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The Balitsky–Kovchegov (BK) evolution equation in its resummed integ-
ral form is considered. We solve it numerically and compare to the unre-
summed BK equation formulated as an integral equation and to the solu-
tion obtained by the BKsolver package. Sensitivity of the solution to an
introduced resolution parameter and initial conditions is investigated.
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1. Introduction

Quantum Chromodynamics (QCD) is a theory which is used to set up
the initial conditions for the collisions at the Large Hadron Collider (LHC) as
well as to calculate properties of hadronic observables. At high energies, as
available at the LHC, one enters into a region of the phase space, where both
the energy and momentum transfers are high and partons eventually form a
dense system which is expected to saturate [1–5]. Indeed, there is a growing
evidence that the saturation really takes place [2–5]. The basic perturbative
QCD equation which sums up the terms proportional to αns lnm(s/s0) and
also accounts for formation of the dense system of partons is the Balitsky–
Kovchegov (BK) equation [6, 7]. The BK equation, valid in asymptotic
regime, does not take into account coherence effects in emission of gluons.
This property manifests itself as independence on the hard scale associated
with the external hard probe. Recently, a framework has been provided
in [8–12], where both the dense systems and the hard processes at high
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energies can be studied. This framework was based on the observation that
the BK equation can be rewritten in an exclusive form and further extended
to include the coherence effects. In the study presented here, which is a
step towards understanding properties of the equations obtained in [8–10],
we perform a numerical analysis of a new form of the BK equation and
compare it to the original formulation (see also [13]). In particular, we
study the dependence of the resummed BK equation on a new scale which
has the meaning of a resolution scale. We show that the resummed BK
equation agrees with the original one when the resolution scale µ is already
of the order of 10−3GeV. We also investigate the dependence of the solution
on the form of the initial conditions.

2. Exclusive form of the BK equation

At the leading order in ln(1/x) the BK equation [6, 7] for the gluon
number density in the momentum space is written as an integral equation
and reads [8–10]
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where the lengths of transverse vectors lying in the transversal plane to the
collision axis are k ≡ |k|, l ≡ |l| (k is a vector sum of transversal momenta
of emitted gluons during evolution), z = x/x′(see Fig. 1), αs = Ncαs/π.
The strength of the nonlinear term is controlled by the targets radius R. The
linear term in Eq. (1) can be linked to the process of creation of gluons, while
the nonlinear term can be linked to fusion of gluons. The interplay of these
two terms as a net effect leads to saturation of gluons. The unintegrated
gluon density obeying the high energy factorization theorem [14] is obtained
from [15, 16]
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As shown in [8, 9] this equation can be rewritten in a resummed form
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where q = l − k and ∆R(z, k, µ) ≡ exp
(
−αs ln 1

z ln k2

µ2

)
is the Regge form

factor.
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Fig. 1. The diagram explaining the meaning of the variables in the BK equation.

Equation (3) is a form of the BK equation in which the resummed terms
resulting in the Regge form factor are the same for the linear and nonlinear
part. This form served as a guiding equation to generalize the CCFM equa-
tion [17–19] to the KGBJS equation [8, 9] which includes nonlinear effects.
These effects allow for recombination of partons with a constraint on an
emission angle.

3. Computational method

In order to study the behaviour of both the equations (1) and (3), they
were solved numerically following an iterative procedure, which we detail in
this section.

For numerical treatment of Eq. (1), the inner integral is approximated
by reducing it to a finite interval (k0, qf ). This allows for a direct numeri-
cal representation of the Φ function, which is the solution to be computed.
Iterative refinement of it is more naturally expressed with w = x

z as the inte-
gration variable. Also, to give an accurate view of the numerical procedure,
we explicitly denote the second argument of Φ as k2 = k2, l2 = l2, so the
equation reads
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Φ (x, k2) = Φ0(x, k2)
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where, for simplicity, we assume R = 1√
π
and ᾱs = Ncαs

π with the fixed QCD
coupling constant αs = 0.2. The evolution starts at x0 = 10−2.

The function Φ is represented on a regular mesh of points (xm, k2n) that
are equidistant in a logarithmic setting: log xm = log xmin +m∆x (and sim-
ilarly in k2). For values of Φ with arbitrary arguments, we employ a bilinear
interpolation with respect to logarithms of the variables. The iterative pro-
cedure starts with Φ0 as a first approximation of the solution. Then, the
right-hand side of the equation is calculated repeatedly to provide and use
subsequent approximations. Since Eq. (1) can be cast as a differential equa-
tion in x as well, the above algorithm can be modified to be more efficient.
Namely, the particular structure of the equation permits us to work with the
domain of Φ reduced in x to cover the arbitrarily small interval (x′, x0). In
order to extend some known solution to reach some smaller x′, it is enough
that the iterative recalculation of the right-hand side is performed only for
the newly considered values of x. Starting with x′ = x0 and going down to
next grid points, we save computational time. In our implementation, the
integrals are computed using the VEGAS method, as available in the CUBA
library [20]. To ease the integration, extra variable changes dw/w → d (lnw)
and dl2/l2 → d (ln l2) are employed.

The following two forms of the driving term Φ0 are considered here

Φa0 (x, k2) = exp
(
−k2/GeV2

)
, (5)

Φb0 (x, k2) =
(
k2/GeV2

)−1/2
. (6)

The resummed form of the BK equation, Eq. (3), is solved in approxi-
mated form for similar reasons. While the lower limit of the inner integral
is now exactly µ, the upper limit and the vector sum |k|+ q = S(q2, k2, ϕ)
need to be constrained
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The length of the vector sum

S(a2, b2, α) = a2 + b2 + 2
√
a2b2 cosα (8)

may fall outside the (k20, q
2
f ) range, hence the integrand is approximated by

limiting the second argument of Φ. This is done as follows

m
(
k′2, k20, q

2
f

)
=


k20 when k′2 < k20 ,

k′2 when k20 ≤ k′2 ≤ q2f ,
q2f when k′2 > q2f .

(9)

This way the domains of Φ and of the integrals all can be kept finite.
The initial conditions resulting from the resummation procedure include

an extra factor as follows

Φ̃a,b0 (x, k2) = exp

(
−ᾱs ln

x0
x

ln
k2
µ2

)
Φa,b0 (x, k2) . (10)

Except for the above remarks, both equations are solved using the same
method. The numerical solutions presented below are computed with k0 =
0.001 GeV and qf = 100 GeV, for the cut-off values ranging from µ = k0 to
µ = 0.01 GeV.

4. Numerical solutions

In this section, we present results of numerical solution of the considered
equations. In Fig. 2, we present the solutions of the BK equation formu-
lated as an integral equation compared to the more commonly used integro-
differential formulation. The former is solved via the iteration method, while
the latter by using the BKsolver package [21]. As can be seen, the solutions
stay within 1% for k < 1 GeV. Above this value, the solutions diverge and
at the lowest x considered the relative difference reaches 4%. For the largest
values of k, the distribution Φ approaches zero anyway, thus the agreement
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between the two solutions is satisfactory. As the next result, we present in
Fig. 3 the solution of the resummed form of the BK equation and compare
it to the unresummed one. In the former, the scale µ introduces numeri-
cally some weak dependence of the solution on its value. This dependence
is expected formally to disappear in the limit µ → 0. In Figs. 4 and 5, we
study the dependence of the solution of the BFKL and BK equations on
the parameter µ. As already mentioned above, the resummation procedure
assumes that the scale µ is the smallest scale in the problem and that it
should tend to zero. One can see that the BFKL equation is more sensitive
to the resummation parameter than the BK one. The reason for this is the
feature of the saturation scale which provides a cut-off on small momenta
and, therefore, weakens the dependence on µ. Particularly interesting is the
shape of the gluon density from the BFKL equation shown in the upper
panel of Fig. 4. One can see that when the cut-off is larger than the probed
kt value, the distribution bends upwards. This is due to the fact that the
Regge form factor in that case becomes larger than one. When we lower
the cut-off, this structure disappears. Finally, in Fig. 6, we investigate the
dependence of the solutions on the form of the initial conditions. The com-
parison of the BFKL and BK cases indicates that the BK equation is more
universal, i.e. the spread of its solutions is smaller.
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Fig. 2. Upper plots: the solutions of the BK equation as formulated in Eq. (1)
compared with the solutions obtained with the BKsolver package [21]. Lower plots:
ratios of these solutions.
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Fig. 3. The comparison of the solutions of the BK equation as formulated in Eq. (1)
with the solutions of its resummed form given in Eq. (3); µ = k0 = 0.001 GeV.
Lower plots: ratios of these solutions with values obtained for Eq. (3) in the de-
nominator.
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Fig. 4. Sensitivity to the cut-off µ without the nonlinear term. Upper plots: the
solutions of the resummed BFKL equation, i.e. Eq. (3) with the nonlinear term
neglected; their ratios are plotted on the lower panels.



1534 K. Kutak, W. Płaczek, D. Toton

 0.01

 0.1

 1

 10

 1e-05  0.0001  0.001  0.01

Φ

x

k=0.1 (µ=0.01)
k=1 (µ=0.01)
k=10 (µ=0.01)
k=0.1 (µ=0.001)
k=1 (µ=0.001)
k=10 (µ=0.001)

Φ

 0.9

 0.95

 1

 1.05

 1.1

 1e-05  0.0001  0.001  0.01

Φ
1
/Φ

2

x

k=0.1
k=1
k=5

Φ
1
/
Φ

2

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

Φ

k

x=0.001 (µ=0.01)
x=0.0001 (µ=0.01)
x=1e-05 (µ=0.01)
x=0.001 (µ=0.001)
x=0.0001 (µ=0.001)
x=1e-05 (µ=0.001)

Φ

 0.9

 0.95

 1

 1.05

 1.1

 0.001  0.01  0.1  1  10

Φ
1
/Φ

2

k

x=0.001
x=0.0001
x=1e-05

Φ
1
/
Φ

2

Fig. 5. The effect of the nonlinear term on the sensitivity to the cut-off µ. The
solutions of the resummed BK equation of Eq. (3); for µ = 0.01 GeV (red and
next lines) and µ = 0.001 GeV (blue and next lines). Lower plots: ratios of these
solutions.
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Fig. 6. The comparison of the solutions obtained with different forms of
the Φ̃0 term. Left: the resummed BFKL equation, i.e. Eq. (1) with the
nonlinear term neglected; Right: the resummed BK equation of Eq. (3);
red lines: Φ̃0 = exp(−ᾱs ln x0
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)
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5. Summary

In this paper, we have performed the study of the resummed form of
the BK and the BFKL evolution equations. We have compared the ob-
tained solutions to the unresummed ones as well as to the solutions provided
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by the BKsolver package. The solutions of the BK equation formulated as
the integro-differential equation and of the BK equation formulated as the
double-integral equation agree well, with the discrepancy staying below few
percent. We notice the residual dependence of the BK equation on the re-
summation parameter and also observe that it is less sensitive to the resum-
mation parameter µ as compared to the BFKL equation. We attribute this
phenomenon to the emergence of the saturation scale in the BK equation.
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