2 interaction
at α = 1: top (a) � NN 〈Sγ1S

γ
2 〉, and bottom (b) �

3NN 〈Sγ1S
γ
4 〉 (this bond is parallel to 〈Sy2S

y
3 〉 at α = 1).

QPTs occur at vertical lines and phases are labeled from
I to VI.

the NN correlations are almost independent of γ, i.e.,
Sγ(1, 2) ' S(1, 2)/3, and one �nds a RVB phase which
weakens above α ' 0.3. At α ' 0.355 the �rst QPT
occurs, see Fig. 1a and b, and both S(1, 3) and S(1, 4)
change signs, cf. Fig. 2a and b. Two nondegenerate states
cross at the QPT and the derivative of E0 changes (Ta-
ble). As in spin-orbital systems [15], phase II is driven
here by J2 and J3 while J1 changes sign. It has FM (AF)
NNN (3NN) correlations, see Fig. 2b, and we suggest that
it is a precursor of the zigzag phase found in this range
of parameters [10, 13].
A second QPT occurs at α ' 0.385, where two nonde-

generate ground states intersect and E0 is maximal. Here
both spin�spin correlations S(1, 2) and S(1, 4) change
signs. Already at α = 0.355 we observe that Sz(1, 2)
separates from Sx(1, 2) = Sy(1, 2), and Sy(1, 4) separates
from Sx(1, 4) = Sz(1, 4), and this persists up to α = 1,
see Fig. 1a and b.
Further discontinuities arise for all Sγ(1, 2) at α '

0.770, but in their sum S(1, 2) they nearly cancel one
another and the discontinuity of S(1, 2) almost vanishes.
At this QPT a singlet and a triplet cross. Notably, the
correlation functions do not change signs at this QPT,

Fig. 2. Spin�spin correlation functions for the Hamil-
tonian (1) for selected values of α (below each part).
The sign (AF or FM) is indicated by line color: blue
� AF correlation, red � FM correlation; the line
width is proportional to its absolute value. Parameters:
J2 = J3 = 0.5J1.

see Fig. 2c and d. We observe that in phase IV NN FM
correlations grow stronger while NNN and 3NN correla-
tions (both AF) weaken.
At α ' 0.890 the triplet state crosses with another

singlet ground state, indicating a QPT to a distinct spin
disordered phase V, stable for α ∈ [0.89, 1). All spin�spin
correlations are discontinuous at the transition (Table)
and all NNN ones vanish, see Fig. 2e, while Sy(1, 4) is
small and �nite [16], see Fig. 1b. The gap between the
ground state and triplet excited state �rst grows and then
starts to shrink with increasing α until both states merge
at α = 1, where one �nds FM spin correlations for NN
only, see Fig. 2f. The only �nite spin�spin correlation at
α = 1 happens to be Sz(1, 2), see Fig. 1a.

TABLE

Discontinuities in spin�spin correlations S(1, n) and the
feature of the ground state energy E0 (if any) at �ve
QPTs which occur at αc. At the �rst three QPTs spin
correlations change sign (sign) between the ground states
with degeneracies d< and d> for α < αc and α > αc,
respectively.

αc S(1, n) Sign d< d> Feature of E0

∼ 0.355 S(1, 3) +/− 1 1 slope change

S(1, 4) −/+
∼ 0.385 S(1, 2) −/+ 1 1 maximum

S(1, 4) +/−
∼ 0.770 S(1, 4) +/− 1 3 slope change

∼ 0.890 S(1, n) . . . 3 1 . . .

1.0 S(1, 4) −/0 1 4 . . .

For α = 1 the ground state degeneracy is d = 4;
it is lifted when minute Heisenberg interaction is added
at α < 1, in analogy to the 2D compass model, where
Heisenberg terms remove high degeneracy of the ground
state [17]. In contrast, however, the ground state does
not change and the Kitaev spin liquid survives here in the
range of α ∈ [0.89, 1), with additional 3NN correlations.
Special attention has to be paid to Sy(1, 4), with its

sign being di�erent from that of Sx(1, 4) = Sz(1, 4)
when α ∈ [0.355, 1). This function has a discontinuity
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at each QPT, see Table. It concerns the bond 〈14〉 which
is parallel to the NN bond 〈23〉 with Sy2S

y
3 interaction in

the Kitaev limit, so we see that the Kitaev part induces
3NN correlations for the same component γ which is ac-
tive along the NN bonds parallel to it. Partial NNN spin
correlations also separate at α = 0.355 but drop to zero
when spins get disordered at α = 0.890.
Previous studies within the cluster MF [6, 15] in-

spired us to consider the hexagon with only NN Heisen-
berg J1 and Kitaev JK ≡ −2Jα terms. We embedded
the hexagon by the MF terms, replacing spins along outer
NN bonds with the order parameters, szi ≡ 〈Szi 〉. They
were selected using either Néel or stripe ansatz and cal-
culated self-consistently. For α ∈ (0, 0.39] (phase II)
the SU(2) symmetry is broken and {szi } and {S(i, j)}
follow Néel AF order (phase I) which extends up to
α = 0.395 due to quantum �uctuations, see Fig. 3. Near
the QPT at α = 0.390 one �nds robust Néel order with
positive/negative values of |szi | ' 0.4172 at odd/even
site i of the hexagon.
For α ≤ 0.36 the stripy ansatz gave szi = 0, while spin�

spin correlations are constant and RVB-like. At α =
0.365 the symmetry is broken (szi 6= 0), but the NN cor-
relations do not follow the stripy pattern yet. We ob-
tained the stripy phase for α ∈ [0.395, 0.55] (phase III),
with FM (AF) spin�spin correlations S(1, 2) = S(4, 5)
(otherwise), see Fig. 3. Unlike in Néel phase, here one
�nds two distinct values of the order parameters {|szi |},
e.g. szi ' 0.3795 (�0.2675) for i = 1, 2, 4, 5 (i = 3, 6)
at α = 0.395, as the sites are nonequivalent and the
latter ones are exposed to enhanced quantum �uctua-
tions within the hexagon. These �uctuations disappear
at α = 0.5, in agreement with the mapping on the FM
Heisenberg model [9]. Unfortunately, we could not ob-
tain converged results for α ∈ [0.5, 0.525). The region of
(stripe) phase III agrees partly with that obtained for a
larger cluster of N = 24 sites, α ∈ [0.4, 0.8] [9]. We thus
conclude that the stripy order is subtle and hard to sta-
bilize on a single hexagon.

Fig. 3. Spin�spin NN correlations obtained for con-
verged MF calculations for 0 ≤ α ≤ 1: S(1, 2), S(2, 3),
S(3, 4). QPTs occur at vertical lines and phases are
labeled from I to VI. Parameters: J2 = J3 = 0.

For α ∈ (0.555, 0.98) (phase IV) the symmetry re-
mains broken but the stripe phase is destroyed here by
the Kitaev terms and all NN S(i, j) are weakly FM and
anisotropic, see Fig. 3. At α = 0.98 one �nds a QPT to
disordered spin liquid with d = 3 (phase V). It is similar
to phase IV of a free hexagon (see Table). The last QPT
is found at the Kitaev limit α = 1 itself, where we �nd
again d = 4.

4. Summary

We conclude that increasing Kitaev interactions cause
spin�spin correlations Sγi S

γ
j to separate. This phe-

nomenon is generic and occurs both for a free hexagon
and in MF shortly after one NN interaction Sγi S

γ
j changes

sign. Unless the Kitaev terms dominate, investigation
of possible long-range order requires cluster MF or even
more sophisticated methods. The Kitaev spin liquid
phase extends to α < 1 also in the MF approach, but
3NN spin correlations are induced in this regime.
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