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Ballistic transport through an impurity-free section of the Corbino disk in graphene is investigated by means
of the Landauer�Büttiker formalism in the mesoscopic limit. In the linear-response regime the conductance is
quantized in steps close to integer multiples of 4e2/h, yet Fabry�Perot oscillations are strongly suppressed. The
quantization arises for small opening angles θ . π/3 and large radii ratios R2/R1 & 10. We �nd that the condition
for emergence of the n-th conductance step can be written as

√
nθ/π � 1. A brief comparison with the conductance

spectra of graphene nanoribbons with parallel edges is also provided.
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1. Introduction

Conductance quantization was observed a quarter-
-century ago in heterostructures with two-dimensional
electron gas (2DEG) [1]. The emergence of quantiza-
tion steps as multiples of 2e2/h was swiftly associated to
�nite number of transmission modes. Further theoret-
ical investigation revealed the generic conditions under
which conductance quantization appears in systems with
constrictions [2, 3]. It is predicted that conductance of
the Corbino disks in 2DEG is also quantized, yet in odd-
integer multiples of 2e2/h [4]. Unfortunately, the exper-
imental con�rmation of this result is missing so far.
In the case of graphene, theoretical calculations predict

the emergence of conductance quantization in multiples
of 4e2/h for nanoribbons (GNRs) as well as for systems
with modulated width [5�8]. Experimental demonstra-
tion of these phenomena is challenging, mainly due to
the role of disorder and boundary e�ects [9]. These issues
encourage us to study other systems exhibiting conduc-
tance quantization which may be more resistant to the
above-mentioned factors.
Transport properties of the full Corbino disk in

graphene were discussed by numerous authors [10�12].
In contrast to a similar disk in 2DEG [4], conductance of
the graphene-based system is not quantized. In the case
of �nite disk sections, systems with wide opening angles
θ (see Fig. 1) should exhibit a behavior similar to com-
plete disks as currents at the edges play a minor role. On
the other hand, narrow section strongly resemble GNR,
thus one could raise a question: At which opening angle
the quantization will emerge? In this paper we show that
conductance steps may appear for disk sections, provided
that the ratio of outer to inner radius R2/R1 is large, and
the opening angle is narrow.
The paper is organized as follows. In Sect. 2 we discuss

solutions of the Dirac equation for a system with cylin-
drical symmetry. Following Berry and Mondragon [13],
we then impose the so-called in�nite-mass boundary con-
ditions [14]. In Sect. 3 we discuss the exact results

of mode-matching for various radii ratios and opening
angles. In Sect. 4, the semiclassical approximation for
transmission probability is used to determine the condi-
tions for conductance quantization in mesoscopic Dirac
systems. For such systems, the step width is ∝

√
n

(where n is the channel index), thus steps corresponding
to large n are smeared out. Also in Sect. 4, the conduc-
tance spectra a disk section GNR are compared.

2. Model

Our system is a section of the Corbino disk in graphene
characterized by the opening angle θ and the inner
(outer) radius R1 (R2) (see Fig. 1). The leads are
modelled with heavily-doped graphene areas [5]. Mode-
matching analysis (see Appendices A and B) gives
the transmission amplitudes for quasiparticles passing
through the sample area. The conductance is obtained by
summing the transmission probabilities over the modes
in the Landauer�Büttiker formula

G = G0

∑
j

|tj |2 , (1)

with G0 = 4e2/h due to spin and valley degeneracies.
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Fig. 1. A section of the Corbino disk in graphene at-
tached to two metal contacts (shaded areas). Tick lines
at the system edges depict in�nite-mass boundary con-
ditions. The opening angle θ = π/3 and the radii ratio
R2/R1 = 2 are set for an illustration only.
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As the wave functions should in general possess cylin-
drical symmetry, we start from the analysis of the full
disk. The Dirac equation in polar coordinates (r, φ) can
be written as ε e− iφ

(
i∂r+

∂φ

r

)
e iφ

(
i∂r−

∂φ

r

)
ε


(
ψA
ψB

)
=0,(2)

where ε = (E − V ) /~vF, vF ≈ c/300 is the Fermi veloc-
ity, and the electrostatic potential energy is

V (r) =

{
−V∞ if r < R1 or r > R2,

0 if R1 < r < R2.
(3)

Since the Hamiltonian commutes with the total angular
momentum operator Jz = − i~∂φ+~σz/2, the wave func-
tion reads

ψj (r, φ)=exp (iφ (j − 1/2))

(
ϕA (r)

exp (iφ)ϕB (r)

)
, (4)

where j = ± 1
2 ,±

3
2 , . . . is the angular momentum quan-

tum number. Substituting ψj into Eq. (2) we can derive

ϕj (r) ≡

(
ϕA (r)

ϕB (r)

)
=

(
H

(ζ)
j−1/2 (εr)

iH
(ζ)
j+1/2 (εr)

)
, (5)

where H
(ζ)
ν , with ζ = 2 (1) for the incoming (out-

going) waves, is the Hankel function of the second
(�rst) kind [15]. The momentum-independent radial cur-

rent density is (j)r = −evFψ†j (σx cosφ+ σy sinφ)ψj =

4λζevF/(πεr), with λζ = (−1)ζ . In the high-doping limit
ϕj (r) (5) simpli�es to

ϕj (r)
|ε|→∞
'

√
2

πεr
exp (− iλζ (εr − πj/2))

(
1

−λζ

)
.(6)

Now, the sample edges are introduced to our analy-
sis via the in�nite-mass boundary conditions. Following
Ref. [13], we demand that the angular current vanishes at

the sample edges; i.e., (j)n = n̂·
[
ψ†j (x̂σx + ŷσy)ψj

]
= 0,

where n̂ denotes the unit vector normal to the boundary.
This leads to

ψB/ψA = i exp(γ), (7)

where γ = 0 for φ = π/2 or γ = θ + π for φ = θ + π/2
(without loss of generality we set the boarders at φ = π/2
and φ = θ+ π/2). In particular, for θ = π/(2k+ 1) with
k = 0, 1, 2, . . . , the solutions can be found as linear com-
binations of the form ajψj+bjψ−j and are given explicitly
in Appendix A. Due to Eq. (7), the values of j contribut-
ing to the sum in Eq. (1) are further restricted to

j = −π (2n− 1)

2θ
, n = 1, 2, 3 . . . (8)

3. Conductance quantization

The numerical results for disk sections with di�er-
ent geometric parameters are presented in Fig. 2. For
small radii ratios R2/R1 . 2 and large opening angles

θ & π/3, the approximating formula for the pseudodi�u-
sive limit [10]

Gdiff ≈
4e2

πh

θ

ln(R2/R1)
(9)

reproduces the exact values obtained via Eq. (1) for ε→
0. In other cases, the conductance near the Dirac point is
highly suppressed due to the limited number of transmis-
sion modes. At higher dopings and for R2/R1 . 10, we
notice the Fabry�Perot oscillations arising from strong
interference between the incoming and outgoing waves in
the sample area. The conductance quantization is clearly
visible for θ . π/3. Decreasing θ, one can systemat-
ically increase the number of sharp conductance steps
(see Fig. 2a).
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Fig. 2. (a) Conductance of the disk section as a func-
tion of doping for the opening angle varying from θ = π
down to π/9 (speci�ed for each curve) and the radii ratio
�xed at R2/R1 = 10. (b) Same as (a) but for θ = π/15
and two values of R2/R1. Notice the suppression of the
Fabry�Perot oscillations for R2/R1 = 50.

To describe the above-mentioned e�ect in a quantita-
tive manner, we plotted (in Fig. 3) the squared step width
∆µ2 of several consecutive conductance steps (1 6 n 6 7)
for R2/R1 = 10 and di�erent angles θ. The n-th step
width is quanti�ed by the inverse slope of the straight
line least-square �tted to the exact conductance-doping
dependence; i.e.,

G/G0 ≈
1√
∆µ2

εR1 + const, (10)

where the �tting is performed near the in�ection point
corresponding to the n-th conductance step. Remark-
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ably, ∆µ2 increases systematically with n. This observa-
tion can be rationalized by calculating the transmission
probability for electrostatic potential barrier within the
semiclassical approximation [16]. For the classically for-
bidden regime, R1 < r < j/ε, one can write

Tj ≈ exp

−2

j/ε∫
R1

dr

√(
j

r

)2

− ε2

 , (11)

where j/r [with j given by Eq. (8)] plays a role of the
transverse wave number and we have further supposed
that R2 � R1. Each individual step, associated with the
in�ection point on the conductance-doping plot, corre-
sponds to Tj ≈ 1/2 for a given j. A clear step becomes
visible when Tj rises fast enough with ε, such that the
step width is signi�cantly smaller than distances to the
neighboring steps. These lead to√

n θ/π � 1. (12)

In turn, for any �nite θ only a limited number of the
conductance steps near zero doping (n 6 nmax) is visi-
ble, whereas the higher steps get smeared out. This e�ect
has no direct analogue in similar Schrödinger systems.
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Fig. 3. Squared width ∆µ2 versus the step index n for
R2/R1 = 10 and di�erent values of θ. Solid lines are
guides for the eye only; dashed lines depict best-�tted
linear dependence of ∆µ2 on n.
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Fig. 4. Conductance as a function of doping for
graphene nanoribbon (thin gray line) narrow disk sec-
tion (thick red line). Inset: schematics of the two sys-
tems considered.

We compare now our results with more familiar con-
ductance quantization appearing for GNRs, using the
analytic formula for a strip with in�nite-mass bound-
ary conditions derived by Tworzydªo et al. [5]. In fact,
a rectangular sample of the width W = θR1 and the
length L = R2 − R1 essentially reproduces a geometric
quantization appearing in a disk section for small open-
ing angles. As shown in Fig. 4, the conductance-doping
curves for the two systems closely follow each other, ex-
cept from the Fabry�Perot oscillations present in GNR
and strongly suppressed in the disk section with nonpar-
allel borders.

4. Conclusion

We have investigated ballistic charge transport
through a �nite section of the Corbino disk in graphene
with the in�nite-mass boundaries. The system conduc-
tance as a function of doping shows sharp quantization
steps for opening angles θ . π/3. In comparison to the
situation in graphene nanoribbons, the Fabry�Perot os-
cillations are strongly suppressed, particularly for large
radii ratios R2/R1 & 10. For these reasons, our theo-
retical study suggests that a narrow section of the disk,
or a triangle, may be the most suitable sample geome-
try for experimental demonstration of the conductance
quantization in graphene or other Dirac system.
Additionally, a special feature of the conductance-

-doping dependence for the Dirac systems has been iden-
ti�ed. Namely, the quantization steps are blurred such
that the step width is proportional to

√
n, with n being

the step number. This observation helps to understand
why only a very limited number of sharp conductance
steps were identi�ed so far in both experimental [9] and
numerical studies [8].
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Appendix A: Wave functions

In this Appendix we give explicitly the pairs of linearly-

-independent solutions [fA,j , fB,j ]
T

and [gA,j , gB,j ]
T

of
Eq. (2) with the boundary conditions (7). For the leads
(r < R1 or r > R2) we de�ne the dimensionless variable
ρ = ε∞r and get

fLα,j(ρ, φ) =

√
8

πρ
exp (i (ρ∓ φ/2))

× cos
(
j
(
φ− π

2

))
, (13)

gLα,j(ρ, φ) = ±
√

8

πρ
exp (− i (ρ± φ/2))
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× cos
(
j
(
φ+

π

2

))
, (14)

where the upper (lower) signs correspond to the sublat-

tice index α = A (α = B). Similarly, for the sample area
(R1 < r < R2) ρ = εr, and the wave functions read

fSA,j(ρ, φ) = exp (i(j + 1/2)(π − φ))H
(1)
j+1/2(ρ) + exp (i (j − 1/2)φ)H

(1)
j−1/2(ρ), (15)

fSB,j(ρ, φ) = i
{

exp (i (j + 1/2)φ)H
(1)
j+1/2(ρ) + exp (i(j − 1/2)(π − φ))H

(1)
j−1/2(ρ)

}
, (16)

gSA,j(ρ, φ) = exp (− i(j + 1/2)(φ+ π))H
(2)
j+1/2(ρ) + exp (i (j − 1/2)φ)H

(2)
j−1/2(ρ), (17)

gSB,j(ρ, φ) = i
{

exp (i (j + 1/2)φ)H
(2)
j+1/2(ρ) + exp (− i(j − 1/2)(φ+ π))H

(2)
j−1/2(ρ)

}
. (18)

Appendix B: Mode-matching

The current conservation conditions at r = R1 and r = R2 lead to the system of linear equations
0 −fLA,j(ε∞R1, φ) fSA,j(εR1, φ) gSA,j(εR1, φ)

0 −fLB,j(ε∞R1, φ) fSB,j(εR1, φ) gSB,j(εR1, φ)

−gLA,j(ε∞R2, φ) 0 fSA,j(εR2, φ) gSA,j(εR2, φ)

−gLB,j(ε∞R2, φ) 0 fSB,j(εR2, φ) gSB,j(εR2, φ)



tj
rj
aj
bj

 =


gLA,j(ε∞R1, φ)

gLB,j(ε∞R1, φ)

0

0

 , (19)

where we have supposed that the wave is incident from the inner lead. We further notice that the transmission
probability |tj |2 is insensitive to the speci�c value of ε∞, as it only a�ects the phases of wave functions fLα,j (13) and

gLα,j (14).
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