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1 Introduction

Geometrical scaling (GS) has been introduced in ref. [1] in the context of low x Deep

Inelastic Scattering (DIS). It has been conjectured that γ∗p cross-section σγ∗p(x,Q
2) =

4π2αemF2(x,Q2)/Q2 which in principle depends on two independent kinematical variables

Q2 and W (i.e. γ∗p scattering energy), depends only on a specific combination of them,

namely upon

τ =
Q2

Q2
s (x)

(1.1)

called scaling variable. Bjorken x variable is defined as

x =
Q2

Q2 +W 2 −M2
p

(1.2)

and Mp denotes the proton mass. In ref. [1], following Golec-Biernat-Wüsthoff (GBW)

model [2, 3], function Qs(x) — called saturation scale — was taken in the following form

Q2
s (x) = Q2

0

(
x

x0

)−λ
. (1.3)

Here Q0 and x0 are free parameters which can be extracted from the data within some

specific model of DIS, and exponent λ is a dynamical quantity of the order of λ ∼ 0.3. In

the GBW model Q0 = 1 GeV/c and x0 = 3× 10−4.

In our previous paper [4] (see also [5]) we have proposed a simple method of ratios to

assess in the model independent way the quality and the range of applicability of GS for

the saturation scale defined in eq. (1.3). Here we follow the same steps to test four different

forms of the saturation scale that have been proposed in the literature.

Geometrical scaling is theoretically motivated by the gluon saturation phenomenon

(for review see refs. [6, 7]) in which low x gluons of given transverse size ∼ 1/Q2 start to

overlap and their number is no longer growing once Q2 is decreased. This phenomenon —

called gluon saturation — appears formally due to the nonlinearities of parton evolution

at small x given by so called JIMWLK hierarchy equations [8–11] which in the large Nc
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limit reduce to the Balitsky-Kovchegov equation [12–14]. These equations admit traveling

wave solutions which explicitly exhibit GS [15, 16]. An effective theory describing small x

regime is Color Glass Condensate [17–22].

Gluon saturation takes place for Bjorken x much smaller than 1. Yet in ref. [4] we have

shown that GS with saturation scale defined by eq. (1.3) works very well up to much higher

values of x, namely up to x ∼ 0.1. In this region GS cannot be attributed to the satura-

tion physics alone. Indeed, it is known that GS scaling extends well above the saturation

scale both in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [23–25] (DGLAP) [26, 27] and

Balitsky-Lipatov-Fadin-Kuraev [28, 29] (BFKL) [30] evolution schemes once the boundary

conditions satisfy GS to start with. It has been also shown that in DGLAP scheme GS

builds up during evolution for generic boundary conditions [31]. Therefore in the kinemat-

ical region far from the saturation regime where, however, no other scales exist (e.g. for

nearly massless particles) it is still the saturation scale which governs the behavior of the

γ∗p cross-section.

The form of saturation scale given by eq. (1.3) is dictated by the asymptotic behav-

ior [15, 16] of the Balitsky-Kovchegov (BK) equation [12–14], which is essentially the BFKL

equation [28, 29] supplied with a nonlinear damping term. It has been first used in the

papers by K. Golec-Biernat and M. Wüsthoff [2, 3] where the saturation model of inclusive

and diffractive DIS has been formulated and tested phenomenologically.

Since the original discovery of GS in 2001 there have been many theoretical attempts to

find a ”better” scaling variable which is both theoretically justified and phenomenologically

acceptable. An immediate generalization of the saturation model of refs. [2, 3] has been

done in ref. [32] where DGLAP [23–25] evolution in Q2 has been included. Although the

exact formulation of DGLAP improved saturation model requires numerical solution of

DGLAP equations, one can take this into account phenomenologically by allowing for an

effective Q2 dependence of the exponent λ = λphn(Q2) which is indeed seen experimentally

in the low x behavior of F2 structure function (see e.g. refs. [32, 33] and figure 1). This

piece of data can be relatively well described by the linear dependence of λphn(Q2) on

logQ2 leading to the scaling variable of the following form

τphn = Q2xλ0+β logQ2/Q2
β (1.4)

In another approach to DIS at low x one considers modifications of BK equation

through an inclusion of the running coupling constant effects. Depending on the approx-

imations used two different forms of scaling variable have been discussed in the litera-

ture [15, 16]:

τrc1 = Q2e−µ
√

log(1/x) (1.5)

and [34]

τrc2 = Q2xν/ log(Q2/Q2
ν) (1.6)

where subscripts ”rc” refer to ”running coupling”. Note that from phenomenological point

of view (1.6) is in fact a variation of (1.4) where a different form of Q2 dependence has

been used. Finally, generalization of the BK equation beyond a mean-field approximation
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leads to so called diffusive scaling [35, 36] characterized by yet another scaling variable:

τds =
(
Q2
)1/√log(1/x)

e−κ
√

log(1/x). (1.7)

These different forms of scaling variable (except (1.4)) have been tested in a series of

papers [37–40] where the so called Quality Factor (QF) has been defined and used as a

tool to assess the quality of geometrical scaling. In the following we shall use the method

developed in refs. [4, 5] to test hypothesis of GS in scaling variables (1.4)–(1.7) and to

study the region of its applicability using combined analysis of e+p HERA data [41]. We

shall also compare our results with earlier findings of refs. [37–40].

Our results can be summarized as follows: more sophisticated scenarios i.e. running

coupling scaling and diffusive scaling are disfavored by the combined HERA data on e+p

deep inelastic structure function F2. In contrast, phenomenologically motivated case with

Q2 dependent exponent λ and the originally proposed form of the saturation scale [1] with

fixed λ exhibit high quality geometrical scaling over the large region of Bjorken x up to

0.1. The fact that GS is valid up to much larger Bjorken x’s than originally anticipated has

been already used in an analysis of GS in the multiplicity pT spectra in pp collisions [42].

In section 2 we briefly recapitulate the method of ratios of ref. [4] and define the criteria

for GS to hold. In section 3 we present results for 4 different scaling variables introduced in

eqs. (1.4)–(1.7). Finally in section 4 we compare these results with our previous paper [4]

and with the results of refs. [37–40].

2 Method of ratios

Throughout this paper we shall use model-independent method used in refs. [4, 5] which was

developed in refs. [43–45] to test GS in multiplicity distributions at the LHC. Geometrical

scaling hypothesis means that

σγ∗p(xi, Q
2) =

1

Q2
0

F (τ) (2.1)

where for simplicity we define σγ∗p as

σγ∗p(xi, Q
2) =

F2(xi, Q
2)

Q2
. (2.2)

Function F in eq. (2.1) is a universal dimensionless function of τ . In view of eq. (2.1) cross-

sections σγ∗p(xi, Q
2) for different xi’s, evaluated not in terms of Q2 but in terms of τ , should

fall on one universal curve. This means in turn that if we calculate ratio of cross-sections for

different Bjorken xi’s, each expressed in terms of τ , we should get unity independently of τ .

This allows to determine parameter governing x dependence of τ by minimizing deviations

of these ratios from unity. Generically we denote this parameter as α, although for each

scaling variable (1.4)–(1.7) it has a different meaning: α = β, µ, ν and κ for Q2-dependent,

running coupling (1 and 2) and diffusive scaling hypotheses, respectively.
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Following [4, 5] we apply here the following procedure. First we choose some xref and

consider all Bjorken xi’s smaller than xref that have at least two overlapping points in Q2

(or more precisely in scaling variable τ). Next we form the ratios

Rxi,xref(α; τk) =
σγ∗p(xi, τ(xi, Q

2
k;α))

σγ∗p(xref, τ(xref, Q
2
k,ref;α))

(2.3)

with

τk = τ(xi, Q
2
k;α) = τ(xref, Q

2
k,ref;α). (2.4)

By tuning α one can make Rxi,xref(α; τk) = 1 ± δ for all τk with accuracy of δ for which

following ref. [4] we take 3%.

For α 6= 0 points of the same Q2 but different x’s correspond generally to different

τ ’s. Therefore one has to interpolate the reference cross-section σγ∗p(xref, τ(xref, Q
2;α)) to

Q2
k,ref such that τ(xref, Q

2
k,ref;α) = τk as indicated in eq. (2.4). This procedure is described

in detail in refs. [4, 5].

In order to find optimal value of parameter α that minimizes deviations of ratios (2.3)

from unity we form the chi-square measure

χ2
xi,xref

(α) =
1

Nxi,xref − 1

∑
k∈xi

(Rxi,xref(α; τk)− 1)2

∆Rxi,xref(α; τk)2
(2.5)

where the sum over k extends over all points of given xi that have overlap with xref and

Nxi,xref is a number of such points.

Finally, the errors entering formula (2.5) are calculated using

∆Rxi,xref(α; τk)
2 = (2.6)(∆σγ∗p(xi, τ(xi, Q

2
k))

σγ∗p(xi, τ(xi, Q2
k))

)2

+

(
∆σγ∗p(xref, τ(xref, Q

2
k,ref))

σγ∗p(xref, τ(xref, Q
2
k,ref))

)2
Rxi,xref(α; τk)

2 + δ2

(2.7)

where ∆σγ∗p(τ(x,Q2)) are experimental errors (or interpolated experimental errors) of γ∗p

cross-sections (2.2). For more detailed discussion of errors see ref. [4].

In this way, for each pair of available Bjorken variables (xi, xref), we compute the best

value of parameter α, denoted in the following by a subscript min:1 αmin(xi, xref) and the

corresponding χ2. For GS to hold we should find a region in (xi, xref) half-plane (note that

by construction xi < xref) where αmin(xi, xref) is a constant independent of xi and xref ,

and the corresponding χ2
xi,xref

is small.

We shall also look for possible violations of GS in a more quantitative way. In order

to eliminate the dependence of αmin(x, xref) on the value of x, we introduce averages over

x (denoted in the following by 〈. . .〉) minimizing the following chi-square function:

χ̃2
xref

(〈α〉) =
1

Nxref − 1

∑
x<xref

(αmin(x, xref)− 〈α〉)2

∆αmin(x, xref)2
(2.8)

1Because it minimizes χ2.
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Figure 1. Effective exponent λphn from F2 at low x (3.2) from HERA and the linear fit of eq. (3.3).

Data points as in ref. [32], see also [33].

which gives the best value of 〈α〉 denoted as 〈αmin(xref)〉. The sum in (2.8) extends over

all x’s such that αmin(x, xref) exists and Nxref is the number of terms in (2.8).

Since GS is expected to work for small x’s, the ”average” value of scaling parameter

〈αmin(xref)〉 supplies an information, up to what value of xref GS is still working. For small

xref we expect 〈αmin(xref)〉 to be constant, whereas for larger values we expect to see some

dependence of 〈αmin(xref)〉 on xref . A word of warning is here in order. Even if 〈αmin(xref)〉
is a constant we have to look at the corresponding value of χ2: too large χ2 obviously

indicates violation of GS.

To quantify further the hypothesis of geometrical scaling we form yet another chi-

square function

χ2
xcut(〈〈α〉〉) =

1

Nxcut − 1

∑
xref≤xcut

∑
x<xref

(αmin(x, xref)− 〈〈α〉〉)2

∆αmin(x, xref)2
(2.9)

which we minimize to obtain 〈〈αmin(xcut)〉〉.
Equation (2.9) allows us to see how well one can fit 〈αmin(xref)〉 with a constant α up

to xref = xcut. Were there any strong violations of GS above some x0, one should see a rise

of 〈〈αmin(xcut)〉〉 once xcut becomes larger than x0.

3 Results

Let us now come back to the discussion of different scaling variables defined in eqs. (1.4)–

(1.7). All of them depend on one variational parameter, which we constrain analyzing

ratios (2.3) for combined HERA e+p DIS data [41].

In the case of Q2-dependent exponent λphn (1.4), however, there are in fact two pa-

rameters, one of them (λ0) being fixed using our previous analysis of ref. [4] where we have
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Figure 2. Three dimensional plots of a) βmin(x, xref), b) µmin(x, xref), c) νmin(x, xref) and d)

κmin(x, xref) obtained by minimizing χ2 function of eq. (2.5).

shown that GS scaling works very well with constant λ = λ0:

λ0 = 0.329± 0.002. (3.1)

On the other hand looking at low x behavior of the F2 structure function it has been

shown that [32, 33]:

F2(x,Q2) ∼ x−λphn(Q2) (3.2)

where λphn(Q2) can be well parametrized as

λphn(Q2) = 0.329 + 0.1 log(Q2/90) (3.3)

(for Q2 in (GeV/c)2) as depicted in figure 1. Taking therefore scaling variable in the form

of (1.4) with λ0 = 0.329 we test in fact consistency of the slopes β as extracted from

figure 1 and by the procedure described in section 2. Note that this is therefore a kind of
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variables: a) logarithmic scaling variable τphn (1.4), running coupling b) rc1 (1.5), c) rc2 (1.6) and

d) diffusive scaling (1.7).

perturbative two parameter fit, and as such it has a different status than the remaining

Ansätze for the scaling variable (1.5)–(1.7). Similar remarks apply to the running coupling

rc2 case (1.6), where the scale of the logarithm Q2
ν has been fixed at 0.04 (following e.g.

ref. [39]). Then for all points Q2 > Q2
ν and τrc2 decreases with rising ν.

Let us first examine 3 dimensional plots of αmin(x, xref) (note again that α = β, µ, ν or

κ, depending on the scaling variable). For GS to hold there should be a visible plateau of

αmin over some relatively large part of (x, xref) space (recall that by construction x < xref).

Looking at figure 2 one has to remember that the values of αmin(x, xref) are subject to

fluctuations that will be ”averaged over” when we discuss more ”integrated” quantities

〈αmin〉 and 〈〈αmin〉〉. Note that statistical errors of αmin(x, xref) which are quite large for

small x are not displayed in figure 2. One can can conclude from figure 2 that for all

4 cases (1.4)–(1.7) there is rather strong dependence of αmin(x, xref) for large values of

x and xref. In the case of Q2-dependent scaling variable (1.4) (figure 2.a) and for the

– 7 –
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Figure 4. Effective exponents (3.4) as functions of x for fixed Q2 = 10 GeV2/c2 (left) and as

functions of Q2 for fixed x = 0.0001 (right).

running coupling case (1.5), (1.6) (figures 2.b, c), the values of parameters β, µ and ν

rise steeply for large x’s, whereas for diffusive scaling parameter κ is falling down rapidly.

More closer look reveals that for running coupling rc1 case (figure 2.b) there is in fact no

distinct plateau, one can also see a systematic rise of µmin in a region of very small x’s.

Similarly for the diffusive scaling (figure 2.d) we see rather systematic growth of κmin for

small x’s with possible plateau in a small corner of very low x’s. At first glance no plateau

is neither seen for βmin(x, xref) (figure 2.a). However — as will be shown in the following

— because of considerable statistical uncertainties within the scale used in figure 2.a, very

good description of GS with constant β is still possible.

It is interesting to look at 3 dimensional plots of the corresponding χ2 values (2.5)

shown in figure 3. Recal that for GS to hold one should observe small values of χ2(αmin)

in the same region where αmin is constant. This happens for τphn (figure 3.a) where χ2

oscillates around 1 not exceeding 2 even for large values of x. Similarly τrc1 (figure 3.b)

stays smaller than 2 up to x ∼ 10−2 where χ2 jumps above 2. In this region, however,

parameter µ is steadily decreasing with x. In contrast, in the case of τrc2 (figure 3.c) and

τds χ
2 (figure 3.d) have pronounced fluctuations and a plateau (if at all) is visible only

below x ∼ 10−3. However, in this region parameter ν (corresponding to figure 3.c) rises

with x, whereas κ (corresponding to figure 3.d) exhibits rather strong fluctuations.

Due to different functional dependence of the saturation scales entering eqs. (1.4)–(1.7)

variations of parameters β, µ, ν and κ differently influence pertinent scaling variable τ .

Therefore — before we turn to average quantities 〈. . .〉 and 〈〈. . .〉〉 displayed in figure 5 —

let us define effective exponents λeff :

λeff(x,Q2) = log

(
τ

Q2

)
/ log(x) (3.4)

which depend on fitting parameters β, µ, ν and κ. In figure 4 we plot these effective powers

as functions of x and Q2 for the values of the parameters βmin, µmin, νmin and κmin fixed

at the end of this section.

In order to find the scale relevant for a parameter entering definition of a given scaling

variable τ (1.4)–(1.7), for each scaling hypothesis separately we have varied this parameter

– 8 –
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Figure 5. Averaged values 〈αmin(xref)〉 (black squares) and 〈〈αmin(xcut)〉〉 (red circles) for different

scaling hypotheses: a) logarithmic Q2 effective exponent (1.4) with α = β, running coupling scaling

variables b) rc1 (1.5) with α = µ and c) rc2 (1.6) with α = ν, and d) diffusive scaling (1.7) with

α = κ, respectively. Open blue triangles correspond to the scaling parameters obtained by the

method of the quality factor (QF).

around the best value by ±ε and required that

|λeff(αmin ± ε;x,Q2)− λeff(αmin;x,Q2)| = 1 (3.5)

for some typical values of x = 0.0001 and Q2 = 10 GeV2/c2. In this way in each case the

value of ε provides the reference scale for each variational parameter α = β, µ, ν or κ.

Therefore looking at figure 5 one should bear in mind that the span of the vertical axis

corresponds to the variation of the effective exponent ∆λeff ∼ ±1 around its best value.

Looking at figures 5 we see immediately that the best scaling properties are exhibited

by parameter β of Q2-dependent scaling variable τphn (1.4). Parameter β is well described

by a constant

β0 = 〈〈βmin(0.08)〉〉 = 0.02± 0.001 (3.6)

over 3 orders of magnitude in x. We have used the value of maximal xcut = 0.08, since it was

the value of xcut for which λ0 = 0.329 has been extracted in ref. [4], although — as clearly

seen from figure 5.a — GS in variable τphn works well up to x ' 0.2. There is an impressive

agreement between both averages 〈βmin〉 and 〈〈βmin〉〉, however the value (3.6) is five times

smaller than expected from the fit to low x behavior of F2 structure function (3.3).
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For comparison in figure 6 we present the plot from ref. [4] where 〈λmin〉 and 〈〈λmin〉〉
for scaling hypothesis with constant λ (i.e. for β = 0) are shown. We see that the quality

of a fit with a constant λ is only a little worse than GS in τphn but in general much better

than in the case of the remaining scaling variables (1.5)–(1.7).

Indeed, for the running coupling constant rc1 case (1.5) we see in figure 5.b monotonous

fall of 〈µmin〉 and 〈〈µmin〉〉 with xref and xcut respectively, although the large errors at small

x’s allow for a constant fit up to xref, xcut ' 0.008 yielding

µ0 = 〈〈µmin(0.008)〉〉 = 1.677± 0.014. (3.7)

The situation is similar for running coupling rc2 case (1.6) where the constant fit is possible

up to xref, xcut ' 0.02 (see figure 5.c) giving

ν0 = 〈〈νmin(0.02)〉〉 = 2.909± 0.025. (3.8)

In this case, however, one should bear in mind that more ”differential” measure of GS -

χ2(νmin) - shown in figure 3.c does not support hypothesis of GS above x ∼ 10−3.

Finally, in the case of diffusive scaling (1.7) we can hardly conclude that GS is re-

ally seen; although it is possible to find constant behavior of 〈κmin〉 and 〈〈κmin〉〉 below

x ∼ 10−3 with

κ0 = 〈〈κmin(0.0013)〉〉 = 0.449± 0.012. (3.9)

Note, that the errors in eqs. (3.6)–(3.9) are purely statistical (for discussion of system-

atic uncertainties see [4]).

4 Summary and conclusions

In this paper we have applied the method developed in refs. [4, 5] to assess the quality

of geometrical scaling of e+p DIS data on F2 as provided by the combined H1 and ZEUS

analysis of ref. [41]. In a sense our analysis is in a spirit of previous works [37–39] and
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especially ref. [40] where the same set of data has been analyzed by means of so called

quality factor defined as

1

QF (λ)
=
∑
i

(vi − vi−1)2

(ui − ui−1)2 + ε2
(4.1)

where the sum extends over all HERA points [41] satisfying kinematical cuts. Here ui =

log τ(xi, Q
2
i ;λ) are logarithms of scaling variable (1.4)–(1.7) and vi = log σγ∗p(xi, Q

2
i ) (for

details concerning normalization of these variables and the value of cut-off ε, see original

refs. [37–40]). The method to find optimal λ consits in maximazing function QF (λ).

Although the authors of ref. [40] applied kinematical cuts 4 ≤ Q2 ≤ 150GeV2, x ≤ 0.01 our

results for scaling parameters given in eqs. (3.1) and (3.7)–(3.9) are in good agreement with

their findings. For completeness let us quote their results (note that they did not consider

logarithmic Q2 dependence of τphn): µ0 = 1.61 (rc1), ν0 = 2.76 (rc2) and κ0 = 0.31 (ds).

Difference in κ0 can be explained by applied kinematical cuts, indeed, if we take maximal

xcut = 0.01 we obtain 〈〈κmin(0.01)〉〉 = 0.301± 0.006 in agreement with [40].

To quantify further comparison between our method of ratios and the one of the quality

factor, we have repeated analysis of refs. [37–40] imposing a cut-off on Bjorken x’s entering

eq. (4.1): xi ≤ xcut (we have not imposed cuts on Q2 and have used different normalization

of u’s and v’s). The results are superimposed on figures 5 and 6 as blue open triangles.

One can see that the optimal values of quality factor scaling parameters are statistically

undistinguishable from 〈〈λmin〉〉 (except for the diffusive scaling where some systematic

difference can be seen). However, we have at our disposal yet another measure of GS,

namely the values of pertinent χ2 functions. The corresponding measure in the quality

factor method could be the value of QF (xcut) = NcutQF (xcut) where Ncut is a number of

of points with xi ≤ xcut, for which, however, no theory exists. We have checked that the

highest value of QF (xcut) is achieved in the case of τphn (QF (xcut = 0.05) = 2.73, where

xcut = 0.05 has been chosen for illustration) and constant λ (QF (xcut = 0.05) = 2.28).

Acceptably large values of QF (xcut) are also obtained for the running coupling rc1 case

(QF (xcut = 0.05) = 1.99), we have however excluded this case on the basis of monotonous

fall of 〈λmin(xref)〉 with xref . In these three cases QF (xcut) is monotonously rising with xcut

up to xcut ≈ 0.2 and then decreases rapidly. In the remaining two cases the quality factor is

substantially smaller (less than 1.2 for xcut = 0.05) and does not exhibit monotonous rise.

Despite the fact that we have been able to find some corners of phase space where

geometrical scaling in variables (1.5)–(1.7) could be seen, it is absolutely clear that the

best scaling variable is given by (1.4) (or even by a constant λ of eq. (3.1)), whereas

diffusive scaling hypothesis is certainly ruled out. This is quite well illustrated in figure 4

where effective exponent λeff for scaling variable (1.7) changes sign for small Q2. This is

the reason why in ref. [40] a cut on low Q2 has been applied. Similar argument applies for

the running coupling rc2 case (1.6) which blows up for small Q2. Because of that χ2
xi,xref

functions have no minima for very low xi and xref (points with small x have also small

Q2). Therefore the only candidate for scaling variable is running coupling rc1 case (1.5).

Nevertheless, comparing figure 5.b with figure 6 where we plot results for GS scaling with

constant exponent λ, we see that both by quality and applicability range, the original

– 11 –
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form of scaling variable does much better job than (1.5). Although our results for best

values of parameters entering definitions of scaling variables (1.5)–(1.7) are in agreement

with refs. [37–40] we do not confirm their conclusion that only diffusive scaling is ruled out

while for other forms of scaling variable geometrical scaling is of similar quality. It is of

course perfectly possible that the HERA data are not ”enough asymptotic” and geometrical

scaling in one of the variables defined in eqs. (1.5)–(1.7) will show up at higher energies

and lower Bjorken x’s.
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