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1 Introduction

1.1 Relate observables to spacetime geometry

A spacetime point is not a physical notion according to the dynamics of General Relativ-
ity [1]. Moreover, in General Relativity, a manifold is what replaces Euclidean space to
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be the mathematical structure best suited to be endowed with geometry and turned into
a spacetime. This is the case as long as we consider particles and fields interacting with
external, background spacetimes. However, when spacetimes are enlived by the dynamics,
then the status of the manifold and its points changes. Given a physical general relativis-
tic system described by fields φ1, . . . , φn (including the gravitational field), it is only the
diffeomorphism invariant information that has a physical meaning. For example, we can
distinguish any 4 of the (real valued components of the) fields, say φ1, . . . , φ4, such that
every remaining field φ4+α defines a function

φ4+α = Φα(φ1, . . . , φ4).

This method is called deparametrization.

In the study of geometry of curved spacetimes, the problem of the diffeomorphism in-
variant characterization has been solved long time ago by Élie Cartan as “the equivalence
problem” (when are two geometries difffeomorphism-equivalent?) [2]. Cartan’s solution
relies on an invariant system of coordinates consisting of scalars constructed from the Rie-
mann tensor and its covariant derivatives. The system becomes degenerate for nongeneric
geometries, but that is pardonable. The problem is, that the system is totally blind in a
flat, Minkowski spacetime. Another weak point of this system is that matter seems not to
be coupled to the derivatives of curvature. It seems more natural to expect that matter is
sensitive to distances.

Another example of a deparametrization of spacetime is the GPS construction [3].
Notice, however, that as geometric as it is, GPS needs at least n observers to identify
points of an n-dimensional spacetime. It is worth noting, that there are modifications of
the idea of GPS which use only two observers to define a sensible observable [4, 5].

Another approach to the problem of the diffeomorphism invariant descriptions of gen-
eral relativistic systems is a deparametrization of the theory performed entirely using a
material medium: for example elastic [6] or dust [7]. A field theoretical version of the
deparametrisation uses scalar fields [8].

The requirement of the diffeomorphism invariance in the description of general relativis-
tic systems is reflected by an emergence of first class constraints and gauge transformations
in the canonical formulation of the theory. Physical observables in this framework have to
be gauge invariant, and we call them Dirac observables.

In this work we propose a deparametrization of a general relativistic theory with the
distances and angles defined by the geometry and by a single observer. We derive the cor-
responding canonical framework. It leads naturally to a construction of Dirac observables.
We study their properties. Technically, this is the most difficult part of our task.

1.2 Fields and framework

We consider canonical gravity coupled to some matter fields. The theory consists of a
3-manifold Σ and canonically conjugate pairs of fields defined thereon: a 3-metric tensor
qij and its momentum pij , remaining fields φα and πα, α = 1, . . . , n. Each set of fields
(q, p, φα, π

α) is a point in the kinematical phase space Γ of the considered theory. The
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Poisson brackets are

{qij(σ), p
kl(σ′)} = δk(iδ

l
j)δ(σ, σ

′), {φα(σ), π
α′

(σ′)} = δα
′

α δ(σ, σ
′), (1.1)

In section 5.2, physical points of Γ are selected, as those which satisfy the Arnowitt-
Deser-Misner (ADM [9]) vector constraints Ci(σ) = 0 which in the spacetime approach
generate the diffeomorphisms of the Cauchy surface, and in the phase space Γ generate the
induced action of the diffeomorphisms of Σ.

2 Deparametrization by 3-geometry

2.1 Idea

For every (q, p, φα, π
α) ∈ Γ we want to use the 3-geometry q to characterize each point

σ ∈ Σ by: (i) the geodesic distance to an observer, (ii) the point at the observers sphere of
directions corresponding to the geodesic curve passing through σ which reaches the observer.
That characterization is q-dependent. Expressing all the fields q, . . . , πα defined on Σ in
terms of the coordinates just described results in functions on Γ invariant with respect to
those diffeomorphisms which act trivially on the observer. The remaining scalar constraint
will be deparametrized by one of the fields φα in this approach.

2.2 Observers description of 3-geometry — Adapted coordinates

Technically speaking what we do is fix a point σ0 ∈ Σ and a frame e0I ∈ Tσ0Σ, where
I = 1, 2, 3. Working in a point (q, p, φα, π

α) ∈ Γ we introduce an orthonormal frame eI
obtained from the fixed e0I by a Gram-Schmidt orthonormalisation process, namely

eI =
3∑

J=1

MIJe
0
J , (2.1)

where the matrix M is unique since the process requires it to be lower-triangular and have
positive entries on the diagonal.1 Of course, both the matrix M and the orthonormal frame
eI are q-dependent. To every point σ in a neighborhood of σ0 we assign three numbers
which we will collectively denote as x (envoking specific one of them we will use an index,
e.g. xI is the I-th from the three) such that

expσ0(x
IeI) = σ, (2.2)

where the expσ0(·) map is the exponent map sending vectors from Tσ0Σ to points in the
manifold Σ. We will refer to the coordinates (xI) as the Cartesian coordinates adapted to q.2

1Alternatively, we could say that we fix a family of frames, related to each other by transformations with

lower-triangular matrices having positive entries on the diagonal. Then for each metric, there exists exactly

one frame from our family which is orthonormal with respect to that metric. This frame can be found by

picking any of the members and performing on it the Gram-Schmidt process involving the given metric.
2In different contexts the presented coordinates are often called Riemann normal coordinates. We choose

a different name here to underline that we have different sets of coordinates for different phase space points.
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Throughout the paper we will also use coordinates related to the Cartesian adapted
coordinates by a simple (phase-space independent) renaming. For every point σ to which
we assigned coordinates (xI), we assign three numbers (r, θ) (where θ collectively denotes
two values; they will be further referred to with the use of an index A assuming two values)
such that

xI = rnI(θ), (2.3)

where nI(θ) is a unit vector in Tσ0Σ, so that the two angular parameters θ parametrize
surfaces of constant radial distance r from the observer. We will denote those coordinates
(ya)(σ) = (yr, yA)(σ) = (r, θ) and call them spherical coordinates adapted to q.

A few remarks concerning the adapted coordinates follow:

• The spherical adapted coordinates have a very natural physical interpretation. If
we treat the point σ0 and the frame eI to be an observers position and his way of
parametrising spatial directions respectively, then the value of r represents the proper
distance between the observer and a given point in his neighborhood and θ denotes
the angles at which the point is located with respect to his directions.

• Both sets of the adapted coordinates we introduced above paramterize a neighborhood
of the observer as long as the exp map is injective. The size of such a neighborhood
depends on the metric q, but one can show that there always exists a neighborhood of
the observer in which the coordinates are well-defined. Note also that only the Carte-
sian adapted coordinates are regular at the point σ0, since the spherical coordinates
are subject to the usual limitations of standard spherical coordinates in this point.

• The maps

q 7→ (ya) and q 7→ (xI) (2.4)

are invariant with respect to those diffeomorphisms ψ : Σ → Σ for which

ψ(σ0) = σ0 and ψ′(σ0) = M, (2.5)

where M , when expressed in the frame e0I , is lower-triangular and has positive entries
on the diagonal. Let us denote the subgroup of such diffeomorphisms by Diffobs.

• An expansion in r of a metric q expressed in the coordinates adapted to it is given by

qIJ(x) = δIJ +O(r2) and qAB(r, θ) = r2ηAB(θ) +O(r4). (2.6)

• An interesting question to ask is when, given a metric tensor and a coordinate system
in a neighborhood of σ0, the given coordinates are the spherical coordinates adapted
to the given metric. Let q be a metric tensor in Σ and suppose (ya) are the spherical
coordinates adapted to q. Let q′ be another metric tensor. Suppose that in terms of
the coordinates adapted to q

q′ = dyr ⊗ dyr + q′ABdy
A ⊗ dyB, (2.7)
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in an open neighborhood U of the point σ0 such that U intersects each curve

yA = const (2.8)

on a connected segment. Then, the coordinates (y′a) adapted to q′ coincide with (ya)

on U

(y′a)
∣∣
U

= (ya)|
U
. (2.9)

Indeed, for both metric tensors the curves tangent to δr are geodesic, r measures the
distance along them from σ0, and necessarily

q(σ0) = q′(σ0). (2.10)

2.3 Diffobs-invariant observables in adapted coordinates

Given a point (q, p, φα, π
α) ∈ Γ and values (r, θ) assumed by the adapted spherical coordi-

nates at a point σ ∈ Σ, we can introduce the following functions on Γ:

Qab(r, θ) : (q, p, φα, π
α) 7→ qab(r, θ), (2.11a)

P ab(r, θ) : (q, p, φα, π
α) 7→ pab(r, θ), (2.11b)

Φα(r, θ) : (q, p, φα, π
α) 7→ φα(r, θ), (2.11c)

Πα(r, θ) : (q, p, φα, π
α) 7→ πα(r, θ), (2.11d)

where by
qab(r, θ), p

ab(r, θ), φα(r, θ), π
α(r, θ) (2.12)

we mean the components of the metric q, the conjugate momentum p, the values of the
fields φα and πα in the spherical coordinates adapted to q, evaluated at the point σ at
which the adapted coordinates assume the values (r, θ). The domain of the above functions
consists of those points (q, p, φα, π

α) of Γ, for which a given triple of the values (r, θ) is in
the range of the coordinates adapted to q.

The functions (2.11) have a very important property: each of them is invariant with
respect to the action in the phase space Γ of every element of the subgroup Diffobs defined
above. The connected component of the identity of that subgroup is generated by the vector
constraints C( ~N) =

∫
d3σN i(σ)Ci(σ), such that

N I(σ0) = 0, and N I
,J(σ0) is lower-triangular (2.13)

in the frame e0I or, equivalently, in the frame eI .
Moreover, some of the invariant functions Qab(r, θ) are trivial. Indeed,

Qrr(r, θ) = 1, QrA(r, θ) = 0 (2.14)

identically by construction.
Therefore,

F (r, θ) ∈ {QAB(r, θ), P
AB(r, θ), P rr(r, θ), P rA(r, θ), Φα(r, θ), Π

α(r, θ)}, (2.15)
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represent a complete set of the Diffobs-invariant degrees of freedom of geometry and fields
near the point σ0 as (r, θ) range through all the values assumed by the spherical coordi-
nates (ya).

In an analogous way, we use the adapted Cartesian coordinates to define observables
G(x), where G ∈ {QIJ , P

IJ ,Φα,Π
α}. The relation between the observables defined by the

adapted spherical and, respectively, Cartesian coordinates is the usual transformation

Qab(r, θ) =
∂xI

∂ya
∂xJ

∂yb
QIJ(x), (2.16a)

P ab(r, θ) =

∣∣∣∣
∂(x1, x2, x3)

∂(r, θ1, θ2)

∣∣∣∣
∂ya

∂xJ
∂yb

∂xJ
P IJ(x) (2.16b)

and similarly for the matter fields Φα,Π
α, where the labels (r, θ) and (x) are such that

they point at the same point σ in coordinates adapted to the same metric. In the above
expressions we have used the transformation

xI(r, θ) = rnI(θ) (2.17)

and its inverse. Notice, that in this transformation the Jacobi matrices play the role of
the labels only. This happens because the relation between the Cartesian and spherical
adapted coordinates does not depend on the phase space point, as the adapted coordinates
themselves do.

An advantage of the observables G(x) is that they extend in a regular way to the point
σ0 itself:

P IJ(0),Φα(0),Π
α(0). (2.18)

However, due to (2.6)

QIJ(0) = δIJ (2.19)

by construction.

In section 5.2, we will consider the subspace ΓC ⊂ Γ defined by the vanishing of the
constraints (2.13). Thereon, the functions P rr(r, θ) and P rA(r, θ) will be determined by
the remaining functions QAB(r, θ), PAB(r, θ), Φα(r, θ), Πα(r, θ). Which means that in ΓC
a smaller set of independent observables can be indentified.

2.4 Observables in a general coordinate system

At a point (q, p, φα, π
α) ∈ Γ, the relation between the values of the invariant observ-

ables (2.15) on the left hand side and the values of the corresponding fields expressed in
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some general coordinates (zi) is given by

Φα(r, θ) = ρ

(
∂y

∂z

)β

α

φβ(σ
q

(r,θ)), (2.20a)

Πα(r, θ) =

∣∣∣∣det
(
∂z

∂y

)∣∣∣∣ ρ
∗

(
∂y

∂z

)α

β

πβ(σq(r,θ)), (2.20b)

QAB(r, θ) =
∂zi

∂yA
∂zj

∂yB
qij(σ

q

(r,θ)), (2.20c)

PAB(r, θ) =

∣∣∣∣det
(
∂z

∂y

)∣∣∣∣
∂yA

∂zi
∂yB

∂zj
pij(σq(r,θ)), (2.20d)

where we are taking into account a general case when the fields φα are not just scalar and
the index α transforms with changes of coordinates according to a representation ρ and the
point σq(r,θ) at which all the fields on the right hand sides are evaluated is a function of the
phase space point (q, p, φα, π

α) determined by the condition

(ya(σq(r,θ))) = (r, θ). (2.21)

From (2.20) we see clearly the dependence of the observables on the canonical data. Note,
that the observables depend on the field they are constructed from directly, and additionally,
they have a very nontrivial dependance on the metric through the usage of coordinates
adapted to it. Needless to say, a relation analogous to (2.20) for the observables G(x) can
easily be spelled out. We will write the observables in one more way, that will be useful,
for example, for calculating their Poisson brackets.

3 Variations of the observables in terms of adapted coordinates

Although our definition of observables (2.11) may be applied to matter fields of arbitrary
type, the derivation of the variations and Poisson brackets of those matter observables
depends on that type. Therefore, in the following we limit ourselves to the case of matter
fields which are scalar, meaning that from now on, for each α, φα is a scalar field and πα is
a scalar density.

As has been already noted above, from the point of view of the phase space dependance
the observables G(x) and F (r, θ) differ only by a relabelling. Hence it is enough to study the
variations of the observables G(x) to be able to determine the variations of the observables
F (r, θ) as well. Therefore, in the rest of this section we concentrate on the observables G(x).

Calculating the Poisson brackets between the observables G(x) and any other functions
defined on Γ involves the functional derivatives,

{G(x), pij(σ)} =
δG(x)

δqij(σ)
, (3.1a)

{G(x), qij(σ)} = −
δG(x)

δpij(σ)
, (3.1b)

{G(x), πα(σ)} =
δG(x)

δφα(σ)
, (3.1c)

{G(x), φα(σ)} = −
δG(x)

δπα(σ)
. (3.1d)

– 7 –



J
H
E
P
0
5
(
2
0
1
4
)
0
7
7

The functional derivatives can be calculated by variating (2.20) directly (and using the rela-
tions (2.16)). This however, is complicated since it involves also the variation of a solution
of the geodesic equation σ

q

(x) with respect to the metric q. However, many properties of
those variations can be deduced in an easier way. In fact, eventually, in the way we will
present below the functional derivatives of the observables G(x) (and in consequence also
F (r, θ)) can be determined completely.

Throughout this section, given an observable G(x), and a point (q̌, p̌, φ̌α, π̌
α) ∈ Γ we

fix the coordinates (x̌I) adapted to q̌. We study the variations

d

dǫ

∣∣∣∣
ǫ=0

G(x)|(q̌+ǫδq,p̌+ǫδp,φ̌α+ǫδφα,π̌α+ǫδπα) (3.2)

and express them in the coordinates (x̌I). It will also be convenient to use the spherical
coordinates (y̌a) adapted to q̌.

A special role will be played by the geodesic line consisting of the points

σ
q̌

(r′,θ) for 0 < r′ ≤ r, (3.3)

which is a unique geodesic line connecting the points σ0 and σ
q̌

(x) if only the labels (r, θ)

and (x) are such that they indicate the same point in respective coordinates adapted to the
metric q̌.

3.1 Yet another formula for the observables

In this section we will explicitely discuss the observables defined with the use of the Carte-
sian adapted coordinates G(x), but all the arguments and results obtained below apply also
in the case of the observables F (r, θ).

Given an observable G(x) and a phase space point γ̌ = (q̌, p̌, φ̌α, π̌
α) at which we want

to calculate the variations, the idea is to decompose the observable into two parts: a part
which will just be the appropriate field corresponding to G (we will denote it by g) expressed
in coordinates (x̌I) adapted to q̌ and the difference D. That is

G(x)|(q,p,φα,πα) = g(x)|(q,p,φα,πα) + DG(x)

∣∣
(q,p,φα,πα)

, (3.4)

where the indices I, J, α of the field (hidden in the symbol g) correspond to the fixed
coordinates (x̌I) (notice, that on the left hand side, according to our earlier definitions, the
indices I, J, α correspond to the coordinates (xI) adapted to the current metric q). Note,
that the points of Σ at which the fields in G(x) and g(x) are evaluated in general differ,
since the first one is the point σq(x) and the second one is σq̌(x).

This separation will play a crucial role in the coming derivations so let us explain it
once more on an example. Consider G(x) to be P IJ(x). We want to find a new formula
to express its evaluation at a point γ = (q, p, φα, π

α) (the structures we will be using are
depicted in figure 1). For the separation (3.4) to be possible we need another point in the
phase space (the one around which we will variate later), namely γ̌ = (q̌, p̌, φ̌α, π̌

α). The
first term on the right hand side of (3.4) is constructed in the following way: (i) Take the
field p defining γ. (ii) Express it in coordinates (x̌I) adapted to q̌ defining γ̌. (iii) Evaluate
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Figure 1. The pictures illustrate the building blocks of the separation introduced in equation (3.4).

the result at the point σq̌(x) ∈ Σ, namely such that the coordinates x̌I adapted to q̌ assign
to it the three labels (x). Note, that the only place in which we invoked the phase space
point γ in the construction of this term was when we chose the field later to be expressed
and evaluated. The second term is just the difference between the value of the observable
and the first term. In short we will write

P IJ(x) = pIJ(x) +DP IJ (x), (3.5)

where, as was already mentioned, the indeces on the two sides of the equality correspond
to different sets of coordinates ((xI) and (x̌I)).

It follows directly from the definition, that

DG(x)

∣∣
(q̌,p,φα,πα)

= 0. (3.6)

This continues to be true for every metric q̃ such that the adapted coordinates (x̃I) coincide
with the fixed coordinates (x̌I) in a neighborhood of the geodesic line connecting points σ0
and σq̌(x). This is true whenever

q̃rr = 1, q̃rA = 0 (3.7)

in a neighborhood of the geodesic line and in the coordinates (y̌a). For every such metric
q̃, still

DG(x)

∣∣
(q̃,p,φα,πα)

= 0. (3.8)

This observation implies vanishing of a large family of functional derivatives of the
functions DG(x). We will discuss that below. On the other hand, the functional derivatives
of the fields on the right hand sides of (3.4), namely

d

dǫ

∣∣∣∣
ǫ=0

g(x)|(q̌+ǫδq,p̌+ǫδp,φ̌α+ǫδφα,π̌α+ǫδπα) (3.9)

are straightforward for each of the fields, since they only depend on the varied canonical
data through the direct dependance mentioned earlier.
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3.2 Vanishing functional derivatives of DG(x)

In this section we will explicitely discuss the observables defined with the use of the Carte-
sian adapted coordinates G(x), but all the arguments and results obtained below apply also
in the case of the observables F (r, θ).

Given G(x) and a point (q̌, p̌, φ̌, π̌), we will focus below on the variations of the corre-
sponding function DG(x). The functional derivatives of D are defined by

d

dǫ

∣∣∣∣
ǫ=0

DG(x)

∣∣
(q̌+ǫδq,p̌+ǫδp,φ̌+ǫδφ,π̌+ǫδπ)

=

∫
d3σ

δDG(x)

δqij(σ)
δqij(σ) +

δDG(x)

δpij(σ)
δpij(σ) +

δDG(x)

δφα(σ)
δφα(σ) +

δDG(x)

δπα(σ)
δπα(σ) (3.10)

as the map

(δq, δp, δφα, δπ
α) 7→

d

dǫ

∣∣∣∣
ǫ=0

DG(x)

∣∣
(q̌+ǫδq,p̌+ǫδp,φ̌+ǫδφα,π̌α+ǫδπα)

. (3.11)

It follows from (3.7), (3.8) and the accompanying discussion, that

d

dǫ
DG(x)

∣∣
(q̌+ǫδq,p̌+ǫδp,φ̌+ǫδφα,π̌α+ǫδπα)

= 0 (3.12)

for all the variations δq, . . . , δπα of the fields, such that the condition (3.7) is satisfied by
the metric

q̃ = q̌ + ǫδq (3.13)

in the neighborhood of the geodesic connecting σ0 with σ
q̌

(x) for every ǫ, that is in the
spherical coordinates (y̌a) adapted to q̌,

δqrr = δqrA = 0, (3.14)

in the neighborhood of that geodesic. In terms of the functional derivatives on the right
hand side of (3.10), this observation can be expressed by the following properties:

• All the non-metric derivatives vanish, namely

δDG(x)

δpij(σ)
=
δDG(x)

δφα(σ)
=
δDG(x)

δπα(σ)
= 0. (3.15)

• The support of the functional derivative

δDG(x)

δqij(σ)
(3.16)

at (q̌, p, φα, π
α) ∈ Γ is contained in the geodesic line connecting σ0 with σq̌(x).

• For every δq such that (3.14) hold in a neighborhood of the geodesic line connecting
σ0 with σq̌(x) ∫

d3σ
δDG(x)

δqij(σ)
δqij(σ) = 0. (3.17)

Notice, that it follows from the above properties that the D functions Poisson commute
with each other

{DG(x), DG′(x′)} = 0. (3.18)
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3.3 Diffobs-invariance condition

Like in the previous sections, we present the reasoning for observables G(x), but all the
arguments and results apply also to the observables F (r, θ).

Another set of identities satisfied by the functional derivatives of the function DG(x)

from (3.4) follows from the Diffobs-invariance of the observables G(x). In terms of the phase
space structure, the observables Poisson commute with the vector constraints

{G(x), C( ~N)} = 0 (3.19)

for every vector field ~N on Σ generating elements of Diffobs, i.e., satisfying conditions (2.13).
We apply now the decomposition (3.4). Because it is q̌-dependent, let us spell out the

action of diffeomorphisms ψ ∈ Diffobs,

g(x)|(ψ∗q,ψ∗p,ψ∗φα,ψ∗πα) + DG(x)

∣∣
(ψ∗q,ψ∗p,ψ∗φα,ψ∗πα)

= g(x)|(q,p,φα,πα) + DG(x)

∣∣
(q,p,φα,πα)

,

(3.20)
notice that ψ is applied only to q in this formula and it does not affect the dependance
of g on q̌. Now, we pass from the condition (3.19) to its differential version at the point
(q̌, p̌, φ̌α, π̌

α) and ψ being the flow of a vector field ~N . The condition takes the form of the
following equation ∫

d3σ
δDG(x)

δqij(σ)
L ~N

q̌ij(σ) = −{g(x), C( ~N)}, (3.21)

where the functional derivative is taken at (q̌, p̌, φ̌α, π̌
α). The Poisson bracket on the right

hand side is just

{g(x), C( ~N)}
∣∣∣
(q̌,p̌,φ̌α,π̌α)

=
d

dǫ

∣∣∣∣
ǫ=0

g(x)|(q̌+ǫL ~N
q̌,p̌+ǫL ~N

p̌,φ̌α+ǫL ~N
φ̌α,π̌α+ǫL ~N

π̌α) . (3.22)

For example, for G(x) = QIJ(x)

{qIJ(x), C( ~N)}
∣∣∣
(q̌,p̌,φ̌α,π̌α)

= L ~N
q̌IJ(x), (3.23)

where I, J correspond to coordinates (x̌I) adapted to q̌ and hence

∫
d3σ

δDQIJ (x)

δqij(σ)
L ~N

q̌ij(σ) = −L ~N
q̌IJ(x). (3.24)

3.4 Decomposition of δq

Like in the previous sections, we present the reasoning for observables G(x), but all the
arguments and results can be formulated also for the observables F (r, θ).

Equation (3.21) determines the action of the functional

δq 7→

∫
d3σ

δDG(x)

δqij(σ)
δqij(σ) (3.25)

on any δq that has the form
δq = L ~N

q̌ (3.26)
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with some vector field ~N , a generator of the elements of Diffobs. At first sight, that in-
formation may seem insufficient to determine the whole distribution (3.11). It turns out,
however, that every test variation δq can be written as

δq = L ~N
q̌ + δq̃, (3.27)

with some vector field ~N as above, and the part δq̃ supported in the domain of the coordi-
nates (y̌a) adapted to q̌ which satisfies

δq̃rr = 0 = δq̃rA. (3.28)

But then, a metric q̃ = q̌ + ǫδq̃ satisfies (3.7) and in the consequence

∫
d3σ

δDG(x)

δqij(σ)
δq̃ij(σ) = 0 (3.29)

owing to (3.8). Therefore, the action of the distribution
δDG(x)

δq
on a general test variation

δq is ∫
d3σ

δDG(x)

δqij(σ)
δqij(σ) = −L ~N

g(x), (3.30)

where the vector field ~N is determined by the test variation δq. It can be integrated directly
from (3.27), however, one can also determine it using a general argument and we will do it
first in the general way.

Given δq, for every ǫ (sufficiently small) consider the metric q̌ + ǫδq and the corre-
sponding adapted coordinates (xIǫ ). Define a diffeomorphism ψǫ sending the point to which
coordinates adapted to q̌ give labels (x) to a point to which the coordinates adapted to
q̌ + ǫδq assign the same labels, namely

ψǫ : σ
q̌

(x) 7→ σ
q̌+ǫδq
(x) (3.31)

For sufficiently small ǫ, the diffeomorphism is well-defined in a neighborhood of the geodesic
segment connecting σ0 and σq̌(x). The adapted coordinates of the metric tensor ψ∗

ǫ (q̌+ ǫδq)

are (ψ∗
ǫx

I
ǫ ) and they coincide with the coordinates (x̌I), in the mentioned neighborhood.

Therefore, according to our classification of the vanishing functional derivatives of DG(x)

provided above,

δq̃ :=
d

dǫ

∣∣∣∣
ǫ=0

ψ∗
ǫ (q̌ + ǫδq) (3.32)

satisfies (3.29). On the other hand

δq = −
d

dǫ

∣∣∣∣
ǫ=0

ψ∗
ǫ q̌ +

d

dǫ

∣∣∣∣
ǫ=0

ψ∗
ǫ (q̌ + ǫδq) = L ~N

q̌ + δq̃ (3.33)

with

~N = −
d

dǫ

∣∣∣∣
ǫ=0

ψ∗
ǫ . (3.34)
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The conclusion is, that the functional derivative
δDG(x)

δq
is determined by the equa-

tion (3.21) as follows

δq 7→

∫
d3σ

δDG(x)

δqij(σ)
δqij(σ) = −L ~N

g(x), with ~N = −
d

dǫ

∣∣∣∣
ǫ=0

ψ∗
ǫ (3.35)

where ψǫ is defined by (3.31) and the right hand side of the first equality is the right hand
side of (3.22).

Also, we can conclude, that the equation
∫
d3σT ij(σ)L ~N

q̌ij(σ) = −{g(x), C( ~N)} (3.36)

for an unknown distribution T ij(σ) (satisfying (3.17)) which is satisfied for every generator
~N of Diffobs has the unique solution

T ij(σ) =
δDG(x)

δqij(σ)
. (3.37)

3.5 Determining ~N

Since in this section we will only be using coordinates adapted to the metric q̌ we will
simplify the notation by replacing the point at which tensor fields are evaluated, e.g. σq̌(r,θ),
by the values the corresponding coordinates assume, e.g. (r, θ). So given a tensor field T

by T (r, θ) we will mean the evaluation of the tensor at the point σq̌(r,θ).

Given a variation δq of the metric q̌, the vector field ~N appearing in (3.27), whose
existence we have shown above, can be integrated directly from (3.27). Written in the
coordinates (y̌a), the equations read

2Nr;r = δqrr, (3.38a)

NA;r +Nr;A = δqrA. (3.38b)

Using properties of the spherical adapted coordinates the equations can be cast into the form

N r
,r =

1

2
δqrr, (3.39a)

NA
,r = q̌AB

(
−N r

,B + δqBr
)
. (3.39b)

Integrating those equations over r we obtain

N r(r, θ) = lim
r→0

N r(r, θ) +
1

2

∫ r

0
dr′ δqrr(r

′, θ), (3.40a)

NA(r, θ) = lim
r→0

NA(r, θ) +

∫ r

0
dr′ q̌BA(r′, θ)

(
δqrA(r

′, θ)−
1

2
∂A

(∫ r′

0
dr′′δqrr(r

′′, θ)

))
,

(3.40b)

where we have implemented the simplification of the notation introduced in the first sentence
of this section. The second integrand contains the factor q̌AB which behaves as 1

r′2
as r′ → 0,

however as we explain below the full integrand is finite in r′ = 0.
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Initial conditions at r = 0 (that is at σq̌(0,θ) = σ0) follow from the conditions on the

components N I(0) and N I
,J(0) spelled out in (2.13). Analyzing the limit lim

r→0
~N(r, θ) we see

that the condition on the component N r reads

lim
r→0

N r(r, θ) = 0. (3.41)

The limit of the component NA is more tricky. To express it we will use the Cartesian
coordinates adapted to q̌. Although in general a smooth vector field would have divergent
limit of the component NA, due to the fact that we require the field to vanish at the origin,
the term lim

r→0
NA(r, θ) is finite. Using the coordinates regular at the origin we can find the

value assumed by NA in the limit to be

lim
r→0

NA(r, θ) =

(
lim
r→0

r
∂y̌A

∂x̌I

)
hIJnK∂KNJ(0), (3.42)

where

hIJ = δIJ − nInJ (3.43)

and all the unit vectors nI are the ones introduced in (2.17) and they are functions of the
angles. Therefore, the limit is a function of the angles. Introducing a useful notation for a
lower triangular matrix T IJ which is built from the elements of TIJ in the following way



T 11 T 12 T 13

T 21 T 22 T 23

T 31 T 32 T 33


 =



T11 0 0

2T21 T22 0

2T31 2T32 T33


 . (3.44)

one can (due to (2.13) and (3.27) expressed in Cartesian coordinates) express the derivatives
of N at zero as

∂INJ(0) =
1

2
δqIJ(0). (3.45)

Finally, the resulting ~N (including the contribution from the above limit of NA) is found
to be

~N(r, θ) =

[
1

2
δqKJ(0)h

JLrnK
]
∂L +

1

2

[∫ r

0
dr′ δqrr(r

′, θ)

]
∂r+

+

[ ∫ r

0
dr′ q̌BA(r′, θ)

(
δqrA(r

′, θ)−
1

2
∂A

(∫ r′

0
dr′′ δqrr(r

′′, θ)

))]
∂B. (3.46)

We would like to note here that although q̌BA(r′, θ) = O( 1
r′2

) for small r′, the integral over
r′ in the last term of the above result is well-defined because, from the identity

r

(
1

r′
δqrA(r

′, θ)

)∣∣∣∣
r′→0

−
1

2
∂A

∫ r

0
dr′ δqrr(0, θ) = rnInJ,AδqIJ(0)−

1

2
∂A(rn

InJδqIJ(0)) = 0,

(3.47)
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where δqrr(0, θ) = lim
r→0

δqrr(r, θ), if follows that

δqrA(r
′, θ)−

1

2
∂A

(∫ r′

0
dr′′ δqrr(r

′′, θ)

)

= δqrA(r
′, θ)− r′

(
1

r′′
δqrA(r

′′, θ)

)∣∣∣∣
r′′→0

−
1

2
∂A

(∫ r′

0
dr′′ δqrr(r

′′, θ)− δqrr(0, θ)

)

= O(r′2). (3.48)

Notice also, that in the formula for ~N

q̌BA(r′, θ) = QAB(r′, θ), (3.49)

since we are working in a phase space point given by q̌ in this section.
The fact that the resulting field (3.46) indeed fulfills the second one of the condi-

tions (2.13) is not that trivial. However, one can confirm it performing an explicit cal-
culation, in which the contributions from the second and third terms cancel most of the
contributions from the first term leaving only the expected, lower-triangular, derivative of
the field at zero.

3.6 The result and its meaning

Sumarising the results presented in previous sections, for every observable G(x) the distri-
bution

δDG(x)

δq
is defined by its action on an arbitrary test variation δq as

∫
d3σ

δDG(x)

δqij(σ)
δqij(σ) = − L ~N

g(σ)
∣∣
σ=σq̌

(x)

(3.50)

where the right hand side is just the Lie derivative of the field g ∈ {qIJ , p
IJ , φα, π

α} cor-
responding to the observable G ∈ {QIJ , P

IJ ,Φα,Π
α} and the indices correspond to the

coordinates (x̌I) adapted to the metric tensor q̌ at which the functional derivative of DG(x)

is considered. The Lie derivative is then evaluated at the point σq̌(x) which is labelled with

the three numbers x by the coordinates (x̌I). The vector field ~N is obtained from δq

according to (3.46).
Importantly, the vector field ~N is given explicitly in terms of the coordinates (spherical

or Cartesian) adapted to the metric q̌ at which the functional derivative
δDG(x)

δq
is consid-

ered. Therefore, its components can be easily written directly in terms of the values the
observables F (r, θ) evaluated at q = q̌, specifically by QAB(r, θ)

∣∣
(q̌,p,φα,πα)

.

Moreover, the derivatives in ∂
∂ya

and ∂
∂xI

pass to the derivatives of the values of the
observables G(x) and F (r, θ), with respect to the labels x and r, θ. For example,

L ~N
φ(σ)

∣∣
σ=σq̌

(r,θ)

= NA∂Aφ(σ
q̌

(r,θ)) +N r∂rφ(σ
q̌

(r,θ)) = NA∂AΦ(r, θ)
∣∣
q=q̌

+ N r∂rΦ(r, θ)|q=q̌ .

(3.51)
This observation is important for expressing the functional derivatives of the observables
themselves by the observables. To this end it is convenient to consider the space R

3 of
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the labels x (recall that by x we have collectively denoted the three values the Cartesian
adapted coordinates (xI) assume). In this space we may also use the labelling induced
by the spherical adapted coordinates. For every point in the phase space (q, p, φα, π

α), a
q-dependent neighborhood of (0, 0, 0) in our label space is endowed with: the metric tensor
Q(x) = QIJ(x)dx

IdxJ , the tensor density x 7→ P IJ(x), the scalar field x 7→ Φα(x), and
the density x 7→ Πα(x). Moreover, given a test tensor field δq defined in a neighborhood of
σ0 ∈ Σ, we write it in the adapted Cartesian coordinates as

δqIJ(σ
q

(x)) = wIJ(x) (3.52)

and following (3.46) define in the neighborhood of (0, 0, 0) a vector field ~Λ

~Λ(x) =

[
1

2
wKJ(0)h

JLrnK
]
∂L +

1

2

[∫ r

0
dr′ wrr(r

′, θ)

]
∂r

+

[ ∫ r

0
dr′ QBA(r′, θ)

(
wrA(r

′, θ)−
1

2
∂A

(∫ r′

0
dr′′ wrr(r

′′, θ)

))]
∂B, (3.53)

where hJL = δJL−nJnL, the nI are functions of θ and all r, θ are determined by x with the
use of the (inverse of) the relation (2.3). The vector field ~Λ is continuous and differentiable
at x = (0, 0, 0).

Given an observable G(x), at a point (q, p, φα, π
α) ∈ Γ, the functional derivatives are

given by
∫
d3x′

δΦα(x)

δqKL(x′)
wKL(x

′) = −ΛK(x)
∂

∂xK
Φα(x), (3.54a)

∫
d3x′

δΠα(x)

δqKL(x′)
wKL(x

′) = −
∂

∂xK

(
ΛK(x)Πα(x)

)
, (3.54b)

∫
d3x′

δQIJ(x)

δqKL(x′)
wKL(x

′) = wIJ(x)− L~ΛQIJ(x) (3.54c)

∫
d3x′

δP IJ(x)

δqKL(x′)
wKL(x

′) = −L~ΛP
IJ(x). (3.54d)

4 Poisson brackets of the observables

4.1 Poisson brackets of two observables

A natural question to ask is that about the Poisson brackets of the observables. As one
could see already in the formula (3.46), the fixed point σ0 (the observer) plays a nontrivial
and non-negligible role in the results. This is the reason why, for the sake of precision, it is
better to use the observables G(x) defined well at x = (0, 0, 0) (corresponding to σ = σ0).
Recall that the transformation (2.16) between the observables F (r, θ) and the observables
G(x) depends on the (relation of the) labels x and r, θ while it is independent of the point
in the phase space (q, p, φα, π

α) ∈ Γ, therefore it commutes with the Poisson brackets,
for example

{QAB(r, θ), · } =
∂xJ

∂yA
∂xK

∂yB
{QJK(xI = rnI), · }. (4.1)
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We will calculate now the Poisson brackets {G(x), G′(x′)} at a point (q̌, p̌, φ̌α, π̌α) ∈ Γ,
assuming both the observables in the Poisson brackets are well-defined. We will use the
spherical coordinates (y̌a) and the Cartesian coordinates (x̌I) adapted to q̌. We will also
make use of the decomposition (3.4). The calculation proceeds as follows

{G(x), G′(x′)} = {g(x) +DG(x), g
′(x′) +DG′(x′)}

= {g(x), g′(x′)}+ {DG(x), g
′(x′)} − {DG′(x′), g(x)} (4.2)

= {g(x), g′(x′)}+

∫
d3σ

δDG(x)

δqij(σ)

δg′(x′)

δpij(σ)
−

∫
d3σ

δDG′(x′)

δqij(σ)

δg(x)

δpij(σ)
,

where in the first equality we have used (3.18) and the first bracket in the last line is the
usual Poisson bracket between the canonical variables (1.1).

The simplest case is when G(x) and G′(x′) do not contain p, because then the last two
terms above identically vanish:

{G(x), G′(x′)} = {g(x), g′(x′)} for G,G′ ∈ {QIJ ,Φα,Π
α}, (4.3)

that is

{Φα(x), Π
α′

(x′)} = δα
′

α δ(x− x′), (4.4a)

{Φα(x), Φα′(x′)} = {Πα(x), Πα
′

(x′)} = {QIJ(x), QKL(x
′)} = 0, (4.4b)

{QIJ(x), Φα(x
′)} = {QIJ(x), Π

α(x′)} = 0. (4.4c)

Those identities pass to the observables F (r, θ):

{Φα(r, θ), Π
α′

(r′, θ′)} = δα
′

α δ(r − r′)δ(θ − θ′), (4.5a)

{Φα(r, θ), Φα′(r′, θ′)} = {Πα(r, θ), Πα
′

(r′, θ′)} = {QAB(r, θ), QCD(r
′, θ′)} = 0, (4.5b)

{QAB(r, θ), Φα(r
′, θ′)} = {QAB(r, θ), Π

α(r′, θ′)} = 0. (4.5c)

The expressions for the Poisson brackets in (4.4) and (4.5) are distributions that can be
integrated over the labels x and x′, and respectively, r, θ and r′, θ′ with arbitrary smear-
ing functions.

Next, consider the bracket {G(x),
∫
d3x′ wIJ(x

′)P IJ(x′)} for G ∈ {QIJ ,Φα,Π
α}. It

amounts to
{
G(x),

∫
d3x′ wIJ(x

′)P IJ(x′)

}

=

∫
d3x′ wIJ(x

′){g(x), pIJ(x′)}+

∫
d3x′

δDG(x)

δqKL(x′)
wKL(x

′) (4.6)

=

∫
d3x′ wIJ(x

′){g(x), pIJ(x′)} − L~ΛG(x).

The first term of the result contains again the bracket between the canonical variables, while
the second term is the Lie derivative acting in the space of labels x on g ∈ {qIJ , φα, π

α}
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and acting with respect to the vector field ~Λ defined by (3.53) for the smearing field w. For
specific choices of G, we have

{
Φα(x),

∫
d3x′ wIJ(x

′)P IJ(x′)

}
= −ΛJ(x)

∂

∂xJ
Φα(x), (4.7a)

{
Πα(x),

∫
d3x′ wIJ(x

′)P IJ(x′)

}
= −

∂

∂xJ

(
ΛJ(x)Πα(x)

)
, (4.7b)

{
QKL(x),

∫
d3x′ wIJ(x

′)P IJ(x′)

}
= (4.7c)

= wKL(x)− ΛI(x)
∂

∂xI
QKL(x)−

∂

∂xK
ΛI(x)QIL(x)−

∂

∂xL
ΛI(x)QKI(x).

(4.7d)

The above expressions are distributions which can be integrated over x, with arbitrary
smearing functions. To extract from (4.7) the Poisson brackets {G(x), PAB(r, θ)} we write

∫
d3x′wIJ(x

′){G(x), P JK(x′)} :=

{
G(x),

∫
d3x′ wIJ(x

′)P IJ(x′)

}
, (4.8)

where {G(x), P JK(x′)} is defined by the right-hand-sides action on an arbitrary test tensor
field w. Using this object

{G(x), PAB(r, θ)} =

∣∣∣∣det
(
∂x′

∂y

)∣∣∣∣
∂yA

∂x′I
∂yB

∂x′J
{G(x), P IJ(x′)}. (4.9)

Denote by TKLIJ , a constant matrix such that

wKL(0) = T IJKLwIJ(0). (4.10)

The following Poison brackets follow from (4.7),

{Φα(r, θ), P
AB(r′, θ′)} = −

1

2
y′A,I y

′B
,J T

IJ
KLh

LMxKyC,M∂CΦα(r, θ)δ(r
′), (4.11a)

{Πα(r, θ), PAB(r′, θ′)} = −
1

2
y′A,I y

′B
,J T

IJ
KL

(
hLMxKyC,MΠα(r, θ)

)
,C
δ(r′), (4.11b)

{QCD(r, θ), P
AB(r′, θ′)} = δA(Cδ

B
D)δ(r − r′)δ(θ − θ′) (4.11c)

−
1

2
y′A,I y

′B
,J T

IJ
KLh

LMxKyE,MQCD,E(r, θ)δ(r
′) (4.11d)

−
1

2
y′A,I y

′B
,J T

IJ
KL

(
hLMxKyE,M

)
,C
QED(r, θ)δ(r

′) (4.11e)

−
1

2
y′A,I y

′B
,J T

IJ
KL

(
hLMxKyE,M

)
,D
QCE(r, θ)δ(r

′). (4.11f)

Note that for the sake of brevity we noted fields depending on the r, θ labels without a
prime (e.g. hLM ), while the ones depending on r′, θ′ are denoted with a prime (e.g. y′A,I ).
The functions y′A,I depend on r′ as 1

r′
, however, the asymptotic behavior as r′ → 0 of the

wAB(r
′, θ′) components of a smooth test tensor field behave as r′2.

In a similar way one can calculate {F (r, θ), P rr(r′, θ′)} and {F (r, θ), P rA(r′, θ′)} for
F ∈ {Φα,Π

α, QAB}.
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The last Poisson bracket is{∫
d3x wIJ(x)P

IJ(x),

∫
d3x′ w′

KL(x
′)PKL(x′)

}

=

∫
d3x wIJ(x)

∫
d3x′

δDP IJ (x)

δqKL(x′)
w′
KL(x

′)−

∫
d3x′ w′

KL(x
′)

∫
d3x

δDPKL(x′)

δqIJ(x)
wIJ(x)

=

∫
d3x

(
wIJ(x)L~Λ′

− w′
IJ(x)L~Λ

)
P IJ(x)), (4.12)

where L is the Lie derivative in the space of the labels x, the vector field ~Λ is the one
deifned by (3.53) while the vector field ~Λ′ is obtained by replacing w with w′ in (3.53). As
above, the Poisson bracket {PAB(r, θ), PCD(r′, θ′)} can be obtained from that result and
it will be the sum of terms proportional to either δ(r) or δ(r′).

4.2 The Poisson bracket of the observables with the vector constraint

Each observable F (r, θ) we have defined satisfies

{F (r, θ), C( ~N)} = 0 (4.13)

for every vector field ~N on Σ satisfying conditions (2.13). What about a general vector field
~M defined on the manifold Σ? We will answer this question in this section.

To calculate the Poisson bracket {F (r, θ), C( ~M)} at a point of the phase space (q, p, φ, π) ∈
Γ we will use the assigned orthonormal frame (e0I) in Tσ0Σ, the adapted spherical coordi-
nates (ya) and the adapted Cartesian coordinates (xI) defined in a neighborhood of σ0. For
the observables we will use the decomposition (3.4).

4.2.1 A general consideration

Using the (3.4) decomposition

{F (r, θ), C( ~M)} = {f(r, θ), C( ~M)}+ {DF (r,θ), C( ~M)}. (4.14)

Given F , the first term is known to be the Lie derivative of f with respect to the field ~M .
In the second term we will apply our results concerning the variations of DF (r,θ)

{DF (r,θ), C( ~M)} =

∫
d3σ

δDF (r,θ)

δqij(σ)

δC( ~M)

δpij(σ)
=

∫
d3σ

δDF (r,θ)

δqij(σ)
2M(i;j)(σ). (4.15)

The last integral has exactly the form (3.25) considered above with

δqij := 2M(i;j). (4.16)

Therefore if N is the vector field defined by (3.27) for the above δq, then according to (3.35)
∫
d3σ

δDF (r,θ)

δqij(σ)
2M(i;j)(σ) = −{f(r, θ), C( ~N)}. (4.17)

Combining (4.14) and (4.17) we conclude that

{F (r, θ), C( ~M)} = {f(r, θ), C(~∆)} = L~∆f(σ)
∣∣
σ=σq

(r,θ)

, (4.18)

where ~∆ = ~M − ~N . What is left to do is, given a vector field ~M , to find the corresponding
vector field ~∆.
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4.2.2 Equation determining ~∆

Invoking (3.38) the vector field ~N corresponding to δq from (4.16) satisfies equations

Nr;r =Mr;r, (4.19a)

Nr;A +NA;r = Mr;A +MA;r. (4.19b)

hence, the vector field ~∆ satisfies the following equations

∆r;r = 0, (4.20a)

∆r;A +∆A;r = 0. (4.20b)

Those equations can be recast in the form

∂r∆
r = 0, (4.21a)

∂r∆
A = −qAB∂B∆

r. (4.21b)

The initial conditions the vector field ~N satisfies at σ0 are given by (2.13). In our case (4.16)
hold, so the initial conditions read

N I(σ0) = 0, (4.22a)

∂IN
J(σ0) =





MI,J(σ0) for I = J

2M(I,J)(σ0) for I < J

0 for I > J.

(4.22b)

They imply the following initial conditions for ~∆ at σ0

∆I(σ0) =M I(σ0), (4.23a)

∂I∆
J(σ0) =





0 for I = J

−MI,J(σ0) for I < J

MJ,I(σ0) for I > J.

(4.23b)

4.2.3 The case ~M(σ0) = 0

In this case a general solution to the equations (4.21) is

∆r = 0, (4.24a)

∆A(σ(r,θ)) = ∆A(σ(0,θ)), (4.24b)

that is
~∆ = ∆A(σ0)∂A, (4.25)

with a priori arbitrary finite ∆A(σ0) being functions of the angles only.
To ensure the initial conditions in σ0 we will express ∆A by the components ∆I in the

Cartesian adapted coordinates (xI), and use

∂yA

∂xI
=

1

r
tAI , (4.26)
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where tAI is a function of the angles θ, but is independent of r. Now,

∆A =
∂yA

∂xI
∆I = tAI

∆I

r
, (4.27)

but from (4.24b) we know that the left hand side does not depend on r so we can introduce
a limit in the following way

∆A = tAI lim
r→0

∆I

r
(4.28)

and since we are considering a case in which M I(σ0) = 0, invoking (4.23a) we find

∆A = tAI n
J∂J∆

I(σ0). (4.29)

Finally, in a neighborhood of σ0,

~∆ = ∆A∂A =
[
nJ tAI ∂J∆

I(σ0)
]
∂A (4.30)

=
[
xJ
(
δKI − nIn

K
)
∂J∆

I(σ0)
]
∂K =

[
xJ∂J∆

K(σ0)
]
∂K .

Notice that this result means that in the case M I(σ0) = 0 the field ~∆ is fully determined
by the three entries appearing above the diagonal of ∂IMJ(σ0).

4.2.4 The case ~M(σ0) 6= 0

A general solution to the equation (4.21a) is

∆r(σ(r,θ)) = ∆r(σ(0,θ)) = ∆I(σ0)nI , (4.31)

where, due to (4.23a), ∆I(σ0) is a given initial value.
With the above solution, the equation (4.21b) reads

∂r∆
A(σ(r,θ)) = −qAB(σ(r,θ))∂BnK(θ)∆

K(σ0). (4.32)

The components qAB(σ(r,θ)) have the asymptotics in r = 0 of the type u(θ)
r2

,

qAB(σ(r,θ)) =
∂yA

∂xI
∂yB

∂xJ
qIJ(σ(r,θ)) = tAI (θ)t

B
J (θ)

qIJ(σ(r,θ))

r2
, (4.33)

where qIJ are components of the metric tensor in the Cartesian adapted coordinates
(xI). Since the first two leading terms will be relevant for us, note that qIJ has the
following expansion

qIJ(σ(r,θ)) = δIJ + sIJ(r, θ)r2, (4.34)

where sIJ(r, θ) for every fixed θ is a function of r finite at 0. Applying this expansion in
equation (4.32) we get

∂r∆
A(σ(r,θ)) = −tAI (θ)hKJ(θ)∆

K(σ0)

(
δIJ

r2
+ sIJ(r, θ)

)
, (4.35)

where we denoted
hKJ(θ) = δKJ − nK(θ)nJ(θ) (4.36)

and explicitly pointed out the dependence on r and θ.
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The general solution to (4.35) is defined up to CA, a function of θ constant in r,

∆A(σ(r,θ)) = tAI (θ)hKJ(θ)∆
K(σ0)

(
δIJ

r
−

∫ r

0
dr′ sIJ(r′, θ)

)
+ CA(θ). (4.37)

For a general, continuous and differentiable in σ0 vector field ~V , the expansion in r

near σ0 of its angular components is

V A(σ(r,θ)) =
∂yA

∂xI
V I(σ(r,θ)) = tAI (θ)

(
V I(σ0)

r
+ ∂rV

I(σ0) +O(r)

)
. (4.38)

The comparison of this expansion with (4.37) determines CA to be

CA(θ) = tAI (θ)n
J(θ)∂J∆

I(σ0). (4.39)

The resulting solution in a comprehensive form reads

~∆ = ∆I(σ0)∂I + xJ∂J∆
I(σ0)∂I + hKJ∆

K(σ0)

(
r

∫ r

0
dr′ sIJ(r′, θ)

)
∂I . (4.40)

4.2.5 Interpretation of the action of ~M = ~N + ~∆

Given a metric tensor q on Σ, we have decomposed a general vector field ~M defined on
Σ into the sum of ~N and ~∆. The flow of ~N is contained in the subgroup Diffobs of the
diffeomorphisms which preserve our observables. The vector field ~∆, on the other hand,
infinitesimally preserves the radial form of the metric q. That is, if ψt is an element of the
flow of ~∆ in Σ, then

ψ∗
t q = ψ∗

t

(
dr ⊗ dr + qABdθ

A ⊗ dθB
)
= dr ⊗ dr + (qAB + tq′AB)dθ

A ⊗ dθB +O(t2). (4.41)

Given q, the space Sq of all the possible vector fields ~V whose flows satisfy (4.41) is
parametrized by 6 free numbers: 3 components V I(σ0) and 3 independent entries of the
necessarily antisymmetric ∂IV J(σ0). Moreover, Sq is a vector space and each ~V ∈ Sq can
be obtained as the vector field ~∆ for some choice of ~M . There is a difference from the
point of view of the preservation of the radial form between the cases ∆I(σ0) = 0, and
respectively ∆I(σ0) 6= 0.

In the first case, the vector field ~∆ depends on the given metric q only through the
adapted coordinates (spherical or Cartesian). It can be described as defined by a single
vector field

~VT = V A
T (θ)∂A (4.42)

tangent to the unit sphere in the tangent space Tσ0Σ pushed forward by the exponent map
to all the spheres r = const. While every vector field ~VT defines in that way a vector
field in Σ continuous in σ0, the resulting vector field might in general turn out not to be
differentiable at σ0. It is easy to show, that the necessary and sufficient condition for the
differentiability of ~VT is that it should be a generator of a rotation of the sphere with respect
to the metric q(σ0). This is exactly the meaning of the condition (4.23b) on ∂J∆

I(σ0) we
have derived. Furthermore, in the case ∆I(σ0) = 0, the preservation law (4.41) is satisfied
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for every metric tensor q′ which in the coordinates (ya) adapted to the metric q also takes
the radial form

q′ = dr ⊗ dr + q′ABdθ
A ⊗ dθB. (4.43)

For that reason, the commutator of two vector fields ~∆, ~∆′ ∈ Sq vanishing in σ0 is also a
vector field ~∆′′ ∈ Sq. Therefore, those vector fields can be integrated to a group of local
diffeomorphisms ψ : U 7→ U acting in a domain U ⊂ Σ of a given system of Cartesian
coordinates adapted to q such that

xI(ψ(σ)) = RIJx
J(σ), (4.44)

where RIJ is a fixed matrix of a rotation in R
3.

In the case ∆I(σ0) 6= 0, on the other hand, the vector field ~∆ depends not only on
the adapted coordinates of the metric q, but also on the components qAB. Therefore, the
infinitesimal preservation law (4.41) holds for the metric q and in general does not hold
for another q′ which also takes the radial form (4.43). Those infinitesimal diffeomorphisms
can be also related to finite local diffeomorphisms ψ : U → U preserving the radial form
of the metric q. Each local diffeomorphism of that property, given q, can be defined by a
point σ′0, a frame (e′0I ) at σ′0 (orthonormal frame e′I is defined as before by Gram-Schmidt
orthonormalization of e′0I but now with respect to metric q(σ′)). Using the frame (e′I) we
introduce the Cartesian coordinates (x′I) adapted to q in a neighborhood of σ′0. For every
σ in that neighborhood, ψ(σ) is the point for which

x′I(ψ(σ)) = xI(σ). (4.45)

In particular
ψ(σ0) = σ′0 and Tψ(σ0)eI = e′I . (4.46)

In case σ0 = σ′0 we can take e′I = RJI eJ . Then RIJx
′J(σ) = xI(σ) and (4.45) becomes (4.44).

5 Application: dynamics and the constraints

Consider a theory defined in our original phase space Γ of section 1.2 (before the observer
was introduced) by the vector constraints

Ci(σ) = 0 (5.1)

considered above, and by a Hamiltonian

H =

∫

Σ
d3σ

(
h(q, p, φα, π

α)(σ) +N i(σ)Ci(σ)
)

(5.2)

such that {∫

Σ
d3σh(q, p, φα, π

α)(σ), Ci(σ)

}
= 0, (5.3)

where h(σ) depends on the values of the fields q, p, φα, πα and their derivatives at σ. An
example of such a theory is given by gravity coupled to other fields and deparametrized
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by one of them. In that deparametrization framework the scalar constraint is solved with
respect to the momentum canonically conjugate to a distinguished scalar field, while the
scalar field itself is eliminated by a suitable gauge choice. The fields (q, p, φα, π

α) featuring
in the definition of our phase space are in that case the remaining fields. Specifically, the
deparametrising field may be a massless Klein-Gordon field (the Rovelli-Smolin theory [8])
or the scalar field of Brown-Kuchař describing an irrotational dust [7, 10, 11]. In those
cases the hamiltonian density is

hRS(p, q, φα, π
α)

= ±

√√√√√det q

(
−Cgr−Cmatt ±

√
(Cgr + Cmatt)2−qij (Cgr

i +Cmatt
i )

(
C

gr
j +Cmatt

j

))
,

(5.4a)

and, respectively,
hBK(p, q, φα, π

α) = Cgr + Cmatt, (5.4b)

where Cgr is the usual ADM scalar constraint, Cgr
i is the usual ADM vector constraint

(both depending on q and p), whereas Cmatt and Cmatt
i are the respective contributions

from matter fields (depending also on the fields φα and πα).
The group of the gauge transformations consists of the group of transformations of the

phase space Γ induced by the group of the diffeomorphisms of Σ (having a compact support
in Σ). Our observables G(x) and F (r, θ) are almost invariant with respect to the gauge
transformations. They are subject only to the 6 dimensional family of the residual gauge
transformations characterized in section 4.2.

In this section we will study the dynamics of our observables and use them to solve the
vector constraints.

5.1 Dynamics

The dynamics of our Diffobs-invariant observables is defined by a Poisson bracket with the
Hamiltonian H. We calculate it at a point (q, p, φα, π

α) ∈ Γ using the adapted spherical
coordinates (ya), adapted Cartesian coordinates (xI) and the decomposition (3.4)

G(x) = g(x) +DG(x), F (r, θ) = f(r, θ) +DF (r,θ). (5.5)

That is,

{G(x), H} = {g(x), H}+

∫
d3σ′

δDG(x)

δqij(σ)

δH

δpij(σ)
= {g(x), H} − (L~Λg)(x), (5.6)

where ~Λ is the vector field defined by (3.53) with

wIJ(σ) =
δH

δpIJ(σ)
. (5.7)

It is important, from the point of view of the framework, to express the Poisson bracket
{G(x), H} by the observables themselves. Before doing that, notice that it is typically true
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(including the examples (5.4)) that the first term in (5.6) - the Poisson bracket with one of
the canonical variables g(x) has the following form

{g(x), H} = H1

(
qij(σ), qij,k(σ), qij,kl(σ), p

ij(σ), φα(σ), φα,i(σ), π
α(σ)

)
(5.8)

with some function H1 and an arbitrary coordinate system (zi) on Σ (recall that g(x) does
not depend on the metric through the use of adapted coordinates - see the discussion at the
begining of section 3.1). Given a point (q, p, φα, πα) ∈ Γ, we can use the Cartesian adapted
coordinates (xI) and the corresponding spherical adapted coordinates (ya),

{g(x), H} = H1

(
QIJ(x), QIJ,K(x), QIJ,KL(x), P

IJ(x),Φα(x),Φα,I(x),Π
α(x)

)
. (5.9)

Now,

{G(x), H}

= H1

(
QIJ(x), QIJ,K(x), QIJ,KL(x), P

IJ(x),Φα(x),Φα,I(x),Π
α(x)

)
−
(
L~ΛG

)
(x),

(5.10)

where wIJ used in the definition ~Λ is also expressed by the observables G(x)

wIJ(x) =WIJ

(
QIJ(x), QIJ,K(x), QIJ,KL(x), P

IJ(x),Φα(x),Φα,I(x),Π
α(x)

)
. (5.11)

At this point, the derivatives featuring in the arguments of the functions H1 and W are
considered as derivatives with respect to the labels x, labeling the observables. The conclu-
sion is, that the time evolution d

dt
G(x) of any of the observables corresponding to a given

x, contains terms proportional to:

• observables G′(x), and their derivatives G′
,I(x), G

′
,IJ(x), . . .

• observables G′(0), and their derivatives G′
,I(0), G

′
,IJ(0) . . .

• integrals
∫ 1
0 dτ l(G′(τx), G′

,I(τx), G
′
,IJ(τx), . . .) along the line connecting x with 0

(which in Σ corresponds to the geodesic interval connecting σ with σ0).

Another natural question is whether the Hamiltonian itself can be written as or replaced
by a function of the observables. Suppose, in a neighborhood of a given (q, p, φα, π

α) ∈ Γ,
the Cartesian adapted coordinates (xI) are defined globally on Σ (this is true, e.g., for q’s
sufficiently close to being flat). Then, the Hamiltonian can be expressed by the observables
∫

Σ
d3σ h

(
qij(σ), qij,k(σ), qij,kl(σ), p

ij(σ), φα(σ), φα,i(σ), π
α(σ)

)

=

∫
d3x h

(
QIJ(x), QIJ,K(x), QIJ,KL(x), P

IJ(x),Φα(x),Φα(x),Π
α(x)

)
. (5.12)

In such a case, the Poisson bracket is automatically given by the Poisson brackets
{G(x), G′(x′)},

{G(x), H} =

∫
d3x′

[
δH

δQIJ(x′)
{G(x), QIJ(x

′)}+
δH

δP IJ(x′)
{G(x), P IJ(x′)} (5.13)

+
δH

δΦα(x′)
{G(x), Φα(x

′)}+
δH

δΠα(x′)
{G(x), Πα(x′)}

]
.
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In a general point (q, p, φα, π
α) ∈ Γ the observables G(x) are defined only for x from some

neighborhood of 0 in R
3. The best we can do is to introduce quasi-local hamiltonians,

HU =

∫

U

d3x h
(
QIJ(x), QIJ,K(x), QIJ,KL(x), P

IJ(x),Φα(x),Φα,I(x),Π
α(x)

)
. (5.14)

defined manifestly by the observables G(x). Then, for every x′ ∈ R
3 such that the line

connecting x′ and 0 is contained in U and each observable G(x′), we have

{G(x′), H} = {G(x′), HU}. (5.15)

5.2 Solutions of the vector constraint

Our definition (2.11b) of the Diffobs-invariant observables is valid also for the components
P rr and P rA of the gravitational field momentum. Observables P rr(r, θ) and P rA(r, θ)

were included in (2.15), but as we already mentioned, on the vector constraint subspace
ΓC ⊂ Γ, which is distinguished by the vanishing of the vector constraint, we can express the
observables P rr(r, θ) and P rA(r, θ) by the remaining observables from (2.15). We discuss
this in more detail now, because the observables P ra(r, θ) (as functions of (2.15)) are present
in the hamiltonians from the previous section.

For every point (q, p, φα, πα) ∈ ΓC the components of q, p and the fields φα, πα satisfy
the vector constraint at every point σ ∈ Σ. The constraint reads

Ci(σ) = −2∇jp
j
i + Cmatt

i (φα, π
α) = 0, (5.16)

where Cmatt
i is the term contributed by the fields φα and their momenta πα. Let us use the

spherical coordinates (ya) adapted to q. We will consider equation (5.16), as an equation
for some of the momenta observables P ab(r, θ), given by the remaining momenta, the metric
observables Qab(r, θ) and matter fields observables Φα(r, θ) and Πα(r, θ). Let us first discuss
its properties using just the fields q, . . . , πα.

Keeping in mind that pij is a tensor density of weight one and using the properties of
the spherical adapted coordinates we can write the constraint equations in the form

∂rp
r
A = −∂Bp

B
A + ΓCABp

B
C −

1

2
Cmatt
A (φα, π

α), (5.17a)

∂rp
r
r =

1

2
qAB,rp

AB − ∂Ap
A
r −

1

2
Cmatt
r (φα, π

α). (5.17b)

Geometrically, we can understand those equations in terms of the family of 2-surfaces r =
const, and induced on each of them r-dependent: 2-metric qAB, its covariant 2-derivative D,
a 2-tensor density pAB, a 2-vector density pAr. The Christoffel symbols ΓCAB on the right
hand side of the first equation correspond to the covariant derivative D, also ∂ApAr = DAp

A
r

and pAr = qABprA. In terms of those structures, the equations read

∂rp
r
A = −DBp

B
A −

1

2
Cmatt
A (φα, π

α), (5.18a)

∂rp
r
r =

1

2
qAB,rp

AB −DAp
A
r −

1

2
Cmatt
r (φα, π

α). (5.18b)
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To construct a solution of (5.18) functions qAB, pAB, φα and πα can be chosen and fixed
freely, modulo suitable consistency conditions which ensure that they define a continuous
and differentiable, respectively, 3-metric qij , 3-tensor density pij , and fields φα and πα at
the point σ0. We will see that prr and prA are determined by the above equations given
that data.

First, let us ignore the consistency conditions at σ0, that is at r = 0. The first
equation (5.18a) is a family of ordinary differential equations along the rays θ = const

parametrised by r. The unknown is prA(r, θ), while the right hand side is given by the
fixed qAB(r, θ), pAB(r, θ), φα(r, θ) and πα(r, θ). Therefore, given the right hand side, the
equation (5.18a) determines prA(r, θ) modulo an unknown initial value prA(0, θ). The sec-
ond equation (5.18b) is, again, a family of ordinary differential equations along the rays
θ = const. In this equation, the unknown is prr(r, θ). The right hand side is given by a solu-
tion prA(r, θ) of the first equation and by the fixed qAB(r, θ), pAB(r, θ), φα(r, θ) and πα(r, θ).
Therefore, the second equation determines prr(r, θ) modulo a free initial value prr(0, θ).

Let us turn to the consistency conditions at r = 0. To spell them out for the tensor
density pij let us use the Cartesian adapted coordinates (xI) which in contrast to the
spherical coordinates (ya) are well-defined in an entire neighborhood of σ0 including σ0

itself. A necessary and sufficient condition for pab to be extendable to a tensor density
continuous and n-times differentiable at σ0 is that there exist functions pIJ continuous and
differentiable n-times at σ0 such that

pab = r2Ω(θ)
∂ya

∂xI
∂yb

∂xJ
pIJ , (5.19)

where

Ω(θ) =
1

r2
det

(
∂xI

∂ya

)
(5.20)

is a function of the angles only. The functions pIJ are just the components of the tensor
density p in the coordinates (xI). Therefore, for continuity, the functions pAB we choose
and fix in equation (5.18) have to satisfy a condition that there are constants pIJ0 such that

pAB(0, θ) = sABIJ (θ)pIJ0 , (5.21)

where the functions sABIJ are defined to be

sABIJ = r2Ω(θ)
∂yA

∂xI
∂yB

∂xJ
(5.22)

and indeed, each of them is independent of r.
Equation (5.19) implies the continuity consistency conditions also for prA and prr at

σ0. As a consequence, the initial values in the equations (5.18) are not any longer free:

prA(0, θ) = 0 = prr(0, θ). (5.23)

One could be concerned, that with this condition a part of the data pIJ0 is lost. However,
given pAB (5.21), all the numbers pIJ0 are determined due to the dependence of the function
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sABIJ on θ. In conclusion, the components prr and prA of the gravitational momentum are
completely determined by equations (5.18) and by the remaining components of the mo-
mentum, and the remaining fields. More specifically, each value prA(r, θ) and, respectively,
prr(r, θ) is a function of the values pAB(r′, θ), qAB(r′, θ), φα(r′, θ) and πα(r′, θ) taken when
r′ ranges over the interval (0, r].

Finally, this relation passes unchaged to the observables P rr(r, θ), P rA(r, θA). Namely,
they can be expressed by the observables QAB(r′, θ), PAB(r′, θ), Φα(r

′, θ) and Πα(r′, θ)

using the exact same formulas with which prr and prA were determined if only all the fields
are replaced by the corresponding observables.

6 Summary

In the presented paper we have proposed and studied a new scheme of deparametrization
of general relativistic systems. Our aim, the general way we want to implement it, the
starting point and the notation, have been explained in sections 1 and 2.1. Here, we outline
and interpret the results established in this paper.

On the phase space Γ formed by canonical ADM data (q, p, φα, π
α) we introduced

observables (see section 2.3). The observables are labelled by using the set of labels R
3

which comes with the natural Cartesian coordinates R
3 ∋ x = (x1, x2, x3) = (xI). We also

use thereon the natural spherical coordinates (r, θ1, θ2) = (r, θ). The extra structure we
endowed the 3-manifold Σ (on which the ADM data is defined) with is:

• a point σ0 ∈ Σ;

• a family of frames tangent to Σ in σ0, such that the transition matrix between each
two of them is lower-triangular and has positive entries on the diagonal;

one can think of that structure as of an observer, observers frames and observers coordinates.
For every metric tensor q defined on Σ, exactly one of the observers frames, say eI , is
orthonormal. Given q, we use this frame to define a map

R
3 ∋ (xI) 7→ expσ0(x

IeI) ∈ Σ, (6.1)

defined by the geodesic curves in Σ beginning at σ0. The observables introduced in this
paper are the components of the fields on R

3 obtained by the pullback of the ADM data
fields q, p, φα, πα with the map (6.1). Written in terms of the Cartesian coordinates (xI)

they constitute the observables

QIJ(x), P
IJ(x),Φα(x),Π

α(x) : Γ → R (6.2)

and written in terms of the spherical coordinates in the observers space R
3 they are

QAB(r, θ), P
AB(r, θ), P rA(r, θ), P rr(r, θ),Φα(r, θ),Π

α(r, θ) : Γ → R
3. (6.3)

The map (6.1) is defined for arbitrary x. Therefore, for the metric tensor field q and a scalar
field φα the pullbacks Q, and respectively, Φα, are defined on all the observers coordinate
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space R
3. So are the corresponding observables QIJ(x) and Φα(x). However, given q, the

values of the observables QIJ(x) may vanish for some x, hence

Qx = QIJ(x)dx
IdxJ (6.4)

may become degenerate as a metric tensor in some points x ∈ R
3. On the other hand, the

fields carrying the contravariant indices like the momentum p canonically conjugate to the
metric tensor q, or any matter covector field, are defined well only on the q dependent open
neighborhood of (0, 0, 0) ∈ R

3 such that the map (6.1) maps it diffeomorphically into Σ.
Therefore, we restricted our considerations to that neighborhood. The consequence for the
corresponding observables is that given x ∈ R

3, the corresponding observables P IJ(x) etc,
are defined only in an open neighborhood in Γ consisting of the points (q, p, φα, π

α) such
that the q-dependent map (6.1) maps diffeomorphically a neighborhood of x in R

3 into Σ.

The observables are invariant with respect to the induced action in Γ of those dif-
feomorphisms of Σ which preserve the chosen family of frames tangent to Σ at σ0. This
subgroup of the diffeomorphism group is denoted throughout the work by Diffobs.

We have also characterized the remaining, residual diffeomorphisms of Σ, whose induced
action in Γ does not leave our observables invariant. Their generators in Σ are given by
equation (4.30). For every metric tensor q, they form a 6 dimensional family of residual
vector fields defined in the suitable neighborhood of σ0 ∈ Σ (and extended arbitrarily to
the entire Σ). A general vector field in Σ was decomposed in sections 4.2.1 into a generator
of Diffobs and one of the residual vector fields (4.30).

The variations
∫
Σ d

3σ wab(σ)
δ

δqab(σ)
of our observables (6.2) are the key technical

element in the calculation of their Poisson bracket. To every variation wab we as-
signed a vector field ~Λ (given by 3.53) in observers coordinate space R

3. The variation∫
Σ d

3σ wab(σ)
δ

δqab(σ)
F (x) (3.54) of each of our observables F ∈ {QIJ , P

IJ ,Φα,Π
α} is ex-

pressed by the Lie derivative L~ΛF (x) in the observers coordinate space.

Another special property of the assignment w 7→ ~Λ is the dependence of ~Λ(x) ∈ TxR
3 on

wab(σ0). The point σ0 contributes with a measure proportional to the Dirac delta (namely
d3x′δ(0, x′)) and / or its derivative depending on the type of the observed field. Other
points of the geodesic curve connecting the point σ(x) (the image of (6.1)) with the origin
σ0 contribute to the vector ~Λ(x) with a measure proportional to d2θδ(θ − θ(σ)) (and / or
derivatives), where θ = (θ1(σ(x)), θ

2(σ(x)) are the values of the spherical coordinates. This
property has important consequences for the Poisson bracket between the observables.

The complete understanding of the variations of the observables allowed us to cal-
culate their Poisson algebra in section 4. The Poisson bracket between the observables
QIJ(x),Φα(x),Π

α(x) is canonical (4.4), in the sense that Φα(x) and Πα(x) are canon-
ically conjugate to each other and both Poisson commute with all the QIJ(x), while
QIJ(x) Poisson commute among each other. On the other hand, the Poisson bracket
{F (x),

∫
d3x′wIJ(x

′)P IJ(x′)} carries all the nontrivial structure of our observables. For
F = QIJ ,Φα,Π

α it is given by (4.7), while for F = P IJ it is provided by (4.12). In both
cases the Poisson bracket is expressed by the Lie derivative of the observables with respect
to the vector field defined on the observers coordinate space, therefore the result is given in
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terms of the observables. For x 6= 0 it is convenient to use the observers spherical coordi-
nates. Then, the observables QAB(r, θ), PAB(r, θ),Φα(r, θ),Πα(r, θ) have canonical Poisson
brackets provided we consider only functionals

∫
drd2θ fAB(r, θ)P

AB(r, θ) with a smearing
function whose support does not contain σ0. The full Poisson bracket, though, contains the
contribution from the point (0, 0, 0) (4.11).

The observables Φα(x), Πα(x) are defined for arbitrary bosonic matter fields and the
index α may give them arbitrary tensor character. For simplicity, in many places of our
paper we restrict ourselves to scalar matter fields. For instance, the explicit formulae (3.54)
for the variation of the matter fields and, respectively, (4.7) for their Poisson brackets with
P IJ assume the scalar case. However, a generalization of the Lie derivatives L~ΛΦα and
L~ΛΠ

α to arbitrary vector or tensor matter fields gives formulae true for those more general
cases of matter.

The framework introduced in this paper can be applied to canonical theories of fields
(q, p, φα, π

α) constrained by the vector constraints. For those theories the action of the
diffeomorphisms of Σ induced in Γ coincides with the gauge transformations. The two
examples we refer to in section 5.1 are the Rovelli-Smolin model of general relativistic
theory deparametrised by a massless scalar field and the Brown-Kuchař model of a general
relativistic theory deparametrised by non-rotating dust. We applied the results of the
previous sections to derive the dynamics of the observables (6.2) and to write it again in
terms of the observables. This result is contained in equation (5.13). The contribution to the
dynamics of any observable G(x), comes from the other observables G(x′) at x′ = (0, 0, 0)

and at x with the point measure, and also integrated along the line segment from (0, 0, 0)

to x. The Hamiltonian globally defined in terms of the fields (q, p, φα, π
α) can be replaced

by an equivalent local Hamiltonian defined in terms of the observables (6.2).

Finally, in section 5.2 we address the vector constraints. On the vector constraint sur-
face we express the observables P rr(r, θ) and P rA(r, θ) by QAB(r′, θ), PAB(r′, θ), Φα(r′, θ)
and Πα(r′, θ). The latter observables are free modulo the assumption that they are the
components in the spherical coordinates of corresponding fields QIJ , P IJ , Φα and Πα not
singular in (0, 0, 0).

The results of this work open the door to the reduced degrees of freedom formulation
of our framework, obtained by restricting our observables to the vector constraint surface
in Γ. The reason for which in this paper we were working in the whole kinematical phase
space Γ was to control all the subtleties following from the existence of the residual gauge
transformations our observables are sensitive to. Now we have reached the point at which
the passage to the reduced phase space is possible.
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